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The irreversible time evolution of a quantum system interacting with a large environmental system can be
described by a quantum master equation. When an external field is applied to a quantum system, a non-
Markovian mater equation is derived in a rigorous way, where the relaxation terms in the quantum master
equation include the effects of the external field. It is shown that, when the external field is a sequence of
phase-modulation pulses, the decoherence of the quantum system can be suppressed under certain conditions.
To see the effects of phase-modulation pulses, the irreversible time evolutions of qubit and photon systems are
investigated in detail.
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I. INTRODUCTION

Quantum-information processing �1,2� has recently at-
tracted much attention in quantum physics and information
science since it provides novel information technology such
as quantum cryptography, quantum communication, and
quantum computation as well as insights into the principles
of quantum mechanics. A quantum system used in quantum-
information processing inevitably interacts with a surround-
ing environmental system �or a thermal reservoir�. Since a
quantum system in thermal equilibrium cannot process any
information, quantum-information processing must use non-
equilibrium states. Hence quantum-information processing is
within the scope of nonequilibrium statistical mechanics
�3–5�. The various methods developed in nonequilibrium sta-
tistical mechanics can be used for investigating quantum-
information processing. One of the most useful methods is
the quantum master equation �6–10�.

The entanglement and nonclassicality of quantum states,
which are the essential resources in the quantum-information
processing, are fragile under the influence of environmental
systems. Hence it is a very important task to suppress the
decoherence to realize quantum-information processing in
the real world. Thus far, a variety of methods to suppress
decoherence have been proposed, such as quantum error-
correcting codes �11,12�, decoherence-free subspaces
�13,14�, and dynamical decoupling �15,16�. The dynamical
decoupling is performed by means of very fast � pulses.
Pulse control methods have been applied to a variety of de-
coherence models �17–20�.

In this paper, using the non-Markovian quantum master
equation, we formulate the pulse-control method for sup-
pressing the decoherence of a quantum system, where we do
not assume that � pulses are applied. We will find that the
pulse-control method works well for suppressing decoher-
ence, even if the pulse area is not equal to �. In Sec. II, we
derive the non-Markovian quantum master equation of a
quantum system interacting with a large environment under
the influence of phase-modulation pulses in a rigorous way
�21,22�. In Sec. III, to see explicitly the pulse-control effects
on decoherence, we obtain the irreversible time evolution of
a qubit �two-level system�. The decays of the fidelity, purity,

and entanglement of quantum states are investigated. In Sec.
IV, we consider a photon system and investigate the decoher-
ence of nonclassicality and entanglement of quantum states.
We give concluding remarks in Sec. V.

II. NON-MARKOVIAN QUANTUM MASTER EQUATION
INCLUDING PULSE EFFECT

Quantum master equations are useful for describing irre-
versible processes or decoherence phenomena of quantum
systems interacting with thermal reservoirs. To control the
relevant systems, we apply external fields to them. In par-
ticular, it is well known that the application of � pulses is
useful for suppressing decoherence �15–20�. In this section,
we investigate how non-� pulses affect the decoherence of
the relevant system. We suppose that a quantum system in-
teracting with a thermal reservoir is described by the follow-
ing Hamiltonian:

Ĥ = ĤS + ĤR + ĤSR, �1�

where ĤS and ĤR are the Hamiltonians of the relevant system

and thermal reservoir, and ĤSR is the interaction Hamiltonian

between them. The Hamiltonians ĤS and ĤSR are assumed to
be

ĤS = ��Ẑ , �2�

ĤSR = ���R̂†X̂ + R̂X̂†� , �3�

where R̂ is some operator of the thermal reservoir, and Ẑ

�=Ẑ†� and X̂ are operators of the relevant system, satisfying

the commutation relation �X̂ , Ẑ�= X̂. We set �Ẑ , X̂ , X̂†�
= �â†â , â , â†� for a harmonic oscillator �or a photon system�
and �Ẑ , X̂ , X̂†�= �Ŝz , Ŝ− , Ŝ+� with Ŝ±= Ŝx± iŜy for a spin system,

where â is the bosonic annihilation operator and Ŝ�

��=x ,y ,z� is the spin operator. We do not need to specify the

reservoir Hamiltonian ĤR in our treatment. Furthermore, we
suppose that an external field is applied to the relevant sys-
tem, where the interaction Hamiltonian between the relevant
system and external field is given by
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Ĥf�t� = − ���
k

��t − tk�Ẑ , �4�

which implies that the external field modulates or kicks the
phase of the relevant system by � at time tk �k
=1,2 , . . . ,n , . . . �. In the rest of this paper, we refer to such an
external field as a phase-modulation � pulse. Then the
Hamiltonian of the total system becomes

H�t� = ĤS�t� + ĤR + ĤSR, �5�

with ĤS�t�= ĤS+ Ĥf�t�.
The time evolution of the quantum state Ŵ�t� of the total

system is determined by the Liouville–von Neumann equa-
tion

�

�t
Ŵ�t� = −

i

�
�Ĥ�t�,Ŵ�t�� . �6�

To eliminate the information of the thermal reservoir from
this equation, we introduce the interaction picture by

Ŵ��t� = Û†�t�Ŵ�t�Û�t� , �7�

ĤSR� �t� = Û†�t�ĤSRÛ�t� , �8�

with

Û�t� = T exp�−
i

�
�

0

t

d��ĤS��� + ĤR�� , �9�

where the symbol T means that operators are placed in the
chronological order from the right to the left. The unitary

operator Û�t� is calculated to be

Û�t� = e−i��t−�	t�Ẑe−�i/��ĤRt. �10�

In this equation, the parameter 	t is given by 	t=�k	�t− tk�,
where 	�x� is the usual step function. The interaction Hamil-

tonian ĤSR� �t� between the relevant system and thermal res-
ervoir becomes

ĤSR� �t� = ���R̂†�t�X̂e−i��t−�	t� + �h.c.�� , �11�

with R̂�t�=e�i/��ĤRtR̂e−�i/��ĤRt. This result shows that the effect
of the phase-modulation � pulses applied to the relevant sys-
tem induces the time-dependent phase factor e±i�	t in the
system-reservoir interaction Hamiltonian. Then we obtain in
the interaction picture,

�

�t
Ŵ��t� = −

i

�
�ĤSR� �t�,Ŵ��t�� . �12�

Using the projection operator method, we eliminate the
reservoir information from Eq. �12�. Here we assume that the
relevant system is initially uncorrelated with the thermal res-

ervoir in the thermal equilibrium state 
̂R=e−ĤR/kBT

/TrRe−ĤR/kBT, and thus we have Ŵ�0�= 
̂�0� � 
̂R. Further-

more, we use the projection operator P̂ defined by P̂Ô

= 
̂RTrRÔ, where TrR stands for taking the trace over the

Hilbert space of the thermal reservoir. In this case, the equal-

ity P̂Ŵ�0�=Ŵ�0� holds. Then we can derive the time-
convolutionless master equation for the reduced quantum

state 
̂��t�=TrRŴ��t� of the relevant system �6–10�,

�

�t

̂��t� = K̂f�t�
̂��t� , �13�

with

K̂f�t� = �
n=1

� �
0

t

d�1�
0

�1

d�2 ¯ �
0

�n−2

d�n−1

� 	L̂SR� �t�L̂SR� ��1�L̂SR� ��2� ¯ L̂SR� ��n−1�
R
oc, �14�

where L̂SR� �t� is the Liouville superoperator defined by

L̂SR� �t� � = − i��R̂†�t�X̂e−i��t−�	t� + �h.c.�, � � , �15�

and 	¯
R
oc represents the time-ordered cumulant �8,9� with

respect to the average of the thermal reservoir �8,9�. Using
the solution of the quantum master equation �13�, we can
calculate the average value of any operator of the relevant
system,

	Â�t�
 = Tr�ei��t−�	t�ẐÂe−i��t−�	t�Ẑ
̂��t�� . �16�

If the strength of the interaction between the relevant sys-

tem and thermal reservoir is weak and 	R̂�t�
R=0 is satisfied,
we can obtain up to the second order with respect to the
coupling constant �,

�

�t

̂��t� = 
−+�t��X̂
̂��t�,X̂†� + 
−+

* �t��X̂, 
̂��t�X̂†� + 
+−�t�

��X̂†
̂��t�,X̂� + 
+−
* �t��X̂†, 
̂��t�X̂� , �17�

with


−+�t� = �2�
0

t

dt�	R̂�t�R̂†�t��
Rei��t−t��−i��	t−	t��, �18�


+−�t� = �2�
0

t

dt�	R̂†�t�R̂�t��
Re−i��t−t��+i��	t−	t��. �19�

In the Schrödinger picture, the reduced quantum state 
̂�t� of
the relevant system is subject to

�

�t

̂�t� = − i��� − ��

k

��t − tk��Ẑ, 
̂�t�� + 
−+�t��X̂
̂�t�,X̂†�

+ 
−+
* �t��X̂, 
̂�t�X̂†� + 
+−�t��X̂†
̂�t�,X̂� + 
+−

* �t�

��X̂†, 
̂�t�X̂� . �20�

In the derivation of this equation, we first apply the phase-
modulation � pulse to the relevant system and then eliminate
the information of the thermal reservoir. If we first eliminate
the information of the reservoir and then apply the phase-
modulation � pulse to the relevant system, we obtain the
quantum master equation by replacing the phase factor
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e±i��	t−	t�� with unity in Eqs. �18� and �19�. In this treatment,
the phase-modulation � pulses do not affect the relaxation of
the relevant system.

To see the effect of the phase-modulation � pulses on the
relaxation of the relevant system, we assume that the corre-
lation functions of the thermal reservoir decay exponentially
in time,

�2	R̂�t�R̂†�t��
R = ��/���n̄ + 1�e−i��t−t��−�t−t��/�, �21�

�2	R̂†�t�R̂�t��
R = ��/��n̄ei��t−t��−�t−t��/�, �22�

where � is the correlation time of the thermal reservoir, and
the parameter � reduces to the damping constant in the Mar-
kovian approximation, and n̄= �e��/kBT−1�−1. In Eqs. �21�
and �22�, we have assumed that the frequencies of the reser-
voir modes are equal to � �the resonance condition� �23–25�.
Furthermore, we assume that the kth phase-modulation �
pulse is applied at time tk=k�t �k=1,2 , . . . �. In this case, we
have 	t= �t /�t�, where �x� is the largest integer not greater
that x. Then substituting Eqs. �21� and �22� into Eqs. �18�
and �19�, we obtain


−+�t� = ��n̄ + 1�
��t� , �23�


+−�t� = �n̄
��t� , �24�

with


��t� = 1 − e−�t−�t/�t��t�/� − � 1 − e−�t/�

ei� − e−�t/��
��e−i��t/�t�−t/� − e−�t−�t/�t��t�/�� . �25�

It is easy to see from this result that, if �t /��1, Eqs. �23�
and �24� become 
−+�t�
��n̄+1��1−e−t/�� and 
+−�t�

�n̄�1−e−t/��. Hence when the reservoir correlation � is suf-
ficiently short in comparison with the pulse separation �t,
the application of the � pulses does not affect the relaxation
of the relevant system. For later convenience, we introduce
real parameters ���t� and ���t� by the relation

�
0

t

dt�
��t� =
t

�
− � t

�t ��1 − e−�t/�� − 1 + e−�t−�t/�t��t�/�

− � 1 − e−�t/�

ei� − e−�t/�� � ��e−�t−�t/�t��t�/�

+
�1 − ei��e−�t/�

ei� − e−�t/� ��1 − e−�t/�t��i�+�t/���

− � t

�t ��1 − e−�t/��� � i���t� + ���t� .

�26�

Using the real parameters ���t� and ���t�, we can express
the quantum master equation as

�

�t

̂��t� = − i���n̄ + 1��̇��t��X̂†X̂, 
̂��t�� − i��n̄�̇��t�

��X̂X̂†, 
̂��t�� + ���n̄ + 1��̇��t���X̂
̂��t�,X̂†�

+ �X̂, 
̂�X̂†�� + ��n̄�̇��t���X̂†
̂��t�,X̂� + �X̂†, 
̂��t�X̂�� ,

�27�

where �̇��t�=d���t� /dt and �̇��t�=d���t� /dt.

III. PULSE-CONTROLLED IRREVERSIBLE TIME
EVOLUTION OF QUBITS

This section considers a qubit �or a two-level system� as

the relevant system. In this case, the operators Ẑ and X̂ are

given by the Pauli matrices ��̂x , �̂y , �̂z�, that is, Ẑ= �1/2��̂z

and X̂= �̂−= �1/2���̂x− i�̂y�. From Eq. �17� with Eqs.
�23�–�25�, we obtain the quantum master equation for the
reduced density matrix 
̂��t� of the qubit in the interaction
picture,

�

�t

̂��t� = −

1

2
i���̇��t���̂z, 
̂��t�� + ��n̄�̇��t����̂+
̂��t�,�̂−�

+ ��̂+, 
̂��t��̂−�� + ���n̄ + 1��̇��t����̂−
̂��t�,�̂+�

+ ��̂−, 
̂��t��̂+�� . �28�

The solution of this equation defines the quantum channel L̂t

through the input-output relation 
̂��t�= L̂t
̂�0�. The quantum

channel L̂t is determined by the following relations:

L̂t�0
	0� =
1

2
�1 + e−2���t���0
	0� +

1

2
�1 − e−2���t���1
	1�

+
1

2
�1 − e−2���t���eq��0
	0� − �1
	1�� , �29�

L̂t�1
	1� =
1

2
�1 − e−2���t���0
	0� +

1

2
�1 + e−2���t���1
	1�

+
1

2
�1 − e−2���t���eq��0
	0� − �1
	1�� , �30�

L̂t�0
	1� = e−i���t�−���t��0
	1� , �31�

L̂t�1
	0� = ei���t�−���t��1
	0� , �32�

where �0
 and �1
 are the eigenstates of �̂z such that �̂z�0

= �0
 and �̂z�1
=−�1
, and the real parameters ���t�, ���t�,
and �eq are given by ���t�=�����t�, ���t�=���2n̄
+1����t�, and �eq=−�2n̄+1�−1=−tanh��� /2kBT�. The quan-
tum state 
̂�t� of the qubit in the interaction picture is given
by


̂��t� =
1

2
�1̂ + e−i���t�−���t�a�0��̂+ + ei���t�−���t�a*�0��̂−

+ �e−2���t�az�0� + �1 − e−2���t���eq��̂z� , �33�

where the complex parameter a�0� and real parameter az�0�,
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satisfying the inequality �a�0��2+az
2�0��1, are determined by

the initial qubit state 
̂�0�. The quantum state 
̂�t� in the
Schrödinger picture is obtained by replacing ���t� with �t
+���t�−��t /�t� in Eq. �33�.

A. Decoherence of fidelity and purity

To investigate the phase-modulation pulse effect on the
decoherence, we first obtain the fidelity of a qubit state.
When the qubit is initially in the pure state ��
=��0
+��1

����2+ ���2=1�, the quantum state 
̂�t�= L̂t��
	�� in the
Schrödinger picture is derived from Eqs. �29�–�32�,


̂�t� =
1

2
�1 + e−2���t�����2 − ���2� + �1 − e−2���t���eq��0
	0�

+ e−i�t/2+i��t/�t�−i���t�−���t���*�0
	1�

+ ei�t/2−i��t/�t�i���t�−���t��*��1
	0� +
1

2
�1 − e−2���t�����2

− ���2� − �1 − e−2���t���eq��1
	1� . �34�

If there is no thermal reservoir, we obtain the pure state

���t�
 = e−i�t/2+i��t/�t���0
 + ei�t/2−i��t/�t���1
 . �35�

Then the fidelity F�t�= 	��t� � 
̂�t� ���t�
 is calculated to be

F�t� =
1

2
+ 2���2���2e−���t� cos ���t� +

1

2
����2 − ���2�2e−2���t�

+
1

2
����2 − ���2��eq�1 − e−2���t�� . �36�

When we average the fidelity F�t� over all possible pure
qubit states with equal probabilities, we obtain the average
fidelity

F�t� =
1

2
+

1

3
e−���t� cos ���t� +

1

6
e−2���t�. �37�

The average fidelity F�t� is plotted in Fig. 1. We find from
this figure that the phase-modulation � pulses can suppress
the decay of the average fidelity if � is around neither 0 nor
2�. In particular, when the pulse separation �t is sufficiently
small in comparison with the reservoir correlation time �, the

decay of the average fidelity becomes negligible. Although
the � pulses are most effective, the non-� pulses still work
well for suppressing the decoherence.

We next investigate the decay of the purity of the quan-
tum state 
̂�t�, where the purity is quantified by the linear
entropy SL�t�=1−Tr
̂2�t�. When the qubit is initially in the
pure state ��
=��0
+��1
, we obtain the linear entropy from
Eq. �34�,

SL�t� =
1

2
− 2���2���2e−2���t� −

1

2
�����2 − ���2�e−2���t�

+ �1 − e−2���t���eq�2. �38�

The average of the linear entropy over all possible pure qubit
states becomes

SL�t� =
1

2
�1 − e−2���t�� � �1 +

1

3
e−2���t� − �1 − e−2���t���eq

2 � .

�39�

The average value of the linear entropy is plotted in Fig. 2.
The figure shows that dynamical decoupling takes place if
�t /��1 and ��−���1 are satisfied.

B. Decoherence of entanglement

To investigate the decoherence of entanglement, we sup-
pose that one of two qubits prepared in the Bell state ��+
 is

put into the quantum channel L̂t and the other remains un-
changed. Then the output state 
̂�t� is given by


̂�t� = �L̂t � Î���+
	�+� , �40�

where Î is an identity map. When the output state 
̂�t� be-

comes separable, the quantum channel L̂t is called an
entanglement-breaking channel �26,27�. Using Eqs.
�29�–�32�, we obtain the two-qubit state 
̂�t�,


̂�t� =
1

4
�1 + e−2���t� + 2e−���t� cos ���t����+
	�+�

+
1

4
�1 + e−2���t� − 2e−���t� cos ���t����−
	�−�

+
1

4
�1 − e−2���t�����+
	�+� + ��−
	�−��

(a) (b) (c)
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FIG. 1. �Color online� Average fidelity F�t� given by Eq. �37� as the function of time t and pulse area � �0���2��, where �t /�
= �a� 0.1, �b� 0.6, and �c� 1.2. In the figure, we set ��=0.5 and �eq=−0.5.
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+
1

4
��1 − e−2���t���eq + 2ie−���t� sin ���t����+
	�−�

+
1

4
��1 − e−2���t���eq − 2ie−���t� sin ���t����−
	�+�

+
1

4
�1 − e−2���t���eq���+
	�−� + ��−
	�+�� , �41�

with ��±
= ��00
± �11
� /�2 and ��±
= ��01
± �10
� /�2. The
concurrence Ct �28� of the output state 
̂�t� is calculated to
be

Ct = max�0,e−���t� −
1

2
�1 − �eq

2 �1 − e−2���t��� , �42�

in terms of which the entanglement of formation �28,29� is
given by

Et = H�1 + �1 − Ct
2

2
� , �43�

with the binary entropic function H�x�=−x ln x− �1−x�ln�1
−x�. The necessary and sufficient condition for the output
state 
̂�t� to be entangled or inseparable is that the concur-
rence is positive. The concurrence Ct is plotted in Fig. 3. The
figure shows that the application of the phase-modulation �
pulses can suppress the decoherence of qubit entanglement.
When we apply around ten pulses with ��−���1 within the
reservoir correlation time �, the decay of the entanglement
becomes negligible �see Fig. 3�a��.

IV. PULSE-CONTROLLED IRREVERSIBLE TIME
EVOLUTION OF PHOTONS

In this section, we consider a photon system as the rel-

evant system. In this case, we set Ẑ= â†â and X̂= â with â
being the bosonic annihilation operator. Then the quantum
master equation �27� for the reduced quantum state in the
interaction picture becomes

�

�t

̂��t� = − i���̇��t��â†â, 
̂��t�� + ��n̄�̇��t���â†
̂��t�, â�

+ �â†, 
̂��t�â�� + ���n̄ + 1���â
̂��t�, â†�

+ �â, 
̂��t�â†�� . �44�

Using the solution of this equation, we can calculate the
average value by

	â†m�t�ân�t�
 = ei�m−n���t−��t/�t��Tr�â†mân
̂��t�� . �45�

Since the nonclassicality and entanglement of quantum states
remain unchanged under a local unitary transformation
eif�t�â†â with real function f�t�, in the rest of this section we
ignore the free motion and the frequency shift �����t�. We
can solve the quantum master equation �44� by means of the
phase-space method.

To use the phase-space method �30,31�, we introduce the
s-ordered phase-space function Fs�t ;z� of the quantum state

̂�t�,
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FIG. 2. �Color online� Average value SL�t� of the linear entropy given by Eq. �39� as the function of time t and pulse area � �0��
�2��, where �t /�= �a� 0.1, �b� 0.6, and �c� 1.2. In the figure, we set ��=0.5 and �eq=−0.5.
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FIG. 3. �Color online� Concurrence Ct as a function of time t and pulse area � �0���2��, where �t /�= �a� 0.1, �b� 0.6, and �c� 1.2.
In the figure, we set ��=0.5 and �eq=−0.5.
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Fs�t;z� =
1

�
Tr��̂−s�z�
̂�t�� , �46�

where the Hermitian � operator is defined by

�̂s�z� =� d2�

�
D���e�1/2�s���2−z*�+z�*

, �47�

with D̂��� being the usual displacement operator. The quan-
tum state 
̂�t� is expressed as


̂�t� =� d2z

�
Fs�t;z��̂s�z� . �48�

In particular, when s=−1, 0, and 1, the phase-space function
Fs�t ;z� becomes the Glauber-Sudarshan P function P�t ;z�,
the Wigner function W�t ;z�, and the Husimi-Kano Q func-
tion Q�t ;z�. When the quantum state 
̂�t� is the solution of
the non-Markovian master equation �44�, the corresponding
phase-space function is given by �32,33�

Fs�t;z� =
1

Ds�t,0� � d2z�

�
e−�z − z�e−��t,0��2/Ds�t�Fs�0;z�� ,

�49�

with

��t,t�� = ������t� − ���t��� � ���t� − ���t�� , �50�

Ds�t,t�� =
1

2
��1 + s��n̄ + 1� + �1 − s�n̄� � �1 − e−2���t�+2���t��� .

�51�

The average value of the annihilation operator and the aver-
age photon number are given by

	â�t�
 = �G��t�	â�0�
 , �52�

	â†�t�â�t�
 = G��t��	â†�0�â�0�
 + A��t�� , �53�

with

G��t� = e−2���t�, �54�

A��t� = n̄�e2���t� − 1� . �55�

The parameter G��t� represents the gain in the process and
the parameter A��t� is the average number of the noise per

unit gain. The input-output relation 
̂�t�= L̂t
̂�0� derived

from Eq. �49� defines the quantum channel L̂t. If the inequal-

ity A��t��1 is satisfied, the quantum channel L̂t becomes an
entanglement-breaking channel �33�.

A. Decoherence of nonclassicality

When a quantum state does not have the Glauber-
Sudarshan P function, which is neither a non-negative ana-
lytic function nor a � function, the quantum state is called
nonclassical. In this case, the nonclassicality of a quantum
state can be quantified by means of the nonclassical depth
�34�. To define the nonclassical depth of the quantum state

̂�t�, we introduce

R�t;z� =
1

�
� d2z�

�
e−�z − z��2/�P�t;z� , �56�

where P�t ;z� is the Glauber-Sudarshan P function of the
quantum state 
̂�t�. The nonclassical depth �c�t� is defined as
the minimum value of � so that R�t ;z� becomes a non-
negative analytic function or a � function. It satisfies the
inequality 0��c�t��1, where �c�t�=0 for classical states
and �c�t�=1 for maximally nonclassical states. Substituting
Eq. �49� with s=−1 into Eq. �56�, we can obtain the nonclas-
sical depth �c�t� of the quantum state 
̂�t� �33�,

�c�t� = max†G��t���c�0� − A��t��,0‡ . �57�

This result shows that the nonclassicality of the quantum
state 
̂�t� disappears at the minimum time tc so that the in-
equality A��tc���c�0� is established. The nonclassical depth
�c�t� is plotted in Fig. 4. The figure clearly shows that when
the pulse area � is not so far from �, the phase modulation �
pulses work well for the dynamical suppression of the deco-
herence.

B. Decoherence of entanglement

We finally investigate the phase-modulation �-pulse ef-
fect on the decoherence of entanglement of the bipartite
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FIG. 4. �Color online� Nonclassical depth �c�t� given by Eq. �57� as a function of time t and pulse area � �0���2��, where �t /�
= �a� 0.1, �b� 0.6, and �c� 1.2. In the figure, we set �c�0�=0.0, ��=0.5, and n̄=1.0.
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Gaussian state, the characteristic function of which is given
by

C�0� = Tr��ez1â1
†−z1

*â1ez2â2
†−z2

*â2�
̂�0�� = e−�1/2�z†C�0�z, �58�

where âk is the bosonic annihilation operator of each mode
and z†= �z1

* ,z1 ,z2
* ,z2�. The 4�4 Hermitian matrix C�0� is

given by

C�0� =�
n̄�0� +

1

2
0 0 m̄�0�

0 n̄�0� +
1

2
m̄*�0� 0

0 m̄�0� n̄�0� +
1

2
0

m̄*�0� 0 0 n̄�0� +
1

2

� ,

�59�

with n̄�0�= 	âk
†�0�âk�0�
 and m̄�0�=−	â1�0�â2�0�
. The in-

equality n̄�0��n̄�0�+1�� �m̄�0��2 holds due to the uncertainty
relation. In Eq. �58�, we set 	âk�0�
=0 since the average
value of the annihilation operator does not affect the en-
tanglement of the quantum state. We use the logarithmic
negativity as a computable measure of entanglement �35�.
For the Gaussian state whose characteristic function is given
by Eq. �58�, the logarithmic negativity is calculated to be

EN�0� = max†− ln�2n̄�0� − 2�m̄�0�� + 1�,0‡ . �60�

A quantum state is inseparable or entangled if and only if the
logarithmic negativity is positive. When one of the two
modes in the quantum state 
̂�0� evolves by the quantum

channel L̂t and the other remains unchanged, the two-mode

state becomes 
̂�t�= �L̂t � Î�
̂�0�, which is also Gaussian.
The characteristic function C�t� of the quantum state 
̂�t� is
obtained by replacing the matrix C�0� in Eq. �58� with

C�t� =�
n̄�t� +

1

2
0 0 m̄�t�

0 n̄�t� +
1

2
m̄*�t� 0

0 m̄�t� n̄�0� +
1

2
0

m̄*�t� 0 0 n̄�0� +
1

2

� ,

�61�

with

n̄�t� = G��t��n̄�0� + A��t�� , �62�

m̄�t� = �G��t�m̄�0� . �63�

Then the logarithmic negativity EN�t� of the quantum state

̂�t� is given by

EN�t� = max�−
1

2
ln�2��t��,0� , �64�

with

��t� = �n̄�t� +
1

2
�2

+ �n̄�0� +
1

2
�2

+ 2�m̄�t��2 − �n̄�t� + n̄�0�

+ 1���n̄�t� − n̄�0��2 + 4�m̄�t��2. �65�

The logarithmic negativity EN�t� of the quantum state 
̂�t� is
plotted in Fig. 5. We find from this figure that the phase-
modulation � pulses with ��−���1 can suppress the deco-
herence of the entanglement of the Gaussian state.

V. CONCLUDING REMARKS

In this paper, using the non-Markovian quantum master
equation derived by means of the projection operator
method, we have shown that the decoherence of the relevant
system interacting with the thermal reservoir via linear dis-
sipative coupling can be suppressed by means of a sequence
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FIG. 5. �Color online� Logarithmic negativity EN�t� of the quantum state 
̂�t� as a function of time t and pulse area � �0���2��, where
�t /�= �a� 0.1, �b� 0.6, and �c� 1.2. In the figure, we set ��=0.5, n̄=1.0, and n̄�0�=2.0 with m̄�0�=2.45.
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of phase-modulation � pulses. When the pulse separation is
sufficiently small in comparison with the reservoir correla-
tion time and the pulse area � is not so far from �, dynami-
cal decoupling of the decoherence can take place. To see the

effect of the phase-modulation � pulses, we have investi-
gated the time evolutions of the fidelity, purity, and entangle-
ment of qubits and nonclassicality and entanglement of pho-
ton systems.
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