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We investigate macroscopic entanglement in an infinite XX spin-1
2 chain with staggered magnetic field,

Bl=B+e−i�lb. Using single-site entropy and by constructing an entanglement witness, we search for the
existence of entanglement when the system is at absolute zero, as well as in thermal equilibrium. Although the
role of the alternating magnetic field b is, in general, to suppress entanglement as do B and T, we find that
when T=0, introducing b allows the existence of entanglement even when the uniform magnetic field B is
arbitrarily large. We find that the region and the amount of entanglement in the spin chain can be enhanced by
a staggered magnetic field.
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I. INTRODUCTION

Quantum entanglement is a fundamental aspect of quan-
tum physics. It demonstrates the nonlocal nature of the
theory in that an entangled system contains correlations that
cannot be described by its subsystems alone. Instead these
quantum correlations are attributed to the overall system �1�.
Further, entanglement is an important resource in quantum
information and computation. In particular, solid state quan-
tum computation has become a topic of much research and
several proposals for physical implementation have been in-
vestigated. The Heisenberg interaction is the model used in
many physical applications of quantum computation, for ex-
ample, quantum dots �2� and cavity QED �3�. It has also been
shown that the Heisenberg interaction can be used to imple-
ment any circuit required by a quantum computer �4�. There-
fore, entanglement in one-dimensional spin chains has been
the subject of much interest. This entanglement has been
studied both in the case of a finite spin chain �5,6� and in the
thermodynamic limit �7�, where the length of the spin chain
becomes infinite.

Macroscopic entanglement is a more recent concept. It
demonstrates that nonlocal correlations persist even in the
thermodynamic limit. This type of entanglement can be de-
tected by measuring macroscopic quantities such as internal
energy and magnetic susceptibility �13� as it has been proven
that such quantities can be used as entanglement witnesses. It
has been shown experimentally �14,15�, that the behavior of
observable macroscopic quantities such as magnetic suscep-
tibility depends, most significantly at low temperatures, on
entanglement. This demonstrates that entanglement is vital in
the explanation of how macroscopic materials behave. Mac-
roscopic entanglement in a Heisenberg spin chain has been
studied previously �7� only for a uniform magnetic field. The
Hamiltonian of this chain is used to construct an entangle-
ment witness �8–10�, which shows that entanglement disap-
pears for high uniform magnetic field just as it does for high
temperature.

In real systems, the magnetic field need not be the same at
each site in the chain. In solid state systems, there exists a
possibility that an inhomogeneous Zeeman coupling could
induce a nonuniform magnetic field. Moreover, an experi-

mental system is likely to contain magnetic impurities. Cop-
per benzoate �11,12� is a practical example of a system in a
nonuniform magnetic field. In this case, the alternating field
is in a direction perpendicular to the uniform field. Alterna-
tively, such impurities could be introduced artificially. There-
fore, the possibility that such a field could affect entangle-
ment, whether to reduce or increase it, is an important
subject to investigate. In reality, systems have a finite tem-
perature so the thermal case must be considered. Hence, in
this paper, we discuss the effect of a site-dependent magnetic
field on thermal macroscopic entanglement in a 1D infinite
spin-1

2 chain. We also consider the zero temperature case.
Interestingly, we show that an alternating magnetic field can
compensate for the effect of a uniform magnetic field at
T=0.

The Hamiltonian considered is

H = − �
l
� J

2
��l

x
� �l+1

x + �l
y

� �l+1
y � + Bl�l

z� , �1�

where J is the coupling strength between sites, and Bl=B
+e−i�lb is the site-dependent magnetic field. Although such a
field is not generally applicable to systems in nature, our
work allows us to investigate how a nonuniform magnetic
field affects entanglement in a model which is analytically
solvable. A similar Hamiltonian with cyclic boundary condi-
tions has previously been diagonalized �16� using a method
first set out by Katsura �17,18�. In our discussions of a finite
N-spin chain, we consider the case of open boundary condi-
tions with N even. In fact, these constraints are no longer
relevant in the thermodynamic limit and, hence, our conclu-
sion is unchanged if, for example, the cyclic model is used.

To identify entanglement in this system, we use an en-
tanglement witness, i.e., an operator whose expectation value
is bounded for any separable state. The power of our witness
is such that we can identify the existence of entanglement
even for a thermal system which is a mixed state in general.
Alternatively, single-site entropy can be taken as evidence of
entanglement when T=0 since the total system is in a pure
state. The purity of the single-site density matrix shows that
the entanglement witness is not optimal at absolute zero.
Thus we find that, although the alternating magnetic field, b,
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acts in general to suppress entanglement similarly to B and
T, at zero temperature, increasing b allows the system to be
entangled for arbitrarily large B. Hence, the effect of the
staggered field at T=0 is to increase both the amount and the
region of entanglement.

II. ENTANGLEMENT

A system is said to be entangled when its density matrix
cannot be written as a convex sum of product states. For a
pure state, dividing the system into two subsystems, A and B,
allows the von Neumann entropy to be used as a measure of
entanglement. If we trace section B out of the density matrix
to find �A, the von Neumann entropy, S��A�
=−Tr��A log2 �A�, can be calculated. S��A�=0 corresponds to
a separable state while, when S��A�=1, the system is maxi-
mally entangled. In the case of a mixed state, there is no
unique measure of entanglement for a multipartite system.
However, we can construct an entanglement witness.

An entanglement witness �19� is an operator whose ex-
pectation value for any separable state is bounded by a value
corresponding to a hyperplane in the space of density matri-
ces. An entanglement witness is only a sufficient condition
for the existence of entanglement. Hence, failure of the wit-
ness to detect entanglement does not necessarily mean the
system is separable. Though witnesses simply detect rather
than give a measure of entanglement, they have significant
advantages over other methods. For example, they naturally
incorporate temperature and many witnesses, such as mag-
netic susceptibility, can be experimentally measured �13�.

III. THE PARTITION FUNCTION AND ENTANGLEMENT
WITNESS

Many thermodynamic variables can be derived from the
Helmholtz free energy, F=−T ln Z, where Z is the partition
function. As �F /�X=� �H

�X
	, we see that when X=B, we obtain

the magnetization M =�l��l
z	=−�F /�B. In particular, we de-

fine the entanglement witness

W =
2

�N

� ln Z

�J
=

1

N
�

l

���l
x�l+1

x 	 + ��l
y�l+1

y 	� , �2�

where �=1/T. Our witness, W, identifies a larger entan-
gled region than witnesses found previously �7�. In a
separable state, it satisfies the bound 
W 
 �1, which can
be shown as follows. With �=�ipi�1

i
� �2

i
� ¯ � �N

i ,
we have 
��l

x�l+1
x 	+ ��l

y�l+1
y 	 
 = 
��l

x	��l+1
x 	+ ��l

y	��l+1
y 	 


����l
x	2+ ��l

y	2���l+1
x 	2+ ��l+1

y 	2�1 for any l. The upper
bound for the inequality is found by using the Cauchy-
Schwarz inequality and the condition that for any state,
��l

x	2+ ��l
y	2+ ��l

z	2�1. Thus, any state that violates the in-
equality 
W 
 �1 is entangled.

IV. DIAGONALIZATION OF HAMILTONIAN

In order to find the partition function of the system, we
must diagonalize the Hamiltonian, Eq. �1�, and find its en-
ergy eigenvalues. The open ended Hamiltonian can be ex-

actly diagonalized in a standard way via several steps: a
Jordan-Wigner transformation, a Fourier transformation, and,
finally, a Bogoliubov transformation. The Jordan-Wigner
transformation,

al = �
m=1

l−1

�m
z

�
��l

x + i�l
y�

2
, �3�

maps the Pauli spin operators into fermionic annihilation and
creation operators al and al

†. These satisfy the anticommuta-
tion relations 
al ,ak�=0 and 
al ,ak

†�=�l,k. Preserving the an-
ticommutation relations, the operators can now be trans-
formed unitarily using a Fourier transformation, al

=� 2
N+1�k=1

N dk sin� �kl
N+1

� and by a Bogoliubov transformation,

dk = �k cos �k + �k sin �k,

dN+1−k = �k cos �k − �k sin �k. �4�

Setting tan 2�k=b / 
J cos��k / �N+1��� eliminates the off-
diagonal terms leaving the Hamiltonian in diagonal form

H = �
k=1

N/2

�	k
+�k

†�k + 	k
−�k

†�k − 2B1� , �5�

where 	k
±=2B±2�J2 cos2��k / �N+1��+b2. The operators �k

and �k satisfy the anticommutation relations 
�k ,�l
†�

= 
�k ,�l
†�=�k,l and 
�k ,�l�= 
�k ,�l

†�=0. Using the eigenval-
ues of the Hamiltonian, we find that the partition function
can be written Z=�k=1

N/22 cosh��	k
+ /2�2 cosh��	k

− /2�. In the
thermodynamic limit, N→
, we can treat �=�k /N as a
continuous variable, to find

ln Z =
N

�
�

0

�/2

d� ln�4 cosh��	�
+

2
�cosh��	�

−

2
�� , �6�

where 	�
± =2B±2�J2 cos2 �+b2. We can now use Eq. �2� to

calculate the entanglement witness for our system.
The region of entanglement detected by our witness has

been plotted in Fig. 1. The figure shows the region of uni-
form magnetic field, B, temperature, T, and alternating mag-

FIG. 1. The surface 
W 
 =1 in the space of magnetic field B,
temperature T, and alternating magnetic field b. The region between
the surface and the axes is entangled.
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netic field, b, within which we always find entanglement. At
fixed values of b, the entangled region of the T–B plane
shrinks as b increases until a critical value is reached above
which entanglement is no longer detected. Consider now a
plane perpendicular to the T axis. At zero temperature we see
that until the critical value bc=0.56, increasing b has no ef-
fect on the value that the uniform magnetic field can take
with the system remaining in an entangled state. Above bc,
our witness detects no entanglement. However, we later
show that this witness is not optimal at zero temperature.

Our witness shows entanglement behaving as we would
expect physically. A high temperature causes the system to
become mixed. Thus, no quantum correlations can survive
and the system is separable. Moreover, the effect of the mag-
netic field can be understood as a local operation, which
enhances classical correlations. When the uniform magnetic
field becomes large, spins tend to line up in a direction par-
allel to that field. This clearly decreases quantum correlations
in the system. Using the same reasoning, if the alternating
magnetic field is large, the spins tend to antialign which is
also a product state. Hence, as Fig. 1 shows, all of these
parameters cause the system to become separable if they are
large enough. Interestingly, we find a counter example of this
expected behavior and identify a region where the system is
entangled even in a large magnetic field. We discuss this in
the following section.

V. SINGLE-SITE ENTROPY

When T=0, the total system is in a pure state, i.e., the
ground state. Thus, if the density matrix of a single spin is in
a mixed state, the particle must be entangled with the rest of
the spins. This can be quantified using the entropy of a single
spin. The lth spin density matrix, �l=

1
2�i�
1,x,y,z��l

i��l
i	, can

be obtained from the total density matrix �=e−�Ĥ /Z. More-
over, we find that the single-site density matrix is readily
diagonalized since ��l

x	= ��l
y	=0. This follows from the fact

that �l
x and �l

y are linear combinations of the fermion opera-
tors �k, �k

†, �k, and �k
†, all of which have zero expectation

values.
The single-site magnetization ��l

z	 can be obtained from
the total magnetization, M, and the total staggered magneti-
zation, Ms. In the limit of zero temperature, these are given
by

M = �
l

��l
z	 =

1

�

�

�B
ln Z = N�1 −

2�

�
� ,

Ms = �
l

�− 1�l��l
z	 =

1

�

�

�b
ln Z =

N

�
�

0

�

d�f��� , �7�

where f���=2b /�J2 cos2 �+b2 and

� = ��/2 for B 
 b

cos−1��B2 − b2/J� for b � B � �J2 + b2

0 for B � �J2 + b2.
�

To obtain these results, we have used lim�→
 tanh��x�
=x / 
x
. By virtue of translational invariance, ��l

z	, is the same

for all even sites and for all odd sites. Thus defining ��l
z	

=Tr��l
z��=2�l−1, such that the single-site density matrix is

�l=diag��l ,1−�l�, we have

�l =
1

2
�1 +

1

N
�M + �− 1�lMs�� . �8�

From this we can obtain the entropy of the lth spin, S=
−�l log2 �l− �1−�l�log2�1−�l�.

The single-site entropy for odd and even sites is plotted in
Fig. 2 with J=1. In both cases, we find entanglement for
various values of B and b, even when the magnetic fields are
large. The entropy and, therefore, entanglement between
each spin and the remainder of chain is nonzero everywhere
except when B��J2+b2. Hence, entanglement exists when
the coupling strength between nearest neighbor spins, J, is
more than �B2−b2. We note that this corresponds to when

(a)

(b)

FIG. 2. We plot the entropy for an even site spin and an odd site
spin, respectively, when T=0 and J=1. Excluding the region B
��1+b2, the single-site entropy is nonzero and each spin is en-
tangled with the rest of the system. The odd site entropy shows a
maximum when B=b+�.
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the square of the interaction strength is greater than the prod-
uct of the total magnetic field on two adjacent sites. In addi-
tion, we observe from Fig. 2 that the maximum single-site
entropy occurs when both magnetic fields B and b are zero.
Introducing the magnetic fields reduces the amount of en-
tanglement in the system except along the peak in the odd
site entropy. We find from the maximum entropy, Sl=1, that
the maximum entanglement occurs in the region b�B
��J2+b2 when �−� /2= �−1�l�0

�b /�J2 cos2 �+b2d� is sat-
isfied. This corresponds to when the magnetization, M, is
equal to the staggered magnetization, Ms. For even sites-
,there is only one solution to this at B=b=0. For odd sites,
however, this is satisfied for any finite uniform magnetic
field B at B=b+�, where � is a positive value. The solutions
in Fig. 3 correspond to the peak in the odd site entropy and
so occur within the range b�B��J2+b2. In general, � be-
comes larger as J increases, as shown in Fig. 3, and becomes
smaller as B and b increase. We stress that the peak does not
occur at B=b. As B and/or b tend to infinity, the amount of
entanglement in the system tends to zero. Further, as the
magnetic fields increase, the curves in Fig. 3 tend to the B
=b line. At B=b, the system is no longer maximally en-
tangled. At this point, we find from the Hamiltonian that odd
sites have zero magnetic field, and even sites have field
strength 2B. Hence, at the peak, odd site spins have a small
magnetic field, �, while in comparison, even site spins have a
large field, 2B−�. The implications of this peak are that,
even in the limit of large �though not infinite� uniform field
B, an odd site can be maximally entangled with the rest of
the system if an appropriate alternating magnetic field, b, is
introduced. In practice, fine-tuning b to achieve maximal en-
tanglement may be difficult. However, for any B, sufficiently

increasing b �when b��B2−J2� will create entanglement in
the chain. Hence, a staggered magnetic field can enhance the
amount of entanglement present in the system.

Although the single-site entanglement relates only to the
zero temperature case, changing the temperature by a small
amount should not change its behavior as the system will
remain in the ground state. Hence, for very low temperatures,
we see that the entanglement witness is not optimal.

VI. CONCLUSIONS

Our best estimate for finite temperature entanglement is
the witness, which shows b reduces the region of entangle-
ment in the chain. That is, a staggered magnetic field reduces
the entangled region. If this behavior is true, even for an
optimal finite temperature witness, these results have conse-
quences for larger scale quantum computation in solid state
systems. As inhomogeneities in the magnetic field exist natu-
rally in the Zeeman coupling between atoms, the region of
entanglement is naturally decreased compared to when b=0.
Quantum computation relies on entanglement so, as intro-
ducing b reduces both the temperature and uniform magnetic
field at which entanglement persists, our result shows it may
be more difficult than previously thought to construct useful
quantum computers using one-dimensional systems.

Our entanglement witness is invaluable as, by applying it
to our system, it allows us to see how temperature affects the
entanglement in the spin chain. However, the witness does
not tell us how the entanglement actually behaves in the
presence of B, T, or b as it does not detect all entanglement
in the system. Conversely, the single-site entropy shows us
exactly how the entanglement is affected by the magnetic
fields at zero temperature, although it is unknown how to
extend this entropy to a finite temperature. Using this en-
tropy, we have shown that, in the thermodynamic limit, a
staggered magnetic field enhances both the region and the
amount of entanglement in our spin chain. Hence, both the
witness and the entropy are essential in characterizing the
entanglement in the system. Further, the region of entangle-
ment identified by the witness is consistent with that of the
single-site entropy. If the behavior of the entanglement as
shown by the entropy persists at higher temperatures, we
may be able to counteract any Zeeman coupling by applying
an appropriate magnetic field, hence maximizing entangle-
ment for odd sites. This will be an interesting topic for future
research.
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