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For pure bipartite superposed states, the entanglement quantified by negativity is studied. If the entanglement
is quantified by concurrence, we show that two pure states with high fidelity to one another have nearly the
same entanglement. We deduce an inequality in which the concurrence is known to be a continuous function
in infinite dimensions. The main result of this paper is to give the bounds on the negativity of a bipartite state
in terms of the entanglement of the states being superposed. These bounds may be used in estimating the
entanglement of a given state.

DOI: 10.1103/PhysRevA.76.022320 PACS number�s�: 03.67.Mn, 03.65.Ta, 03.65.Ud

Quantum entanglement plays an important role both in
many aspects of quantum information theory �1� and in de-
scribing quantum phase transition in quantum many-body
systems �2,3�. As such, characterization of quantum en-
tanglement is a fundamental issue. Consequently, the legiti-
mate measures of entanglement are desirable as a first step.
The existing well-known measures of entanglement for two-
qubit systems with an elegant formula are the concurrence
derived analytically by Wootters �4� and the entanglement of
formation �5,6� which is a monotonically increasing function
of the concurrence. In general, for a multipartite or higher-
dimensional system, it is a formidable task to quantify its
entanglement since a complicate convex-roof extension is
needed. In recent decades, some important properties of
quantum entanglement were found, one of which is the mo-
nogamy property described by the Coffman-Kundu-Wootters
inequality in terms of concurrence �7�. In our previous work,
we have shown that the monogamy inequality can not be
generalized to higher-dimensional systems �8� and we estab-
lished a monogamy inequality in terms of negativity, giving a
different residual entanglement �9�.

On the other hand, quantum entanglement is a direct con-
sequence of the superposition principle of quantum mechan-
ics. It is an interesting physical phenomenon that the super-
position of two separable states may give birth to an
entangled state, on the contrary, the superposition of two
entangled states may give birth to a separable state. The re-
lationships between the entanglement of a given state and
that of the individual terms which by superposition yield the
state have been studied, where the entanglement is quantified
by the von Neumann entropy �10�, the concurrence �12�, and
witnessed entanglement �13�, respectively. Recently, it was
generalized to the superposition of more than two compo-
nents �14�. If the entanglement is quantified by negativity, it
would be interesting to establish the analogous relation and
obtain the bounds of entanglement for the superposition
states. In this paper, we first deduce an inequality to guaran-
tee that the concurrence is a continuous function even in
infinite dimensions. Next, we give the bounds of negativity
of the superposition states. The discussions and conclusions
are presented in the final part.

Before giving the main results of this paper, we first prove
Theorem 1, which determines how much the entanglement of
a state � changes when we vary � by a small amount. The
authors in �10� have shown that two states of high fidelity to

one another may not have the same entanglement, i.e.,
��� ����2→1 may not generally result in E���→E���, where
E is the von Neumann entropy. For a bipartite pure state
���AB, the von Neumann entropy is defined as

E��AB� � S�TrB���AB���� = S�TrA���AB���� , �1�

where S���=−Tr�� log ��, and the concurrence is defined as

C��AB� � 	2�1 − Tr�A
2� = 	2
1 − �

i

�i
2� , �2�

where �A=TrB���AB��� with the eigenvalues �i. However, if
we employ the concurrence to quantify the entanglement,
��� ����2→1 must result in C���→C���. Let us see their ex-
ample

���AB = �00� , �3�

and

���AB = 	1 − ����AB +	�

d
��11� + �22� + ¯ + �dd�� . �4�

It is obvious that E��AB�=C��AB�=0, while according to �10�
the von Neumann entropy of the state ���AB is

E��AB� 
 � log2 d . �5�

For sufficiently large d and small fixed �, E��AB�→�. The
concurrence in Eq. �2� gives the result

C2��AB� = 2
2� − �2 −
�2

d
� . �6�

When � is small, C2��AB�→0. In this situation, by contrast to
E��AB� in Eq. �5�, the contribution of d to C2��AB� in Eq. �6�
can be ignored. Note that when � is small the two states have
high fidelity ��� ����2=1−�→1. Comparing Eq. �5� to Eq.
�6�, we can still draw a conclusion that if the entanglement is
quantified by the concurrence, two states of high fidelity with
one another still have nearly the same entanglement.

Indeed, the difference of the von Neumann entropy be-
tween two pure states of fixed dimension can be bounded
using Fannes’ inequality �11�, while the von Neumann en-
tropy is not a continuous function and no such bound applies
in infinite dimensions. However, as we will show here, a
similar bound still works if the entanglement is quantified by
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the concurrence and the concurrence is a continuous function
even in infinite dimensions. In order to explain our above
viewpoint we present the following Theorem which is simi-
lar to the original Fannes’ inequality except that the entangle-
ment is quantified by the concurrence.

Theorem 1. Suppose �AB and �AB are density matrices of
two bipartite pure states in arbitrary dimensions. For the
trace distance T��A ,�A��Tr��A−�B� between �A=TrB�AB

and �A=TrB�AB we have

�C2��AB� − C2��AB�� 	 4T��A,�A� . �7�

Proof. Let r1
r2
 ¯ 
rd be the eigenvalues of �A, in
decreasing order, and s1
s2
 ¯ 
sd be the eigenvalues of
�A, also in decreasing order. According to �11�, it follows
that

�
i

�ri − si� 	 T��A,�A� . �8�

From the observation of the definition of the concurrence in
Eq. �2�, we can rewrite the left-hand side of Eq. �7� as

�C2��AB� − C2��AB�� = 2��
i

�ri
2 − si

2�� 	 2�
i

�ri
2 − si

2�

= 2�
i

�ri + si��ri − si� 	 4�
i

�ri − si� .

�9�

The second formula is obtained from the observation that
�a+b+ ¯ +k�	 �a�+ �b�+ ¯ + �k� for any complex quantities
a ,b , ¯ ,k. In the derivation of the last formula we have
taken into account the fact that �ri+si�	2 since each eigen-
value of ri and si is not greater than one. Combining Eqs. �8�
and �9� can give Eq. �7�. Thus the proof is completed.

From Theorem 1 it can be seen that the difference of the
concurrences of two pure states is a function of fidelity and
can be bounded by Eq. �7�. What’s more, by contrast to the
von Neumann entropy �10�, the concurrence is a continuous
function and such a bound still works in infinite dimensions.
Note that the question of whether a similar bound in Eq. �7�
holds for the negativity is still open. In the following we are
devoted to deducing the bounds on the negativity of any
bipartite pure state as a superposition of two terms ���AB
=��
�+����.

Before embarking on this study, we first recall some basic
definitions of the negativity �15�. As for detecting an en-
tangled state in higher-dimensional Hilbert space, Peres-
Horodecki criterion based on partial transpose �16,17� is a
convenient method. Given a density matrix � of a bipartite
state in A and B, the partial transpose with respect to the A
subsystem is described by ��TA�ij,kl= ���kj,il and the negativity
is defined as

N =
1

2
���TA� − 1� . �10�

The trace norm �R� is given by �R�=Tr	RR†. Note that N
�0 is the necessary and sufficient condition for inseparable
bipartite pure states.

There are two key ingredients to obtain the bounds of the
negativity for bipartite superposition pure states. One is that
the negativity can be expressed by means of Schmidt coeffi-
cients of a pure state. Suppose that a pure m � n�m	n�
quantum state has the standard Schmidt form ���AB

=�i
	�i�aibi�, where 	�i �i=1, ¯ ,m� are the Schmidt coef-

ficients, ai and bi are the orthogonal basis in HA and HB,
respectively. For the pure bipartite state we can derive
��TA�= ��i

	�i�2 �19�, and therefore Eq. �10� can be reex-
pressed as

N =
1

2�
�i

	�i�2
− 1� . �11�

In order for later use we can transform Eq. �11� into


�
i

	�i�2
= 2N + 1. �12�

Another one is the Theorem �18� which states that for any
two Hermitian matrices H and K defined in Cn�n,

�i�H� + �1�K� 	 �i�H + K� 	 �i�H� + �n�K� , �13�

holds, where �i�·� are the eigenvalues in increasing order. If
�1�K�
0, from Eq. �13� it is easy to check that

	�i�H� 	 	�i�H + K� 	 	�i�H� + 	�n�K� , �14�

holds also. Then Eqs. �13� and �14� will be used repeatedly
in what follows.

For the negativity of the arbitrary superposition state let
us first see the simplest case in which two bipartite states we
are superposing, �1 and 
1, are biorthogonal �10�, i.e.,
�1
1

†=
1�1
†=0 �12�. Since the matrix representation of a

reduced density matrix will be used, we explain the corre-
sponding notations in the following. For the pure state ���AB
defined in m � n dimensions, generally it can be considered
as a vector: ���AB= �a00,a01, ¯ ,a0m ,a10,a11, ¯ ,amn�T with
the superscript T denoting transpose operation. With the ma-
trix notation, the reduced density matrix reads

�A = ��†, �15�

whose eigenvalues are �i appearing in Eq. �11�.
Theorem 2. Suppose that two biorthogonal pure states �1

and 
1 are defined in m � n�n	m� dimensions. The nega-
tivity of their superposed states �1=��1+�
1 with ��2�
+ ���2=1 satisfies

2���2N��1� + 2���2N�
1� − 1

4

	 N���1 + �
1�

	
2���2Ñ��1� + 2���2Ñ�
1� − 1

4
, �16�

where
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Ñ��1� = N��1� +
n���	�n�
1��2N��1� + 1�

���

+
n2���2�n�
1�

2���2
,

and

Ñ�
1� = N�
1� +
n���	�n��1��2N�
1� + 1�

���

+
n2���2�n��1�

2���2
.

Proof. From Eq. �15� the reduced density matrix of the
state �1 can read

�1�1
† = ���2�1�1

† + ���2
1
1
† + ��*�1
1

† + �*�
1�1
†.

�17�

The biorthogonal condition with �1
1
†=0 and 
1�1

†=0
makes Eq. �17� reduce to

�1�1
† = ���2�1�1

† + ���2
1
1
†. �18�

Substituting Eq. �18� into the left inequality of Eq. �13� we
have

���2�i��1�1
†� + ���2�1�
1
1

†� 	 �i��1�1
†� . �19�

Since 
1
1
† is positive semidefinite, �1�
1
1

†�
0. Thus
Eq. �19� becomes

���2�i��1�1
†� 	 �i��1�1

†� . �20�

Taking the square root of both sides in Eq. �20� and the sum
of 	�i�·� over all index i, we have

����
i

	�i��1�1
†� 	 �

i

	�i��1�1
†� . �21�

In a similar way, substituting Eq. �18� into the right inequal-
ity of Eq. �14� and taking the sum of 	�i�·� over all index i,
we have

�
i

	�i��1�1
†� 	 ����

i

	�i��1�1
†� + n���	�n�
1
1

†� .

�22�

Substituting Eqs. �21� and �22� into Eq. �12�, respectively,
we can obtain

���2N��1� +
���2 − 1

2
	 N���1 + �
1�

	 ���2Ñ��1� +
���2 − 1

2
. �23�

If we replace the matrix ���2�1�1
† with ���2
1
1

† in Eqs.
�20� and �21�, i.e., equivalently exchange the matrixes H and
K in Eq. �14�, finally we can also obtain

���2N�
1� +
���2 − 1

2
	 N���1 + �
1�

	 ���2Ñ�
1� +
���2 − 1

2
. �24�

Then combining Eqs. �23� and �24� gives Eq. �16�. Thus the
proof is completed.

Note that the lower bound in Eq. �16� can provide a non-
zero value only when 2���2N��1�+2���2N�
1��1. Next we
provide an example to illustrate the validity of our bound.
Consider the state

���AB = ����AB + ����AB, �25�

with

���AB =
1
	2

�00� +
1
	2

�11� , �26�

���AB =
1
	2

�22� +
1
	2

�33� , �27�

where �=�=1/	2. It is easy to check that ���AB and ���AB
are biorthogonal, N����AB�=3/2, N����AB�=N����AB�=1/2,
and �4����AB�=�4����AB�=1/2. Accordingly from Eq. �16�
we obtain the lower and upper bounds

0 � N����AB� =
3

2
� 4, �28�

which work well. It is clear that varying the coefficients of �
and � would give tighter bounds.

Finally we present the main Theorem of this paper, in
which the two states being superposed can be biorthogonal,
orthogonal, or nonorthogonal.

Theorem 3. Suppose that two arbitrary normalized pure
states �2 with rank r1 and 
2 with rank r2, which are defined
in any dimensions. The negativity of their superposed states
�2=��2+�
2 with rank r3 and ��2�+ ���2=1 satisfies

2����2� + ��
2��2N���2 + �
2�

	 2���2Ñ��2� + 2���2Ñ�
2� − ����2� + ��
2��2 + 1,

�29�

where

Ñ��2� = N��2� +
r���	�n�
2��2N��2� + 1�

���

+
r2���2�n�
2�

2���2
,

Ñ�
2� = N�
2� +
r���	�n��2��2N�
2� + 1�

���

+
r2���2�n��2�

2���2
,
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where r=max�r1 ,r2 ,r3�.
Proof. Consider the matrix

M = ���2�2�2
† + ���2
2
2

†, �30�

which can be rewritten as

M =
��2�2

2
�̂2��̂2�† +

��2
−�2

2
�̂2

−��̂2
−�†,

where

�2
− = ��2 − �
2, �̂2 = �2/��2�, and �̂2

− = �2
−/��2

−� .

�31�

Thus Eqs. �13� show that

���2�i��2�2
†� + ���2�1�
2
2

†�

	 �i�M� 	 ���2�i��2�2
†� + ���2�n�
2
2

†� , �32�

and

��2�2

2
�i��̂2�̂2

†� +
��2

−�2

2
�1��̂2

−��̂2
−�†�

	 �i�M� 	
��2�2

2
�i��̂2�̂2

†� +
��2

−�2

2
�n��̂2

−��̂2
−�†� .

�33�

Since �1�
2
2
†�
0 and �1��̂2

−��̂2
−�†�
0, observing the left

inequality of Eq. �33� and the right inequality in Eq. �32� we
have

��2�
	2

	�i��̂2�̂2
†� 	 ���	�i��2�2

†� + ���	�n�
2
2
†� .

�34�

Substituting Eqs. �34� into Eq. �12� we have

����2� + ��
2��2N���2 + �
2� 	 2���2Ñ��2�

−
����2� + ��
2��2

2
+ ���2. �35�

Likewise, if we replace the two matrices ���2�2�2
† with

���2
2
2
† in Eq. �32�, we can obtain

����2� + ��
2��2N���2 + �
2� 	 2���2Ñ�
2�

−
����2� + ��
2��2

2
+ ���2. �36�

Combining Eqs. �35� and �36� gives Eq. �29�. Thus the proof
is completed.

Since there exists an extra term of the maximal eigen-
value in the second inequality in Eq. �33�, generally it is
difficult to find a universal formula for the lower bound of
the negativity in this case. But it is our interest in future
work. Note that the lower bound of the von Neumann en-
tropy of superposition states was not yet offered �10�.

In conclusion, we have shown that if the entanglement is
quantified by the concurrence, two pure states of high fidelity
to one another still have nearly the same entanglement, and
we obtained an inequality that can guarantee that the concur-
rence is a continuous function even in infinite dimensions.
However, the question of whether a similar property can ap-
ply to the negativity case is still open. The bounds on the
negativity of superposed states in terms of negativities of the
states being superposed were obtained. For the superposition
states, in addition to the bounds of the well-studied measures
of entanglement such as the von Neumann entropy �10�, the
concurrence �12�, and the witnessed entanglement �13�, in
this paper we have presented the bounds for the case of nega-
tivity which is also one of the well-accepted measures of
entanglement. In view of the concurrence being directly ac-
cessible in laboratory experiments �20�, these bounds can
find useful applications in estimating the amount of the en-
tanglement of a given pure state.
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