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The anticommuting properties of fermionic operators, together with the presence of parity conservation,
affect the concept of entanglement in a composite fermionic system. Hence different points of view can give
rise to different reasonable definitions of separable and entangled states. Here we analyze these possibilities
and the relationship between the different classes of separable states. The behavior of the various classes when
taking multiple copies of a state is also studied, showing that some of the differences vanish in the asymptotic
regime. In particular, in the case of only two fermionic modes all the classes become equivalent in this limit.
We illustrate the differences and relations by providing a complete characterization of all the sets defined for
systems of two fermionic modes. The results are applied to Gibbs states of infinite chains of fermions whose
interaction corresponds to a XY Hamiltonian with transverse magnetic field.
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I. INTRODUCTION

The definition of entanglement in a composite quantum
system �1� depends on a notion of locality, which is typically
assigned to a tensor product structure or to commuting sets
of observables �2�. Various a priori different definitions can
then be formulated depending on requirements concerning
preparation, representation, observation, and application.
Fortunately, most of them usually coincide �32�.

In the present paper we investigate systems of fermions
where several of these definitions differ due to indistinguish-
ability, anticommutation relations, and the parity superselec-
tion rule. We will provide a systematic study of the different
definitions of entanglement and determine the relations be-
tween them. To this end, we will consider fermionic systems
in second quantization. That is, we study the entanglement
between sets of modes or regions in space rather than be-
tween particles. The latter case was studied in first quantiza-
tion in �3–5� whereas entanglement between distinguishable
modes of fermions has been calculated for various systems in
�6–12�.

The presence of superselection rules affects the concept of
entanglement, as it has been pointed out and studied in detail
in �13–17�. There, the existence of states was shown, which
are convex combinations of product states but not locally
preparable, since the superselection rule restricts local opera-
tions to those commuting with the conserved quantity. Thus,
two reasonable definitions of entanglement already differ.

In the following the differences will mainly arise from an
interplay between the parity superselection rule and the an-
ticommutation relation of fermionic operators. The different
mathematical definitions will carry physically motivated
meanings corresponding to different abilities to prepare, use,
or observe the entanglement, as well as to differences be-
tween the single copy case and the asymptotic regime.

In Sec. II we introduce the basic ideas and tools used in
the rest of the paper. First we define the different sets of
product states in Sec. III. From them, several sets of sepa-

rable states are constructed by convex combination in Sec.
IV. It is shown that they all correspond to four different
classes, each of them containing the previous ones as proper
subsets:

�1� States which are preparable by means of local opera-
tions and classical communication �LOCCS� �33�.

�2� Convex combinations of product states in Fock space.
�3� Convex combinations of states for which products of

locally measurable observables factorize.
�4� States for which all locally measurable correlations

can as well arise from a state within class �3� above.
Section V analyzes the asymptotic properties of the vari-

ous sets of separable states. Our results suggest that the vari-
ous definitions become equivalent in the asymptotic regime.
This equivalence is strictly proven in the case of a system
with only two fermionic modes. As an illustration of all these
concepts, Sec. VI shows the complete characterization of the
different sets in the case of a 1�1-mode system, and their
application to the thermal state of an infinite chain of fermi-
ons interacting with a particular Hamiltonian. Section VII
summarizes all the results to provide a global view of this
work. In order to improve the readability of the paper, we
have compiled the detailed proofs of all the relations in the
Appendix.

II. PRELIMINARIES

The basic objects for describing a fermionic system of m
modes are the creation and annihilation operators, which sat-
isfy canonical anticommutation relations. Alternatively, 2m
Majorana operators can be defined, c2k−1ªak

†+ak, c2k
ª �−i��ak

†−ak�, for k=1, . . .m, which satisfy �ci ,cj�=�ij. Ei-
ther set generates the algebra C of all observables. A biparti-
tion of the system is defined by two subsets of modes, A
=1, . . . ,mA and B=mA+1, . . . ,m. We will denote by A �B�
the operator subalgebra spanned by the mA �mB� modes in A
�B�.

If nk is the occupation number of the kth mode, i.e., the
expectation value of the operator ak

†ak, the Fock basis can be
defined by*banu1sm@mpq.mpg.de
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�n1, . . . ,nm� = �a1
†�n1

¯ �am
† �nm�0� . �1�

The Jordan-Wigner transformation maps the fermionic alge-
bra onto Pauli spin operators so that

c2k−1 = 	
i=1

k−1

�z
�i��x

�k�, c2k = 	
i=1

k−1

�z
�i��y

�k�. �2�

Thus, the Hilbert space associated to m fermionic modes
�Fock space� is isomorphic to the m-qubit space. Due to the
anticommutation relations, however, the action of fermionic
operators in Fock space is nonlocal. In the same sense, not
all the operators in A �B� can be considered local to one of
the partitions.

For the fermionic systems under consideration, conserva-
tion of the parity of the fermion number,

P̂ = im	
k

ck = 	
k

�1 − 2ak
†ak� ,

implies that the accessible state space is the direct sum of
positive �even� and negative �odd� parity eigenspaces. Any

physical state or observable commutes with the operator P̂,
so that we can define the set of physical states

� ª ��:��, P̂� = 0� .

Correspondingly, A� and B� will designate the sets of local
physical observables, commuting with the local parity opera-

tors P̂A and P̂B, respectively.
In the following, we use the expression “even observable”

for those observables that commute with the parity operator,
i.e., that can be written as a sum of products of an even
number of fermionic operators ck �equivalently ak, ak

†�. Cor-
respondingly, an “odd” observable will be one that anticom-

mutes with P̂, and is thus decomposable as a sum of odd
products of fermionic operators. Notice that even and odd
observables do not correspond to the even and odd eigens-

paces of P̂, for instance an observable with support on the
subspace of odd parity will be “even” in the former nomen-

clature, since it commutes with P̂.
It will be convenient to make use of the projectors onto

the well-defined parity subspaces Pe�o�. Any state �or opera-
tor� commuting with parity has a block diagonal structure
�=P

e
�P

e
+P

o
�P

o
. In the local subspaces, correspondingly, a

parity conserving operator can be written A�=Pe
AA�Pe

A

+Po
AA�Po

A.
One subset of states of particular physical interest is that

of Gaussian states. They describe the equilibrium and excited
states of quadratic Hamiltonians. Moreover, important varia-
tional states �e.g., the BCS state� belong to this category. In
various respects Gaussian states exhibit relevant extremality
properties �18,19�. In the case of fermionic systems, Gauss-
ian states are those whose density matrix can be written as an
exponential of a quadratic form in the fermionic operators
�20�,

� = exp
−
i

4
cTMc� ,

for some real antisymmetric matrix M. The covariance ma-
trix of any fermionic state is a real antisymmetric matrix
defined by

�kl =
i

2
tr���ck,cl�� ,

which necessarily satisfies i��1. According to Wick’s theo-
rem, the covariance matrix determines completely all the
correlation functions of a Gaussian state. Pure fermionic
Gaussian states satisfy �2=−1, and they can be written as a
tensor product of pure states involving at most one mode of
each partition �21�.

III. PRODUCT STATES

We start by defining product states of a bipartite fermionic
system formed by m=mA+mB modes, where mA �mB� is the
number of modes in partition A �B�. The entanglement of
such a system can be studied at the level of operator subal-
gebras or in the Fock space representation, thus the possibil-
ity to define different sets of product states. In Fock space,
the isomorphism to a system of mA+mB qubits allows sepa-
rability to be studied with respect to the tensor product
C2mA � C2mB. At the level of the operator subalgebras, on the
other hand, one could study the entanglement between A and
B subalgebras. However, the observables in them do not
commute, in general, and have nonlocal action in Fock
space. On the contrary, A� and B�, i.e., the subalgebras of
parity conserving operators, commute with each other, and
they can be considered local to both parties in a physical
sense, as discussed in the previous section. It is then natural
to study the entanglement between them.

A. General states

With these considerations, we may give the following
definitions of a product state. They are summarized in Table
I.

�1� We may call a state � a product if there exists some
state, acting on the Fock space, of the form �̃= �̃A � �̃B, such
that it yields the same expectation values as � for all local
observables. Formally,

P0 ª ��: ∃ �̃A, �̃B,��̃A�B�, P̂A�B�� = 0 such that ��A�B��

= �̃A�A���̃B�B�� ∀ A� � A�,B� � B�� . �3�

Notice that in the expression above, as in the following, we
use for the expectation values the notation ��X�ª tr��X�.

�2� Alternatively, product states may be defined as those
for which all the expectation values of products of local ob-
servables factorize,

P1 ª ��:��A�B�� = ��A����B�� ∀ A� � A�,B� � B�� .

�4�

�3� At the level of the Fock representation, a product state
can be defined as that writable as a tensor product,
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P2 ª ��:� = �A � �B� . �5�

�4� From the point of view of the entanglement between
the subalgebras of observables for both partitions, one may
ignore the commutation with the parity operator and require
factorization of any product of observables �22�. This yields
another set of product states,

P3 ª ��:��AB� = ��A���B� ∀ A � A,B � B� . �6�

The two first definitions are equivalent, P0�P1. They
correspond to states whose projection onto the diagonal
blocks, i.e., those that preserve parity in each of the sub-
systems, is separable. This means that


	,
=e,o

P	
A

� P

B�P	

A
� P


B,

is a product in the sense of P2.
The three remaining sets are strictly different. In particu-

lar, P2�P1 and P3�P1, but P3�P2. The inclusion
P2,P3�P1 is immediate from the definitions. The non-
equality of the sets can be seen by explicit examples as those
shown in Table I �each example is discussed in detail in
Appendix A 1�. The difference between P3 and P2, how-
ever, is limited to nonphysical states, i.e., those not commut-
ing with parity �22�.

B. Physical states

Physical states must commute with P̂, since parity is a
conserved quantity in the systems under analysis. It makes
sense then to restrict the study of entanglement to such
states. By applying each of the above definitions to the
physical states � we obtain the following sets of physical
product states:

P1� ª P1 � � = P0 � �.

P2� ª P2 � �.

P3� ª P3 � � .

We notice that ��P2� is equivalent to �=�A � �B where
both factors are also parity conserving.

With the parity restriction, the three sets are related by

P3� = P2� � P1�. �7�

The proofs of all the relations above are shown in Appen-
dix A 1.

C. Pure states

For pure states, all Pi� reduce to the same set. If the state
vector is written in a basis of well-defined parity in each
subsystem, it is possible to show that the condition of P1�

requires that such an expansion has a single nonvanishing
coefficient, and thus the state can be written as a tensor prod-
uct also with the definition of P2.

IV. SEPARABLE STATES

Generally speaking, separable states are those that can be
written as convex combinations of product states. The con-
vex hulls of the different sets of product states introduced in
the previous section define then various separability sets.
Figure 1 outlines the procedure to obtain each of these sets.
Table II summarizes the different definitions and the rela-
tions between them.

A. General states

Taking the convex hull of the general product states, we
define the sets

S1 ª co�P1�,

S2 ª co�P2�,

S3 ª co�P3� .

TABLE I. Relations among sets of product states.

Set Definition Relation Example in 1�1

P0 ��A�B��= �̃�A�B��, �̃�P2 P0=P1

�P1= 1
16�9 0 0 − i

0 3 − i 0

0 i 3 0

i 0 0 1
��P1� \P2�

P1 ��A�B��=��A����B��
P2�P1

�P2= 1
4 �1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1
��P2\P3

P2 �=�A � �B

P3�P1

P2�P3

�P3= 1
6 � 2 2 0 0

2 2 0 0

0 0 1 −1

0 0 −1 1
��P3\P2

P3 ��AB�=��A���B�

ENTANGLEMENT IN FERMIONIC SYSTEMS PHYSICAL REVIEW A 76, 022311 �2007�

022311-3



These contain both physical states, commuting with P̂,
and nonphysical ones. It can be shown that S3�S2�S1.

The nonstrict inclusion S2�S1 is immediate from the
inclusion between product sets. The strict character can be
seen by constructing an explicit example, as discussed in
Appendix A 2. On the other hand, S3�S2 was proved in
�22�.

B. Physical states

From the physical sets of product states we define the
following sets of separable states:

S1� ª co�P1��,

S2� ª co�P2�� .

Obviously, the corresponding S3��S2�. The inclusion rela-
tions among product states imply S2��S1�. It is easy to see
with an example that this inclusion is also strict. Table II
summarizes the definitions and mutual relations of the vari-
ous separability sets.

As shown in Fig. 1, we may take the physical states that
satisfy the general definitions of separability introduced in
the previous subsection, and hence use Si�� as the defini-
tion of separable states. This yields the sets

S1 � � � S1�,

S2�� ª S2 � �,

S2 � � � S2�.

Only S2�� is different from the separable sets defined above.

Actually, given an S1 state that commutes with P̂, it is pos-
sible to construct a decomposition according to S1� by tak-
ing the parity preserving part of each term in the original
convex combination. Therefore S1���S1�, while the
converse inclusion is evident. For S3��, on the other hand,
it was shown in �22� that any parity preserving state in S3
has a decomposition in terms of only parity preserving terms,
and is thus in S3�.

All the considerations above leave us with three strictly
different sets of separable physical states,

S2� � S2�� � S1�. �8�

From the definitions, it is immediate that S2��S2�� . The
inclusion is strict because not every state ��S2�� has a de-
composition in terms of products of even states �see example

S2′π [S1π]

S1

General
product
states

Physical
product
states

Physical
separable
states

General
separable
states

S2
equiv(·)

co(·)
S1π

S3

P2

P0=P1

P3

P1π

co(·)
S2πP2π

equiv(·)

Π ∩ (·)

Π ∩ (·)

Π ∩ (·)

co(·)

co(·)

co(·)

equiv(·)

Π ∩ (·)

Π ∩ (·)

Π ∩ (·)

FIG. 1. Scheme of the construction of the different sets.

TABLE II. The different sets of separable states and their relations. S2� contains all states preparable by
means of LOCCS. S2�� represents the usual definition of separability in Fock space, when no restriction from
superselection rules is imposed. S1� gives all convex combinations of states for which expectation values of
products of locally measurable observables factorize. �S1�� contains all states which are locally indistin-
guishable from S1�.

Set Definition Characterization Relations Example in 1�1

��S1��=
1

15� 5 0 0 2�5

0 3 3 0

0 3 3 0

2�5 0 0 4
���S1�� \S1��S1�� �S1�� 	,
=e,oP	

A
� P


B�P	
A

� P

B�S2��

S1�� �S1��
S0� co�P0�� For the 1�1 case, S1�=S2�� .

�=k�k�k, such that S1�=S0� Therefore examples of S1� \S2�� can

S1� co�P1�� 	,
=e,oP	
A

� P

B�kP	

A
� P


B�S2�� only be found in bigger systems, for

S2�� �S1� instance 2�2 modes.

�S2
��

= 1
4 �1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1
��S2�� \S2�S2�� co�P2��� �=k�k�A

k
� �B

k

S2��S2��

S2� co�P2�� P
e
�P

e
�S2�� , P

o
�P

o
�S2�� ��S2�⇔� diagonal
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�S2
��

in Table II�. The condition for S2� is then more restric-
tive.

From the relation between product sets, S2�S1, and
S2�� �S1�. The strict inclusion can be shown by construct-
ing an explicit example of a P1� state without positive par-
tial transpose �PPT� �23� in the 2�2-modes system.

The detailed proofs of the equivalences and inclusions
above are shown in Appendix A 2.

C. Equivalence classes

If one is only interested in the measurable correlations of
the state, rather than in its properties after further evolution
or processing, it makes sense to define an equivalence rela-
tion between states by

�1 � �2 if �1�A�B�� = �2�A�B�� ∀ A� � A�,B�

� B�,

i.e., two states are equivalent if they produce the same ex-
pectation values for all physical local operators. Therefore,
two states that are equivalent cannot be distinguished by
means of local measurements.

With the restriction of parity conservation, the states that
can be locally prepared are of the form S2�, i.e., �

=k�k�A
k

� �B
k , where ��A�B�

k , P̂A�B��=0. Since the only locally
accessible observables are local, parity preserving operators,
i.e., quantities of the form ��A�B��, it makes sense to say
that a given state is separable if it is equivalent to a state that
can be prepared locally. With this definition, the set of sepa-
rable states is then given by the equivalence class of S2�

with respect to the equivalence relation above, �S2��.
Generalizing this concept, we may construct the equiva-

lence classes for each of the relevant separability sets,

�Si�� ª ��: ∃ �̃ � Si�,� � �̃�, i = 1,2�,2.

From the inclusion relation among the separability sets,
�S2��� �S2�� �� �S1��. And, obviously, Si�� �Si��.

On the other hand, any state �� �S1�� has also an equiva-
lent state in S2�, so that

�S2�� = �S2�� � = �S1�� .

This equivalence class includes then all the separability
sets described in the previous subsection. However, it is
strictly larger than all of them, as can be seen by the explicit
example ��S1�� in Table II �see also Appendix A 2�.

We have then defined four different sets of separable
states, which can be now put in correspondence to the four
classes of states mentioned in the Introduction.

�1� States preparable by local operations, subject to the
restriction of parity conservation, and classical communica-
tion will be separable according to S2�.

�2� Any convex combination of product states in the Fock
representation will be separable according to S2�� .

�3� Convex combinations of states for which all products
of locally measurable observables factorize are separable as
for S1�.

�4� Finally, �S2�� contains the states such that all correla-
tions that can be locally measured can also be produced by a
separable state in any of the classes above.

D. Characterization

It is possible to give a characterization of the previously
defined separability sets in terms of the usual mathematical
concept of separability, i.e., with respect to the tensor prod-
uct. This allows us to use standard separability criteria �see
�24� for a recent review� in order to decide whether a given
state is in each of these sets.

The definition S2�� corresponds to the separability in the
sense of the tensor product, i.e., the standard notion �1�, ap-
plied to parity preserving states.

As convex hull of P2��, the set S2� consists of states
with a decomposition in terms of tensor products, with the
additional restriction that every factor commutes with the
local version of the parity operator. Using the block diagonal
structure P

e
�P

e
+P

o
�P

o
of any parity preserving state, we

conclude that each block must have an independent decom-
position in the sense of the tensor product. Therefore a state
will be in S2� iff both P

e
�P

e
and P

o
�P

o
are in S2�� .

A state � is in P0� if its diagonal blocks are a tensor
product,


	,
=e,o

P	
A

� P

B�P	

A
� P


B = �̃A � �̃B � P2�. �9�

The set S1� is characterized as the convex hull of P1�

�P0�, i.e., it is formed by convex combinations of states
that can be written as the sum of a parity preserving tensor
product plus some off-diagonal terms.

Finally, the equivalence class �S1����S2�� is completely
defined in terms of the expectation values of observable
products A�B�. These have no contribution from off-
diagonal blocks in �, so the class can be characterized in
terms of the diagonal blocks alone. Therefore a state is in
�S1�� iff


	,
=e,o

P	
A

� P

B�P	

A
� P


B � S2�� . �10�

Since the condition involves only the block diagonal part of
the state, it is equivalent to the individual separability �with
respect to the tensor product� of each of the blocks.

V. MULTIPLE COPIES

The definitions introduced in the previous sections apply
to a single copy of the fermionic state. It is nevertheless
interesting to see the stability of the different criteria when
several copies are considered, and, in particular, to under-
stand their asymptotic behavior when N→�.

The criteria S2�� and S2� are stable when several copies
of the state are considered.

��2 � S2�� ⇔ � � S2�� ,
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��2 � S2� ⇔ � � S2�.

Moreover, it was shown in �15� that the entanglement cost of
S2� converges to that of S2�� , so that asymptotically both
definitions are equivalent.

On the other hand, S1� and �S1�� do not show the same
stability. It is possible to have a state ��S1� ��S1��� such
that ��2 is not separable according to the same criterion.
However, the opposite sense of the implication holds. As
proved in Appendix A 3,

��2 � S1� ⇒ � � S1�,

��2 � �S1�� ⇒ � � �S1�� .

It is also possible to prove that

��2 � �S1�� ⇒ � PPT.

Therefore, a non-PPT state � is also nonseparable accord-
ing to the broadest definition �S1�� when one takes several
copies. This is true, in particular, for distillable states �25,26�.
This suggests that the differences between the various defi-
nitions of separability may vanish in the asymptotic regime.
The strict equivalence of the classes in this limit, however, is
proved only for the case of 1�1 modes, as detailed in the
following section.

VI. 1Ã1 MODES

In the case of a small system of only two modes, it is
possible to apply all the definitions above to the most general
density matrix and find the complete characterization of each
of the sets. Table III shows this characterization.

A generic state of a 1�1-mode system can be written in
the Fock representation as

� =�
1 − x − y + z p q r

p* x − z s t

q* s* y − z w

r* t* w* z
� , �11�

where x, y, z are real parameters, with the additional restric-
tions that ensure �0, which include z�x ,y, and 1+zx
+y.

States in P1 must satisfy a single relation between expec-
tation values, namely, �c1c2c3c4�= �c1c2��c3c4�, which reads,
in terms of the given parametrization, z=xy. This condition
is also necessary for states in P2 or P3.

If a state is in P2, it can be written as the tensor product
of two one-mode matrices, each of them determined by one
real and one complex parameter. This imposes a number of
restrictions on the general parameters above, that can be read
in Table III. Since S2 corresponds to separability in the iso-
morphic qubit system, a state will be in S2 iff it has PPT
�27�.

According to �22�, a state in P3 has zero expectation
value for all observable products A�”B�” , and one of the re-
strictions of � to the subsystems is odd with respect to the
parity transformation. In the 1�1 system, these conditions
are fulfilled by states with one of two generic forms, shown
in the table, which hence characterize product states P3.

If we restrict the study to physical states, i.e., those com-

muting with P̂, the density matrix has a block diagonal struc-
ture, as it can be written as the direct sum of two terms,
which correspond to both parity eigenspaces. We use the
conventional ordering of the number basis, where this block
structure is not apparent, and the most general even 1�1
state can be written

� =�
1 − x − y + z 0 0 r

0 x − z s 0

0 s* y − z 0

r* 0 0 z
� . �12�

Particularizing the conditions for general product states to
this form of the density matrix, where p=q= t=w=0, gives
the explicit characterization of the physical product states
according to each definition.

In particular, the state �12� is in P1� iff z=xy. Convex
combinations of this kind of state will produce density ma-
trices that fulfill �s�2�z�1−x−y+z� and �r�2� �x−z��y−z�,
and thus have PPT. This shows that, for this small system,
S1��S2�� .

The independent separability of both blocks of �, which
determines separability according to S2�, requires that r=s
=0, i.e., that the density matrix is diagonal in this basis.

Finally, the characterization �10� of �S1�� applied to Eq.
�11� yields the condition that the diagonal of � is separable
according to the tensor product, so that all states of 1�1
modes of the form �12� are in �S1��.

TABLE III. Characterization of the sets for a 1�1-mode
system.

General

�= �1−x−y+z p q r

p* x−z s t

q* s* y−z w

r* t* w* z
�

P1 z=xy

P2

�=�A � �B, i.e., �
z=xy,

yp= �1−y�w,

xq= �1−x�t,

xyr= tw,

xys= tw*

P3 r=s=0

z=xy

� q= t=0

�1−y�w=−yp � or � p=w=0

�1−x�t=xq �
� p=q= t=w=0

S1� �r�2� �x−z��y−z�
S2�� �s�2�z�1−x−y+z�
S2�=S3� r=s=0

�S1�� All �0
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If we look at several copies of such a 1�1-mode system,
it is possible to show that

��2 � �S1�� ⇔ � � S2�� .

Therefore, in this case all the definitions of entanglement
converge when we look at a large number of copies.

Thermal states of fermionic chains

All the concepts above can be applied to a particular ex-
ample. We consider a 1D chain of N fermions subject to the
Hamiltonian

H =
1

2
n

�an
†an+1 + h.c.� − �

n

an
†an + �

n

�an
†an+1

† + h.c.� .

This Hamiltonian can be obtained as the Jordan-Wigner
transformation of an XY spin chain with transverse magnetic
field �28,29�. The Hamiltonian can be exactly diagonalized
by means of Fourier and Bogoliubov transformations, yield-
ing

H = 
k=−��N−1�/2�

�N−1�/2

�kbk
†bk,

with �k=��cos 2�k
N −��2+4�2 sin2 2�k

N , bk=cos �kak

+ i sin �ka−k
† , cos 2�k=

cos 2�k
N

−�

�k
and ak= 1

�N
ne−i�2�kn/N�an.

We consider the thermal state �= e−
H

tr�e−
H� , with inverse tem-

perature 
, and calculate the reduced density matrix for two
adjacent modes in the limit of an infinite chain, by numerical
integration of the relevant expectation values as a function of
the three parameters of this model, �, �, and 
.

First we may study which values of the parameters result
in entanglement between both modes according to each of
the definitions. As mentioned above, for a two-mode system
there is no distinction between the sets S1� and S2�� . More-
over, any valid density matrix is, for this small system, in
�S1��. Therefore we look for the limits of the separability
regions S2�� and S2� for a fixed value of the parameter �.
The results are shown in Fig. 2. For any given value of � we
find that S2� corresponds to the horizontal axis of the plots,
i.e., the reduced density matrix is in S2� only if 
=0. There-
fore for all finite values of the temperature two adjacent fer-
mions will be entangled according to this criterion. The re-
gion S2�� , on the contrary, changes with the parameters, as
shown by the plots.

From a quantitative point of view, the entanglement with
respect to S2�� can be measured by the entanglement of for-
mation �30�,

EF��� = min
�i,�i�


i

piE��i� .

With respect to S2�, it is natural to define the entanglement
of formation conforming to parity conservation as

EF
���� = min

�i,�i�


i

piE��i� ,

where the minimization is performed over ensembles all
whose �i have well-defined parity �14�. Both quantities can

be calculated. The results as a function of the temperature 
,
for fixed values of � and �, are shown in Fig. 3. Consistently
with the results in Fig. 2, there is always nonzero entangle-
ment with respect to S2�, for 
�0. The entanglement of
formation with respect to S2�� is, for any other value of the
temperature, strictly smaller, corresponding to the more re-
strictive definition of S2�. In fact, the explicit characteriza-
tion of both sets in Table III shows that the condition for S2�

will only be satisfied if all the off-diagonal elements of the
reduced density matrix vanish, which only happens when 

=0. On the contrary, the characterization of S2�� involves
two simultaneous conditions on the same matrix elements,
but positivity of the reduced density matrix ensures that only
one of them can be violated at a time. For small values of 
,
both conditions can be satisfied, but the reduced density ma-
trix starts to be entangled at a finite value of 
 when one of
the inequalities is saturated. Due to the discontinuous defini-
tion of EF, the transition from separable to entangled state is
not smooth, as it would be expected.
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FIG. 2. �Color online� Regions of parameters that correspond to
separable reduced density matrices of two neighboring fermions
according to the different criteria. The different curves correspond
to values of the parameters for which one of the conditions of
separability �see Table III� is satisfied with equality. For a fixed
value of � ��=0.5 for �a�, �=0.95 for �b��, the area at the bottom
corresponds to values of 
 ,� for which the reduced density matrix
is in S2�� . In both cases, the region of S2� lies on the horizontal
axis. Notice that for �=0.95 there is a small range of values of �
�0.2 for which the entanglement shows up when increasing the
temperature, as illustrated quantitatively by the figure below.
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VII. SUMMARY

In the previous sections we have studied various defini-
tions of separability that are reasonable for a fermionic sys-
tem in second quantization. The various possibilities arise
from the anticommutation of fermionic operators and from
the presence of the parity superselection rule.

The starting point is to analyze the different definitions of
product states. We can think of four different definitions,
which for physical states, i.e., those commuting with the par-
ity operator, reduce to only two different sets: P2�, with
states that are a product in the Fock representation, and P0�,
containing the states whose locally measurable correlations
can be reproduced by some state of P2�.

The various sets of separable states are constructed by
taking the convex hull of the various sets of product states,
an operation that may be performed before or after the ap-
plication of the parity restriction, as summarized in Table IV.
Finally we are left with four classes of separable states,
which can be related to different physical capabilities of
preparation or measurement of the states. S2� represents
states that can be prepared by LOCCS. S2�� instead corre-
sponds to the usual definition of separability in the Fock
representation, and hence it contains states expressible as
convex combinations of tensor products but not necessarily
preparable by means of local operations. S1� is constructed
from the convex combinations of states such that the expec-
tation values of all local observables factorize. Finally, states
in �S1�� are characterized by locally measurable correlations
reproducible by a state that can be prepared locally. Table IV
summarizes all the definitions and the relations among sets.
We have also characterized the various sets in terms of the
tensor product, so that the usual separability criteria can be
applied to determine whether a state is or not in each of these
classes.
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FIG. 3. �Color online� Entanglement of formation of the reduced
density matrix of two neighboring fermions with respect to the sets
S2� �dots� and S2�� �crosses�, for fixed values of � and �, as a
function of the inverse temperature.

TABLE IV. Summary of the different definitions of product and separable states.

Product states Separable states Equivalence classes

General Physical co�X� Physical

P0 S0ªco�P0� S0�=S0�� �S0��
P0�ªP0�� S0�ªco�P0��

P1 S1ªco�P1� S1�=S1�� �S1��
P1�ªP1�� S1�ªco�P1��

P2 S2ªco�P2� S2�� ªS2�� �S2�� �
P2�ªP2�� S2�ªco�P2�� S2� �S2��

P3 S3ªco�P3� S3�=S3�� �S3��
P3�ªP3�� S3�ªco�P3��

Relations between sets

S0�=S1� �S0��= �S1��
P0=P1 P0�=P1� S0=S1

S2�� �S1� �S1��= �S2�� �
P2, P3�P1 P2��P1� S2�S1

S2��S2�� �S2�� �= �S2��
P2�P3 P2�=P3� S3�S2

S3�=S2� �S2��= �S3��
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When taking multiple copies of a state, the various sets
behave differently. Whereas the definitions of S2� and S2��
are stable, the same is not true for S1� or �S1��. In the
asymptotic regime, however, the differences among the vari-
ous sets seem to disappear. In particular, S2� and S2�� be-
come equivalent in the limit of a large number of copies. In
the case of the smallest possible system of 1�1 modes, we
have proved that the equivalence holds also for the larger
classes. In the general case, multiple copies of � can be in
�S1�� only if the single copy is PPT. Therefore, any NPPT
entangled state � �in particular, distillable states� will not
become separable when taking several copies, even accord-
ing to the broadest concept of separability, �S1��.

Several questions remain open. Among them, the most
relevant is whether all the classes of separable states collapse
to a single one in the asymptotic regime.
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APPENDIX: DETAILED PROOFS

For the sake of clarity, we have compiled in this appendix
the detailed proofs of all the inclusions and equivalences that
appear in the text.

1. Product states

1.1. P0�P1.
Proof. States in P0 satisfy the restriction that

��A�B�� = �̃A�A���̃B�B��

for some product state �̃ and all parity conserving operators
A� ,B�. Since the only elements of � contributing to such
expectation values are in the diagonal blocks P	

A
� P


B�P	
A

� P

B �	 ,
=e ,o�, the condition is equivalent to saying that

the sum of these blocks is equal to the �parity commuting�
product state �̃= �̃A � �̃B.

The condition for ��P1 turns out to be equivalent to
this. We may decompose the state as a sum

� = 
	,
=e,o

P	
A

� P

B�P	

A
� P


B + R ª �� + R ,

where �� is a density matrix commuting with P̂A and P̂B, and
R contains only the terms that violate parity in some sub-
space. It is easy to check that R gives no contribution to
expectation values of the form ��A�B��, so that ���A�B��
=���A�����B��. On the other hand, an operator that is odd
under parity has the form A�” =Pe

AA�”Po
A+Po

AA�”Pe
A. Therefore

���A�”B�” �=0=���A�” ����B�” �. Since �� commutes with parity,
odd observables have zero expectation value. Therefore all
the expectation values ���AB� factorize and �� can be written
as a tensor product. �

1.2. P2�P1.
Proof. The inclusion P2�P1 is immediate from the fact

that the products of even observables in the A�B� corre-
spond, via a Jordan-Wigner transformation, to products of

local even operators Ã�B̃� in the Fock representation, and
thus they factorize for any state in P2. The strict character of
the inclusion is shown with an explicit example. The state

�P1 =
1

16�
9 0 0 − i

0 3 − i 0

0 i 3 0

i 0 0 1
�

can be easily checked to be in P1�. For a 1�1-mode sys-
tem, the conditions to be in P1 reduce to a single equation
�see Table III�. In terms of the diagonal elements of the den-
sity matrix, this reads �44= ��22+�44���33+�44�, trivially sat-
isfied by �P1, which thus belongs to P1. In particular, as the
density matrix commutes with parity, �P1�P1�. However, it
is impossible to write the same state as a tensor product, and
so �P1�P2�.

The previous example can be shown to be Gaussian. Ac-
tually, in the 1�1-mode system, the condition for a state to
be Gaussian is given also by a single relation
i2 tr��c1c2c3c4�=Pf���, which in terms of the matrix ele-
ments and the parametrization in Table III reads �r�2− �s�2
=z−xy. The previous example is easily seen to fulfill this
condition, and is thus a Gaussian state. �

1.3. P3�P1.
Proof. The inclusion P3�P1 is immediate from the defi-

nitions of both sets. The same example �P1 discussed in the
previous paragraph can be used to show that the inclusion is
strict. Observables of the form A�”B�” have zero expectation
value for all states in P3 �22�. However, we can calculate,
for instance, �c1c3��P1

= i /4�0, so that �P1�P3. �

1.4. P2�P3.
Proof. The example

�P2 =
1

4�
1 1 − 1 − 1

1 1 − 1 − 1

− 1 − 1 1 1

− 1 − 1 1 1
� =

1

2

 1 − 1

− 1 1
� �

1

2

1 1

1 1
� ,

fulfills �P2�P2, but �P2�P3 because it has nonvanishing
expectation value for products of odd operators, in particular
�c2c3��P2

= i�0.
On the other hand, it is also possible to construct a state as

�P3 =
1

6�
2 2 0 0

2 2 0 0

0 0 1 − 1

0 0 − 1 1
� ,

satisfying �P3�P3 �it is easy to check the explicit charac-
terization for 1�1 modes of Table III�, but �P3�P2 because
it is not possible to write it as a tensor product. �

1.5. P2��P1�.
Proof. The nonstrict inclusion is immediate from the re-

sult for general states 1.2. Actually, the same example �P1 is
parity preserving and thus it also shows the nonequivalence
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of both physical sets. �
1.6. P2��P3�.

Proof. For every physical state �� , P̂�=0, the expectation
value of any odd operator is null. On the other hand, all P3
states �in particular, those in P3�� fulfill ��A�B��=0 �22�.
Since a state in P2� can be written as a product of two
factors, each of them commuting with the local parity opera-
tor, then the only nonvanishing expectation values in these
sets of states correspond to products of parity conserving
local observables. It is then enough to check that

��A�B�� = ��A����B�� ⇔ � = �A � �B.

Given the state � we can look at the Fock representation and
write it as an expansion in the Pauli operator basis, where
coefficients correspond to expectation values of products
�a1

�1�
� ¯ � �am

�m�.
Making use of the Jordan-Wigner transformation �2�, any

product of even observables in the Fock space is mapped to
a product of even operators in the subalgebras A ,B. So it is
easy to see that the property of factorization is equivalent in
both languages and thus

� � P2� ⇔ � � P3�.

This equivalence implies also that of the convex hulls,
S2��S3�. �

Pure states

1.7. For pure states P1�⇔P2�.

Proof. A pure state ����� � �� is such that P̂�= ±�. We
consider the case of even parity �the same reasoning applies
for the odd one�. Such a state vector is a direct sum of two

components, one of them even with respect to both P̂A , P̂B
and the other one odd with respect to both local operations.
Applying the Schmidt decomposition to each of those com-
ponents, it is always possible to write the state as

��� = 
i

	i�ei���i� + 
i


i�oi���i� ,

where ��ei�� ����i��� are mutually orthogonal states with

P̂A �ei�= + �ei� �P̂B ��i�= + ��i�� and ��oi�� ����i��� are mutually

orthogonal states with P̂A �oi�=−�oi� �P̂B ��i�=−��i��.
The condition of P1� imposes that �� �A�B� ���

= �� �A� ����� �B� ��� for all parity preserving observables.
In particular, we may consider those of the form

A� = 
k

Ak
e�ek��ek� + Ak

o�ok��ok� ,

B� = 
k

Bk
e��k���k� + Bk

o��k���k� .

On these observables the restriction reads



i

�	i�2Ai
e + 

i

�
i�2Ai
o�


i

�	i�2Bi
e + 

i

�
i�2Bi
o�

= 
i

�	i�2Ai
eBi

e + 
i

�
i�2Ai
oBi

o.

Let us assume that the state � has more than one term in the
even-even sector, i.e., 	1�0 and 	2�0 �we may reorder the
sum, if necessary�. Then we apply the condition to A
=A1

e �e1��e1�, B=B2
e ��2���2�, and applying the equality we de-

duce �	1�2A1
e �	2�2B2

e =0, and thus �	1 � �	2 � =0, so that there
can only be a single term in the �ei� ��i� sum. An analogous
argument shows that also the sum of �oi� ��i� must have at
most one single contribution, for the state to be in P1�.

By applying the equality to operators A=A1
o �o1��o1� and

B=B1
e ��1���1� we also rule out the possibility that � has a

contribution from each sector. Then, if ��P1�, it has one
single term in the Schmidt decomposition, and therefore it is
a product in the sense of P2�. �

2. Separable states

2.1. S2�S1 and S2�� �S1�.
Proof. The first �nonstrict� inclusion is immediate from

the relation between product states 1.2. To see that both sets
are not equal, we use again an explicit example. It is possible
to construct a state in P1��S1�, which has nonpositive par-
tial transpose and is thus not in S2. However, this has to be
found in bigger systems than the previous counterexamples,
as in a two-mode system the conditions for S1� and S2�� are
identical, as shown in Table III.

We can use the following procedure to find a particular
example. By constructing random matrices �A � �B in the
parity preserving sector, and adding off-diagonal terms R,
which are also randomly chosen, we find a counterexample
�S1�

in a 2�2 system such that �S1�
�P1� by construction,

but its partial transposition with respect to the subsystem B,
�S1�

TB , has a negative eigenvalue.
When taking the intersection with the set of physical

states, the inclusion still holds, and it is again strict, since the
counterexample �S1�

is, in particular, in P1�. �

2.2. S1��S1��.
Proof. Obviously, S1��S1��. To see the converse di-

rection of the inclusion, we consider a state ��S1��. By
definition, � has a decomposition �=i�i�i with �i�P1, but
not necessarily in �. We may split the sum into the even and
odd terms with respect to the parity operator,

� = �E + �O ª 
i

�i
1

2
��i + P̂�iP̂� + 

i

�i
1

2
��i − P̂�iP̂� .

The second term �O gives no contribution to operators that

commute with P̂. Since � is physical, this term also gives
zero contribution to odd observables, so that

� = 
i

�i
1

2
��i + P̂�iP̂� .

It only remains to be shown that each �iEª
1
2 ��i+ P̂�iP̂� is

still a product state in P1�. But for parity commuting observ-
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ables all the contributions come from the symmetric part of
the density matrix, hence �i�A�B��=�iE�A�B��, and the con-
dition for P1� holds for �iE. We have then found a convex
decomposition of � in terms of product states, all of them
conforming to the symmetry. The analogous relation for S2�

was shown in �22�. �

2.3. S2��S2�� .
Proof. Since P2�=P2��, taking convex hulls and inter-

secting again with � implies that S2��S2�� . However, not
all separable states can be decomposed as a convex sum of
product states, all of them conforming to the parity symme-
try. In particular, the state

�S2
��

=
1

4�
1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1
� ,

which has PPT and thus belongs to S2�� , is not in S2� �recall
that for the 1�1 system, only density matrices which are
diagonal in the number basis are in S2��. �

2.4. �S1����S2�� ���S2��.
Proof. From the relations S2��S2�� �S1� and the defi-

nition of the equivalence classes it is evident that
�S2��� �S2�� �� �S1��. To show the equivalence of all sets it
is enough to prove that any state �� �S1�� is also in �S2��,
i.e., that there exists a state in S2� equivalent to �.

Given �� �S1��, there is a �̃�S1�, i.e., �̃=�k�̃k with
each �̃k�P1�, producing identical expectation values for
products of even operators A�B�. If we define

�k� ª 
	,
=e,o

P	
A

� P

B�̃kP	

A
� P


B,

it is evident that ��ªk�k�k� produces the same expectation
values as �̃ for the relevant operators �see Proof 1.1�. There-
fore, ����. Moreover, �k��A�B��=0 for all odd-odd prod-
ucts, hence �k��P2� ∀ k, and so ���S2�. �

2.5. S1�� �S1��.
Proof. The relation S1�� �S1�� is immediate. As in pre-

vious paragraphs, we show the strict character of the inclu-
sion with an explicit example. The state

��S1�� =
1

15�
5 0 0 2�5

0 3 3 0

0 3 3 0

2�5 0 0 4
�

is a valid density matrix for the 1�1-mode system, and thus
it belongs to �S1�� �see Table III�. However, the partial trans-
pose of ��S1�� is not positive �in particular, it violates the
condition �r�2� �x−z��y−z� from Table III�, so that it is not
in S1�. Again, this state can be seen to be Gaussian. �

3. Multiple copies

3.1. ��2�S1�⇒��S1�.
Proof. An arbitrary state can be decomposed in two terms,

�=�E+�O, where

�E ª 
	,
=e,o

P	
A

� P

B�P	

A
� P


B,

and

�O ª 
	,
,�,�=e,o

�	,
����,��

P	
A

� P

B�P�

A
� P�

B.

For any state in S1�, there exists a decomposition �E
=i�i�E

i , �O=i�i�O
i , such that �E

i +�O
i �P1�. Let us con-

sider two copies of a state such that �̃ª��2�S1�. Then,
using the above decomposition of �̃, and taking the partial
trace with respect to the second system, we obtain a decom-
position of the single copy, �=�E+�O=i�i tr2��̃E

i �
+i�i tr2��̃O

i �. Since �̃E
i was a tensor product, �̃E

i = �̃Ã � �̃B̃,

with Ã�A1A2, B̃�B1B2, so is tr2��̃E
i �, and therefore �

�S1�. �
3.2. ��2� �S1��⇒�� �S1��.
Proof. Using the same decomposition as above, �=�E

+�O, a state �� �S1�� satisfies �E�S2�� . If we consider �̃
ª��2= �̃E+ �̃O, the condition �S1�� on the state of the two
copies reads

�̃E = �E � �E + �O � �O � S2�� ,

in terms of the components of the single copy state. Taking
the trace with respect to one of the copies, then, and using
the fact that �O is traceless, �E�S2�� , so that �� �S1��. �

3.3. � non-PPT⇒��2� �S1��.
Proof. We may restrict the proof to states such that �

� �S1��. In another case, the implication follows immedi-
ately from the previous result �3.2�. Written in a basis of
well-defined local parities, any density matrix that commutes
with the parity operator has a block structure �analogous to
that of Eq. �12� for the 1�1 case�

� =�
�ee 0 0 C

0 �eo D 0

0 D† �oe 0

C† 0 0 �oo

� . �A1�

The diagonal blocks correspond to the projections onto si-
multaneous eigenspaces of both parity operators, �	
=P	

A

� P

B�P	

A
� P


B, whereas C=Pe
A

� Pe
B�Po

A
� Po

B and D=Pe
A

� Po
B�Po

A
� Pe

B.
From the characterization �10� of separability, the state is

in �S1�� iff all the diagonal blocks �	
 are in S2�� . It is then
enough to prove that the partial transpose of � is positive iff
Pe

A
� Pe

B� � �Pe
A

� Pe
B has PPT. Nonpositivity of the partial

transpose of � implies then the nonseparability �as S2�� � of
one of the diagonal blocks of � � �.

The partial transposition of the above matrix yields
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�TB =�
�ee� 0 0 D�

0 �eo� C� 0

0 �C��† �oe� 0

�D��† 0 0 �oo�
� , �A2�

where X�ªXTB, and the TB operation acts on each block
transposing the last mB−1 indices.

If we take two copies of the state, we find for the corre-
sponding uppermost diagonal block �̃eeªPe

A
� Pe

B� � �Pe
A

� Pe
B,

�̃ee =�
�ee � �ee 0 0 C � C

0 �eo � �eo D � D 0

0 D†
� D† �oe � �oe 0

C†
� C† 0 0 �oo � �oo

� ,

�A3�

whose partial transposition ��̃ee�TB reads

�
�ee� � �ee� 0 0 D� � D�

0 �eo� � �eo� C� � C� 0

0 C�†
� C�† �oe� � �oe� 0

D�†
� D�† 0 0 �oo� � �oo�

� .

�A4�

The matrices �A2� and �A4� are the direct sum of two blocks.
Thus they are positive definite iff each such block is positive
definite. Let us consider one of the blocks of �A4�, namely,


 �ee� � �ee� D� � D�

D�†
� D�† �oo� � �oo�

� , �A5�

and assume first that �oo� is nonsingular. Applying a standard
theorem in matrix analysis and making use of the fact that

our �� �S1��, so that each diagonal block is PPT, we obtain
that Eq. �A5� is positive iff

�ee� � �ee�  �D� � D����oo�
−1

� �oo�
−1��D�†

� D�†� ,

which holds iff

�ee�  D���oo� �−1D�†.

Reasoning in the same way for the second block of Eq. �A4�,
one gets that

��̃ee�TB  0 ⇔ �TB  0. �A6�

The result holds also if the assumption of nonsingularity of
�oo ��oe for the second block� is not valid. In that case, we
may take �oo diagonal and then, by positivity of ��̃ee�TB �or
�TB for the reverse implication�, find that D� must have some
null columns. This allows us to reduce both matrices to a
similar block structure, where the reduced �oo ��oe� is non-
singular. �

3.4. For 1�1 systems, ��2� �S1��⇔��S2�� .
Proof. One of the directions is immediate, and valid for an

arbitrarily large system, since ��S2�� implies ��2

�S2�� �S1�� �S1��. On the other hand, if we take �̃
ª��2� �S1��, then the diagonal blocks of this state are

separable, in particular, Pe
Ã

� Pe
B̃�̃Pe

Ã
� Pe

B̃�S2�� , which was
calculated in Eq. �A3�. For the case of 1�1 modes, with �
given by Eq. �12�, this block reads

�ee =�
�1 − x − y + z�2 0 0 r2

0 �x − z�2 s2 0

0 �s*�2 �y − z�2 0

�r*�2 0 0 z2
� .

This is in S2�� iff it has PPT, and this happens if and only if
� has PPT, i.e., ��S2�� . �
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