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Spin Hamiltonians with degenerate ground states are one potential system for the storage of quantum
information at low temperatures. Trapped ions can be used to simulate the dynamics of these Hamiltonians, but
the coherence-preserving properties will be lost. This illustrates that a quantum simulation performed in an
interaction frame will not thermalize with its environment.
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I. INTRODUCTION

The preservation of quantum information is difficult. The
system must be protected from noise due to its environment
and from errors induced by control and measurement. In
comparison, classical information is robust. Usually, there is
a large energetic or kinetic barrier separating the two states
relative to the temperature. A common example is the use of
magnetic domains for computer memory �1�.

Motivated by the idea of magnetic domains and topologi-
cal particles, a number of ground-state-degenerate quantum
systems have been proposed as error-free memories �2–7�. In
each case, the logical qubit is the degenerate ground state of
many physical qubits in the presence of a Hamiltonian H.
The environmental noise interacts with the qubits indepen-
dently and H is constructed such that all single-qubit errors
raise the energy. Consequently, at a temperature lower than
the energy gap, multiorder processes are required to deco-
here the system. Additionally, although the lowest-order pro-
cesses do not preserve the exact state, they often preserve the
superposition over large subspaces. This is equivalent to
quantum error correction �8�, where the distance between
encoded states allows one to detect and correct up to n er-
rors. The ground states of these Hamiltonians can be used to
derive quantum codes for quantum error correction �7,9�.
However, the goal is to avoid active error correction and let
the energetics maintain the coherence. In these systems, the
error rate is suppressed as 1/�k where � is the energy gap
between the ground state and k depends on the size of the
system and the details of the Hamiltonian.

The Hamiltonians used for protecting coherences are tra-
ditionally associated with condensed matter physics but have
now been proposed for atomic and molecular physics using
arrays of ions, atoms, and molecules �10–12�. Atomic ions
have already been shown to have long-lived qubits relative to
the frequencies of these effective Hamiltonians �13�. Is it
possible that these methods can be used to extend these life-
times even longer?

A problem arises because the effective Hamiltonians are
in a rotating frame relative to the Bohr frequency of the
physical qubit. Although the energy gap may protect the sys-
tem against noise of frequency lower than �, it will not sup-
press the natural spontaneous emission. The utility of such a
scheme then depends strongly on the kinetics.

In this paper, the effects of spontaneous emission in these
systems are examined by looking at a model two-qubit sys-

tem. We find that the interaction picture is equivalent to a
system in an environment with negative energy modes. We
then examine the implications for energy-preserving Hamil-
tonians, quantum simulations, and adiabatic quantum com-
putations in the interaction picture.

II. TWO QUBITS COUPLED BY XX+YY

A. Model system

The model system is described by the two-qubit Hamil-
tonian

Hxy =
�J

2
�X1X2 + Y1Y2� �1�

where X and Y are Pauli spin operators. The eigenstates
of the Hamiltonian are ��1�= �1/�2���01�− �10�� , ��2�
= �00� , ��3�= �11�, and ��4�= �1/�2���01�+ �10�� with
eigenenergies E1=−�J, E2=E3=0, and E4=�J.

Although there is no protected qubit since the ground
state is not degenerate, ��1� has the property that any single-
qubit Pauli error on ��1� raises the energy by at least �J.
Therefore, we expect that the state ��1� will be preserved for
temperatures lower than �J /kb. We can quantify this intuition
by assuming that each qubit interacts with an independent
bath of harmonic oscillators and calculating the transition
rate from ��1� to all other states.

The Hamiltonian of the system and the environment is

H = Hxy + �
i,k

��kaik
† aik + ��

i

�ikzZi�aik
† + aik�

+ �ikxXi�aik
† + aik� + �ikyYi�aik

† + aik� �2�

where �ikj are the interaction strengths of mode k with qubit
i along the axis j.

We can transform to an interaction picture with respect to
the bath Hamiltonian, H0=Hb=�i,k��kaik

† aik. The Hamil-

tonian in the interaction picture in general is H̃
=exp�iH0t /���H−H0�exp�−iH0t /��. For this case, we find

H̃ = Hxy + ��
i,k

�ikzZi�aik
† ei�kt + aike

−i�kt�

+ �ikxXi�aik
† ei�kt + aike

−i�kt� + �ikyYi�aik
† ei�kt + aike

−i�kt� .

�3�
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Fermi’s golden rule is used to calculate the first-order
transition rate from the ground state to the other states as-
suming a generic spectral density ���� and thermal occupa-
tion n�� ,T�= �e��/kbT−1�−1. We find that

� = 4��z�2J�2��2J�n�2J,T�

+ 4���x�J�2 + �y�J�2���J�n�J,T� , �4�

where ���� is the interaction strength averaged over the
modes of frequency �. This is the heart of these protection
schemes. Because we are in the ground state, energy must be
absorbed. At low temperatures, a linear decrease in the tem-
perature will lead to an exponential decrease in n�J ,T� and
the transition rate. At zero temperature n�J ,T�=0 and the rate
of excitation from the ground state vanishes to first order. In
this case, because the ground state is nondegenerate, the
higher-order rates will also be zero.

B. Effective Hamiltonian with trapped ions

An effective XX or YY coupling between two ions has
been demonstrated by virtually exciting the shared motional
mode �14,15�. Although the same motional mode cannot be
used to generate an XX+YY coupling, it is possible to use the
center-of-mass mode of the two ions for the XX coupling and
the stretch mode for the YY coupling. This yields again the
Hamiltonian Hxy. The coupling strength J /2=	2
2 /�, where
	 is the Lamb-Dicke parameter, 
 is the Rabi frequency of
the qubit transition, and � is the detuning of the laser from
the relevant motional sideband. J is limited to be smaller
than the ion trap motional frequency �s. In practice, �s /2�
is typically a few megahertz.

Implicit in the above description is that H is in the rotat-
ing frame or interaction picture defined by the Bohr fre-
quency of the physical qubit, �. For concreteness, consider
the optical qubit of 40Ca+ where the D5/2 state is �0� and the
S1/2 state is �1� �16�. For this quadrupole transition, � /2�
=411 THz and  /2�=0.16 Hz.

The state ��1� will not be preserved. Spontaneous emis-
sion will drive the system toward ��2�= �11�. Although ��1� is
the ground state of Hxy, it is an excited state of the system
Hamiltonian Hs= ��� /2�Z �Fig. 1�. We start with the same
system-bath interaction as above but we then transform to an
interaction picture defined by the uncoupled system and bath

Hamiltonians H0=Hs+Hb. The transformed Hamiltonian is
then

H̃ = Hxy + ��
i,k

„�ikzZiaik
† ei�kt + ��ikx + i�iky��−ie

−i�t�aik
† ei�kt

+ ake
−i�kt� + H.c.… , �5�

where �−i= �Xi+ iYi� /2 is the raising operator on the ith qubit
and H.c. is the Hermitian conjugate.

Notice that in the interaction picture, the bath frequencies
have been effectively shifted by a frequency ±� �Fig. 2�. This
is equivalent to the bath having modes of negative energy. In
this situation, spontaneous emission can lead to heating of
the system. We again calculate the transition rates

� = 4��z�2J�2��2J�n�2J,T�

+ 2���x�� + J�2 + �y�� + J�2���� + J�n�� + J,T�

+ 2���x�� − J�2 + �y�� − J�2���� − J��n�� − J,T� + 1� .

�6�

At zero temperature, we have a nonzero transition rate,

� = 2�„�x�� − J�2 + �y�� − J�2
…��� − J� , �7�

and as expected �	 when J is small compared to �, as is
the case in ion traps. We see that spontaneous emission
drives the system out of the ground state of the effective
Hamiltonian and the state has a lifetime equivalent to the
excited state of a single ion.

Theoretically, we can examine the case where the ions
emit into the same photon mode. In this case, photon emis-
sion from the state ��1� is prevented by destructive interfer-
ence, sub=0. This is perfect Dicke subradiance �17� and an
example of a one-dimensional decoherence-free subspace
�18,19�. In this situation, the applied Hamiltonian would re-
duce the errors associated with low frequency errors. In prac-
tice, ions are a few micrometers apart from each other and
subradiance is a weak effect, sub=0.99 �20�.

For optical ion qubits, the applied Hamiltonian does not
reduce the errors. Quantum information ion trap experiments
often use hyperfine states instead of optical qubits �21�. A

FIG. 1. Comparison of the effective system spectra in the inter-
action picture and Schrödinger picture. The ground state of the ef-
fective Hamiltonian ��1� is not the ground state of the total system,
�3�. The figure is not to scale. For optical qubits, � /J	108, and for
hyperfine qubits, � /J	103.
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FIG. 2. Comparison of the system and bath spectra. We assume
a physical bath of positive energy modes. �a� The expected spec-
trum for two qubits naturally coupled by Hxy. If the temperature is
less than the energy gap to the excited state, excitations will be
exponentially suppressed. �b� In an interaction frame, where the
effective interaction is Hxy, the system spectrum is the same. How-
ever, the bath modes are shifted to effective negative energy. Con-
sequently, a negative energy boson can be emitted, allowing for the
spontaneous excitation of the system.
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hyperfine qubit is a naturally energetically protected sub-
space with respect to electronic transitions. Spontaneous
emission via a magnetic transition is possible but is negli-
gible on the time scale of an experiment. The main source of
environmental decoherence in an ion trap experiment is un-
controlled magnetic fields �22�. This decoherence can be
minimized by encoding into clock states �13,23�. Applying
the Raman beams necessary to generate Hxy introduces a new
error pathway due to Raman scattering �24�. Again, this error
is not suppressed by the applied Hxy because the energy shift
associated with J is small compared to the frequency of the
scattered photons.

III. IMPLICATIONS OF SPONTANEOUS EMISSION
FOR THE INTERACTION PICTURE

A. No energy protection

A long-range quantum compass model has been proposed
to protect qubits in an ion trap �25�. Contrary to �25�, spon-
taneous emission is not suppressed even though the emission
occurs at a slow enough rate such that eigenstates of the
interaction Hamiltonian will decay to eigenstates of the in-
teraction Hamiltonian. Here we examine the effects of spon-
taneous emission for the four-qubit system. In this case, the
system is equivalent to the compass model �26� and the
Hamiltonian is

H = �J�X1X3 + X2X4 + Y1Y2 + Y3Y4� . �8�

The Hamiltonian commutes with X1X2 and X3X4. The ei-
genvalues of these operators label four four-dimensional sub-
spaces Aij. The logical �0� and �1� are the ground states of the
subspaces A++ and A−−, respectively. It could be possible that
spontaneous emission, although exciting the ground state,
may preserve the superpositions between the subspaces. Un-
fortunately, spontaneous emission connects the subspace A±±
to both subspaces A+− and A−+.

The eigenstates �� j� for all the subspaces are computed
and the rates between the states are calculated to be propor-
tional to ��− �Ej −Ei� /��5�qji�2 where �qji� is the sum of the
individual quadrupole moments evaluated for the eigenstates
i and j. We note that �Ej −Ei� /� is on the order of J and in
ion traps always much less that � �even for hyperfine
qubits�. Therefore, in our calculations we approximate
��− �Ej −Ei� /��5	�5.

The population dynamics are calculated starting from the
logical state �0�. The population randomly walks among the
eigenstates with a rate of the natural spontaneous emission.
The state that does not spontaneously emit, �1111�, is not an
eigenstate of the effective Hamiltonian; the resulting steady
state is a dynamic equilibrium with equal population in all
states. Figure 3 shows the result of this calculation. The two
measures used are the population in the state �0� and the
extent of the population in the subspace A++. We see that in a
time 5/ �5 s for 40Ca+� the populations are almost com-
pletely mixed. Compared to the spontaneous emission rate
from the �0� state of a single qubit, there is no improvement.

B. Quantum simulations improperly thermalize

A quantum simulation uses a controlled quantum system
to model another quantum system �27�. The principle of
these devices has been demonstrated in the interaction pic-
ture using nuclear magnetic resonance �28–30�. Trapped ions
are seen as a promising candidate to simulate various mag-
netic systems �10�, including the compass model described
above. Unlike state preservation, a quantum simulation could
benefit from noise. Classical techniques for describing noisy
quantum systems are often computationally more expensive.
For example, calculating the dynamics of a system under the
Lindblad equation �31� requires quadratically more resources
when compared to the Schrödinger equation. Although in the
limit of large noise a quantum system can be efficiently clas-
sically simulated �32�, there should be a range of noisy quan-
tum simulations that are still more efficient than a classical
simulation.

In the interaction picture the effective noise model is often
not physical. In Sec. III A, we calculated that the dynamic
equilibrium of the compass model with spontaneous emis-
sion was the completely mixed state. Although the physical
bath is at zero temperature, the effective temperature of the
system is infinite. For the two-qubit example, the final state
of the system is non-Boltzmann distributed with respect to
the effective Hamiltonian. Ion trap and nuclear magnetic
resonance quantum simulations require that the simulation be
over before the state decoheres.

Quantum simulations often employ an initialization by
adiabatic evolution �10,30�. Adiabatic quantum computation
�33� can be viewed as a special case of a quantum simulation
where the ground state of the simulated Hamiltonian solves a
computational problem. The ability of the system to follow
the ground state is determined by the speed of the evolution
and the minimal gap between the ground and first excited
states. Although a noisy environment can ruin the adiabatic
algorithm when the gap becomes small �34�, the thermaliza-

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time [1/γ]

P
op

ul
at

io
n

subspace A
++

logical |0〉
physical |0〉

FIG. 3. �Color online� The compass model in the interaction
picture does not suppress errors due to spontaneous emission. The
decay of the population of the logical �0� �solid line� is comparable
to the decay of the excited state in the physical qubit �dotted line�.
The same is true if we consider the population of the subspace A++

associated with the logical �0�. The applied compass model Hamil-
tonian drives the system from the bare ground state �all ions in the
�S� state� and the result to zeroth order in J /� is a completely mixed
state.
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tion of the system may erase these errors by recooling to the
ground state as the gap becomes large �35�. Unfortunately, in
the interaction picture a thermal state is not achieved. In-
stead, spontaneous emission drives the simulation or adia-
batic quantum computation to a dynamic equilibrium that
may not be the desired state.

IV. CONCLUSIONS

The simulation of a system with Hamiltonian Hc is the
mapping of the dynamics of Hc onto another system. Expe-
rience with how the inital system interacts with a physical
environment leads us to assume that the simulated dynamics
will decohere in a similar way. This intuition is incorrect.
Often the simulated dynamics are in a rotating frame or in-
teraction picture. In this frame, the bath modes appear to
have negative energy and the ground state of Hc is not a
steady state even at zero temperature.

Trapped atomic ions have been used to demonstrate the
error-reducing techniques of quantum error correction �36�
and decoherence-free subspaces �37�. However, the tech-
nique of constructing a multibody Hamiltonian with a natu-
rally preserved ground state is incompatible with how mul-
tiqubit gates are implemented in ion traps. As a result, the
effective Hamiltonians do not yield the coherence properties
associated with the natural Hamiltonians proposed in
�2–7,25�. The realization of coherence-perserving Hamilto-
nians will require the construction of sophisticated con-
densed matter quantum-information systems �6,38�.
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