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We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as
entangled resources. We compare the performance of different classes of degaussified resources, including
two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-
mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate
between and include as subcases different classes of degaussified resources. We show that optimized squeezed
Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and
nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous
variable teleportation are those that most closely realize the simultaneous maximization of the content of
entanglement, the degree of affinity with the two-mode squeezed vacuum, and the, suitably measured, amount
of non-Gaussianity.
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I. INTRODUCTION

Recent theoretical and experimental effort in quantum op-
tics and quantum information has been focused on the engi-
neering of highly nonclassical, non-Gaussian states of the
radiation field �1�, in order to achieve either enhanced prop-
erties of entanglement or other desirable nonclassical fea-
tures �1–5�. It has been shown that, at fixed covariance ma-
trix, some of these properties, including entanglement and
distillable secret key rate, are minimized by Gaussian states
�6�. In the last two decades, increasingly sophisticated de-
gaussification protocols have been proposed, based on pho-
ton addition or subtraction �7–11�, and some of them have
been recently experimentally implemented to engineer non-
Gaussian photon-added and photon-subtracted states starting
from Gaussian coherent or squeezed inputs �12–14�.

Progress in the theoretical characterization and the experi-
mental production of non-Gaussian states are being paral-
leled by the increasing attention on the role and uses of non-
Gaussian entangled resources in quantum information and
quantum computation with continuous-variable systems �15�.
In particular, concerning quantum teleportation with continu-
ous variables �16,17,20�, it has been demonstrated that the
fidelity of teleportation can be improved by exploiting suit-
able deguassifications of Gaussian resources �3,21–23�.
Moreover, non-Gaussian cloning of coherent states has been
shown to be optimal with respect to the single-clone fidelity
�24�. Determining the performance of non-Gaussian en-
tangled resources may prove useful in a number of concrete
applications ranging from hybrid quantum computation �25�
to cat-state logic �26� and, generically, in all quantum com-
putation schemes based on communication that integrates to-
gether qubit degrees of freedom for computation with quan-

tum continuous variables for communication and interaction
�27�.

In the present work, we investigate systematically the per-
formance of different classes of entangled two-mode non-
Gaussian states used as resources for continuous-variable
quantum teleportation. In our approach, the entangled re-
sources are taken to be non-Gaussian ab initio, and their
properties are characterized by the interplay between
continuous-variable �CV� squeezing and discrete, single-
photon pumping. Our first aim is to determine the actual
properties of non-Gaussian resources that are needed to as-
sure improved performance compared to the Gaussian case.
At the same time, we carry out a comparative analysis be-
tween the different non-Gaussian cases in order to single out
those properties that are most relevant to successful telepor-
tation. Finally, we wish to understand the role of adjustable
free parameters, in addition to squeezing, in order to “sculp-
ture” and achieve optimized performances within the set of
non-Gaussian resources. We will show that maximal non-
Gaussian improvement of teleportation success depends on
the nontrivial relations between enhanced entanglement, suit-
ably measured level of non-Gaussianity, and the presence of
a proper Gaussian squeezed-vacuum contribution in the non-
Gaussian resources at large values of the squeezing
�squeezed-vacuum affinity�. We limit the discussion to gen-
eral issues of principle, considering the ideal situation of
pure-state resources in the absence of noise and imperfec-
tions. Detailed analysis of realistic situations with mixed-
state resources in the presence of various sources of noise
will be discussed elsewhere.

The paper is organized as follows. In Sec. II we introduce
and describe relevant instances of two-mode entangled non-
Gaussian resources, including squeezed number states and
typical degaussified states currently considered in the litera-
ture, such as photon-added squeezed and photon-subtracted
squeezed states. We show that all of the former, as well as
the Gaussian two-mode vacuum and squeezed vacuum �twin*Corresponding author. illuminati@sa.infn.it
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beam�, can be seen as particular subcases of a properly de-
fined class of squeezed Bell-like states depending on a con-
tinuous angular parameter. In Sec. III, exploiting the unifying
formalism of the characteristic function, we compare the
relative performances of non-Gaussian and Gaussian re-
sources in the Braunstein-Kimble CV teleportation protocol
for different �single-mode� input states, Gaussian and non-
Gaussian, including coherent and squeezed states, number
states, photon-added coherent states, and squeezed number
states. In Sec. IV we consider the optimization of non-
Gaussian performance in CV teleportation with respect to the
extra angular parameter of squeezed Bell-like states. We
show that maximal teleportation fidelity is achieved by using
a form of a squeezed Bell-like resource that differs both from
squeezed number and photon-added or photon-subtracted
squeezed states. In Sec. V we identify the properties that
determine the maximization of the teleportation fidelity using
non-Gaussian resources. We find that optimized non-
Gaussian resources are those that come nearest to the simul-
taneous maximization of three distinct properties: The con-
tent of entanglement, the amount of �properly quantified�
non-Gaussianity, and the degree of “vacuum affinity,” i.e.,
the maximum, over all values of the squeezing parameter, of
the overlap between a non-Gaussian resource and the Gauss-
ian twin beam. Schemes for the experimental production of
optimized squeezed Bell-like resources are illustrated in Sec.
VI. Finally, in Sec. VII we present our conclusions and dis-
cuss some outlooks about the extension to other types of
resources, optimized protocols, and applications to realistic
situations in the presence of noise.

II. NON-GAUSSIAN RESOURCES: CHARACTERIZATION
AND ENTANGLEMENT PROPERTIES

We begin our study by considering some different in-
stances of two-mode entangled non-Gaussian states obtained
by squeezing operations and mechanisms of photon addition
or subtraction. Let us first introduce the following three
classes of �normalized� pure states:

��;m1,m2� = S12����m1,m2�12, �1�

�m1
�+�,m2

�+�;�� = N12
�+�a1

†m1a2
†m2S12����0,0�12, �2�

�m1
�−�,m2

�−�;�� = N12
�−�a1

m1a2
m2S12����0,0�12, �3�

where S12���=e−�a1
†a2

†+�a1a2 is the two-mode squeezing opera-
tor, �=rei�, N12

�·� are the normalizations, and �m1 ,m2�12
��m1�1 � �m2�2 is a two-mode Fock state. Equations �1�, �2�
and �3� define the squeezed number states, the photon-added
squeezed states, and the photon subtracted squeezed states,
respectively. Letting mi

�·�=0, all states reduce to the Gaussian
two-mode squeezed vacuum, i.e., the twin beam ���
=S12����0,0�12. The normalization factors can be easily com-
puted. For instance, if we take the explicit case mi

�·�=1, we
have

��;1,1� = S12����1,1�12, �4�

�1�+�,1�+�;�� = Ne−i�S12����− tanh r�0,0�12 + ei��1,1�12	 ,

�5�

�1�−�,1�−�;�� = Nei�S12����− �0,0�12 + ei� tanh r�1,1�12	 ,

�6�

where N= �1+tanh2 r�−1/2 is the normalization, and Eqs. �5�
and �6� have been obtained by exploiting the two-mode Bo-
goliubov transformations

S12
† ���aiS12��� = cosh rai − ei� sinh raj

†�i � j = 1,2�

We remark that both the photon-added and the photon-
subtracted squeezed states are superpositions of the twin
beam and of the squeezed number state. However, Eqs. �5�
and �6� substantially differ for an exchange of the hyperbolic
coefficients: In the limit of vanishing squeezing, the photon-
added squeezed state reduces to a two-mode Fock state, re-
maining non-Gaussian, while the photon-subtracted
squeezed state becomes Gaussian, as it reduces to the two-
mode vacuum. In fact, all these states are particular instances
of what we could name squeezed Bell-like state,

���SB = S12����cos ��0,0�12 + ei� sin ��1,1�12	 . �7�

For instance, the squeezed number state �4� is recovered for
�=� /2.

To quantify the bipartite entanglement of states �4�–�7�
one needs the von Neumann entropy �entropy of entangle-
ment� EvN. For the first three states, this quantity depends
only on the modulus r of the squeezing parameter �. It is
plotted in Fig. 1 and compared to that of the twin beam.

At a given squeezing, all the non-Gaussian states show an
entanglement larger than that of the Gaussian squeezed
vacuum. In particular, in the range of experimentally realistic
values 0�r�1 of the squeezing, the squeezed number state
is the most entangled state. Moreover, the photon-added and
the photon-subtracted squeezed states exhibit the same
amount of entanglement at any r.

0 0.2 0.4 0.6 0.8 1
r

0

1

2

3

EvN

FIG. 1. �Color online� Behavior of the von Neumann entropy
EvN for the pure states �4�–�6� as a function of the modulus r of the
squeezing parameter �. The upper curve �dotted-dashed line� corre-
sponds to the squeezed number state �� ;1 ,1�; the intermediate curve
�dashed line� corresponds equivalently to the photon-added
squeezed state �1�+� ,1�+� ;�� and to the photon-subtracted squeezed
state �1�−� ,1�−� ;��. The lower curve corresponds to the twin beam
���.
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The von Neumann entropy of the squeezed Bell-like state
�7� is plotted in Fig. 2. In panel I we plot EvN as a function of
r and �. In panel II, we can observe how the regular, oscil-
lating behavior of the entropy for the Bell-like state �r=0�
becomes gradually deformed by the optical pumping
�r�0�, leading to a peculiar pattern of correlation properties
for the squeezed Bell-like state �7�.

III. TELEPORTATION IN THE CHARACTERISTIC
FUNCTION REPRESENTATION

Quantum teleportation was first proposed by Bennett et
al. in the discrete variable regime �28�, and later experimen-
tally demonstrated in that setting �29,30�. The idea of
continuous-variable �CV� teleportation was put forward by
Vaidman �31�. Some time later the actual quantum-optical
protocol for the teleportation of quadrature amplitudes of a
light field was introduced by Braunstein and Kimble in the
formalism of the Wigner function �16�, and realized by Fu-
rusawa et al. soon afterward �17–19�. In the standard CV
protocol two users, Alice and Bob, share an entangled state
�resource� of modes A and B; a single-mode input state �in�,
in Alice’s possession, is the state to be teleported. The pro-
tocol works as follows: The input mode “in” and mode A of
the entangled resource are mixed at a 50:50 beam splitter,
yielding the output modes in� and A�. A destructive measure-
ment �homodyne� is performed by Alice on the output modes

in� and A�. The obtained result is �classically� communicated
to Bob; subsequently, Bob performs a unitary operation �dis-
placement� on mode B, leading to the teleported state. For a
comprehensive review on continuous-variable quantum tele-
portation and quantum information processing, see Ref. �20�.
Various alternative descriptions of the original Braunstein-
Kimble protocol have been introduced in the literature.
Among them, we should mention those involving Fock state
expansion �32�, the coherent state expansion �33�, and the
transfer operator approach �34�.

Recently, the CV teleportation protocol has been de-
scribed in terms of the characteristic functions of the quan-
tum states involved �input, resource, and teleported states�
�35�. This formalism is particularly suited when dealing with
non-Gaussian states and resources, because it greatly simpli-
fies the calculational strategies. Let us denote by in� and
�in�	in�, respectively, the single-mode input state to be tele-
ported and the associated characteristic function, and by 
12
and �12�	1 ,	2�, respectively, the entangled two-mode re-
source, shared by the sender and the receiver, and its char-
acteristic function. By exploiting the Weyl expansion, it can
be shown that the characteristic function �out�	2� of the tele-
ported state has the factorized form �35�

�out�	2� = �in�	2��12�	2
*,	2� . �8�

We should remark on the great simplicity, beauty, and power
of this expression, particularly well suited in the study of
teleportation-related subjects. In order to measure the success
probability of a teleportation protocol, it is convenient to use
the fidelity of teleportation F. This is a state-dependent
quantity that measures the overlap between the input state 
in
and the output �teleported� state 
out, i.e., F=Tr�
in
out�. In
the characteristic-function formalism, the fidelity reads

F =
1

�

 d2��in����out�− �� . �9�

In the following we will adopt Eq. �9� to analyze the effi-
ciency of the CV teleportation protocol for different classes
of input states and non-Gaussian entangled resources.

Let us first compute the symmetrically ordered character-
istic function for the squeezed-number states, the photon-
added, and the photon-subtracted squeezed states Eqs.
�4�–�6�. Being two-mode states, their characteristic function
is of the form ��	1 ,	2�=Tr�D1�	1�D2�	2�
�, where Di�	i� is
the displacement operator corresponding to mode i, and 
 is
the density operator associated to the state. We will make use
of the relation

�m�D�	��n� = � n!

m!

1/2

	m−ne−�1/2��	�2Ln
�m−n���	�2� , �10�

where Ln
�m−n��·� is the associate Laguerre polynomial. The

characteristic function for the state �� ;1 ,1� is

�SN
�1,1��	1,	2� = �S�1 − ��1�2��1 − ��2�2� , �11�

where
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FIG. 2. �Color online� von Neumann entropy EvN for the
squeezed Bell-like state �7�, as a function of r and �. Panel I dis-
plays the three-dimensional plot of EvN. Panel II displays two-
dimensional projections at fixed squeezing strength r. Curves from
bottom to top correspond to the different sections of EvN as func-
tions of � for r=0,0.2,0.4,0.6,0.8,1.
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�S�	1,	2� = e−�1/2����1�2+��2�2� �12�

is the characteristic function of the two-mode squeezed state,
the standard reference Gaussian resource, and the implicit
dependence on 	i stems from the relations

�k = 	k cosh r + 	l
*ei� sinh r �k,l = 1,2;k � l� . �13�

The characteristic functions for the states �1�+� ,1�+� ;�� and
�1�−� ,1�−� ;�� read, respectively,

�PAS
�1,1��	1,	2� = N2�S�tanh2 r − 2 tanh r Re�e−i��1�2�

+ �1 − ��1�2��1 − ��2�2�	 , �14�

�PSS
�1,1��	1,	2� = N2�S�1 − 2 tanh r Re�e−i��1�2�

+ tanh2 r�1 − ��1�2��1 − ��2�2�	 . �15�

Comparing Eq. �12� with Eqs. �11�, �14�, and �15�, we see
that the polynomial non-Gaussian forms are always modu-
lated by a Gaussian factor that coincides exactly with the
squeezed-state characteristic function �12�.

IV. TELEPORTATION WITH NON-GAUSSIAN
RESOURCES

In this section we will compare the behavior of the fidelity
for different input states by making use of the non-Gaussian
entangled resources �4�–�6�. The analysis will be carried out
in terms of the entangling parameter � common to all re-
sources. The following single-mode input states will be con-
sidered: Coherent states �
�; squeezed states ���=S����0�,
with S���=exp�− 1

2�a†2+ 1
2�*a2	 ��=ei�s�; single-photon

Fock states �1� photon-added coherent states
�1+ �
�2�−1/2a†�
�; and squeezed single-photon Fock states
S����1�. The teleportation implemented with the two-mode
squeezed Gaussian resource ���=S12����0,0�12 as entangled
resource will be used as standard reference for comparison.
Let us first consider the behavior of the fidelity for the
Gaussian input states �
� and ���, whose characteristic func-
tions read

�coh�	in� = e−�1/2��	in�2+2i Im�	in
*�, �16�

�sq�	in� = e−�1/2���in�2, �17�

where

�in = 	in cosh s + 	in
* ei� sinh s . �18�

Let us remark that the fidelity is analytically computable for
the classes of input states and entangled resources consid-
ered, as the integral in Eq. �9� can be exactly calculated in
terms of finite sums of Gaussian averages.

In Fig. 3 we plot the fidelity F for input coherent states
�
� �panel I�, and input squeezed states �panel II�.

We see that in both cases, the choice of the photon-
subtracted squeezed state �6� as entangled resource is the
most convenient one. It corresponds to the highest value of
the fidelity F for any fixed value of the squeezing r �or,
equivalently, of the energy� in the realistic range �0, 1�. On

the contrary, the choice of the squeezed number state �4� as
entangled resource is the least convenient, yielding the poor-
est performance even when compared to the Gaussian
squeezed resource. Finally, regarding the use of the photon-
added squeezed state �5� as entangled resource, it allows for
a very modest improvement in the fidelity compared to the
Gaussian resource, and this is only for a small interval of
values around r=1.

Let us now consider the case of non-Gaussian input states
�1�, �1+ �
�2�−1/2a†�
�, and S����1�, whose characteristic func-
tions read, respectively,

�F�	in� = e−�1/2��	in�2�1 − �	in�2� , �19�

�pac�	in� = �1 + �
�2�−1e−�1/2��	in�2+3i Im�	in
*�

��1 + �
�2 − �	in�2 + 2i Im�	in

*�� , �20�

�sqF�	in� = e−�1/2���in�2�1 − ��in�2� . �21�

In Fig. 4 we plot the fidelity of teleportation for two non-
Gaussian input states: The single-photon Fock state Eq. �19�
�panel I�, and the photon added coherent state Eq. �20�
�panel II�.

In panel I, we observe that both the photon-added and
photon-subtracted two-mode squeezed resources �5� and �6�
lead to an improvement of the fidelity with respect to the
squeezed Gaussian resource. The photon-subtracted
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FIG. 3. �Color online� Fidelity of teleportation F, as a function
of the squeezing parameter r, with �=�, for input coherent states
�
� �panel I� and input squeezed states ��� �panel II�. Comparison is
given for different two-mode entangled resources: �a� Squeezed
state �full line�; �b� squeezed number state �dashed line�; �c� photon-
added squeezed state �dotted-dashed line�; �d� photon-subtracted
squeezed state �double-dotted, dashed line�. In plot I the value of 

is arbitrary. In plot II the squeezing parameter � of the input state is
fixed at modulus s=0.8 and phase �=0.
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squeezed state again performs better than the photon-added
one, and the squeezed number state yields the poorest per-
formance when compared to the other Gaussian and non-
Gaussian resources. From panel II we see that once more the
photon-subtracted resource yields the best performance at
any fixed squeezing, and that the photon-added squeezed
state allows for a very modest improvement in the fidelity
with respect to the squeezed Gaussian reference, above a
threshold value of the squeezing parameter.

In Fig. 5 we compare the fidelity of teleportation F for the
case of a squeezed Fock input state and different Gaussian
and non-Gaussian entangled resources. Comparing with pan-
els I and II of Fig. 4, we see that the qualitative behaviors are
very similar to the two previous examples of non-Gaussian
input states.

From all of the above investigations, we find that the
photon-subtracted squeezed state �6� is always to be pre-
ferred as entangled resource compared either to the Gaussian
ones or to non-Gaussian states that are obtained by combin-
ing squeezing and photon pumping. The reason explaining
this result will become clear in the next sections when we
will discuss a general class of states that include as particular
cases all the resources introduced so far, and that allow to
single out some properties that are necessary in order to op-
timize the success of teleportation.

Before ending this section, it is worth remarking that the
�non-Gaussian� two-mode photon-subtracted squeezed state

can formally be defined as the first-order truncation of the
�Gaussian� two-mode squeezed state. Let us first consider the
twin-beam �−2r�=S12�−2r��0,0�12. Such a state can be writ-
ten as

�− 2r� = S12�− r�S12�− r��0,0�12 � S12�− r��n=0

�
tanhn r�n,n�12.

Therefore, truncating the series in the last expression at n
=1, one recovers the state �6�, with �=�, i.e., �1�−� ,1�−� ;
−r��S12�−r���0,0�12+tanh r�1,1�12	. Moreover, expression
�6� coincides with that of the photon-subtracted state intro-
duced in Ref. �3� when one reduces to the ideal case of a
beam splitter with unity transmittance.

V. TELEPORTATION WITH OPTIMIZED
NON-GAUSSIAN RESOURCES

In this section we seek to optimize the fidelity of telepor-
tation, given the Vaidman-Braunstein-Kimble protocol, by
introducing a class of entangled non-Gaussian resources that
include as particular cases non-Gaussian photon-added and
photon-subtracted squeezed states, squeezed number states,
Gaussian two-mode squeezed states, and two-mode vacua.
We name these states squeezed Bell-like states; their general
expression reads

���SB = �c1
2 + c2

2�−1/2S12����c1�0,0�12 + ei�c2�1,1�12	 ,

�22�

where the ci’s are real constants. The crucial qualitative as-
pect of superpositions �22� lies in their intrinsic nonclassical-
ity, even at vanishing squeezing: In the limit r→0 and for
suitable choices of the parameters c1, c2, and �, state �22�
reduces to a proper, maximally entangled, Bell state of two
qubits. On the contrary, in the limit of vanishing squeezing,
the two-mode states �5� and �6� reduce to two different, fac-
torized �disentangled� limits, respectively, the �non-
Gaussian� first excited Fock state and the �Gaussian� two-
mode vacuum.

States �5� and �6� can always be obtained as particular
cases of state �22�. For instance, fixing the choice c1=−1,
c2=tanh r, �=�, the states �22� and �6� coincide. Moreover,
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FIG. 4. �Color online� Behavior of the fidelity of teleportation F
as a function of the squeezing parameter r, with �=�, for two
different non-Gaussian input states: The Fock state �1� �panel I�, and
the photon-added coherent state �1+ �
�2�−1/2a†�
� �panel II�. We
compare the performances obtained by using different two-mode
entangled Gaussian and non-Gaussian resources: �a� Squeezed state
�full line�; �b� squeezed number state �dashed line�; �c� photon-
added squeezed state �dotted-dashed line�; �d� photon-subtracted
squeezed state �double-dotted-dashed line�. In panel II the value of
the coherent amplitude of the input photon-added coherent state is
fixed at 
=0.3.
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FIG. 5. �Color online� Behavior of the fidelity of teleportation F
as a function of the squeezing parameter r, with �=�, for the
squeezed Fock input state S�s��1�, using different two-mode Gauss-
ian and non-Gaussian entangled resources: �a� Squeezed state �full
line�; �b� squeezed number state �dashed line�; �c� photon-added
squeezed state �dotted-dashed line�; �d� photon-subtracted squeezed
state �double-dotted-dashed line�. The value of s is fixed to s=0.8.
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Eq. �22� can be obtained as a superposition of Eqs. �5� and
�6�. A discussion of schemes for the experimental generation
of states �22� is reported in Sec. VII. The characteristic func-
tion associated to the squeezed Bell-like state �22� reads

�SB = �c1
2 + c2

2�−1e−�1/2����1�2+��2�2��c1
2 + 2c1c2 Re�ei��1�2�

+ c2
2�1 − ��1�2��1 − ��2�2�	 , �23�

where the independent variables �k are defined according to
Eq. �13�.

Exploiting Eqs. �8� and �9�, the expression for the fidelity
of teleportation F can be determined analytically for all
cases of entangled resources of the form �23� and different
input states. In order to simplify notations, let us introduce
the parametrization c1=cos �, c2=sin �. For each given input
state, the analytic expression for the fidelity will be a func-
tion of the independent parameters r, �, �, and �, i.e., F
=F�r ,� ,� ,��. For instance, at finite squeezing and for �
= �

4 and �=0, state �22� reduces to a squeezed Bell state and
we may assess analytically the performance of such an en-
tangled resource as far as teleportation is concerned. In Fig. 6
we show the behavior of the fidelity as a function of the
squeezing parameter r, with �=�, �= �

4 , �=0, for the five
different input states considered in the preceding section. It is
straightforward to observe that the squeezed Bell state �22�
with �= �

4 and �=0, when used as entangled resource, leads
to a relevant improvement of the performance, compared to
all other Gaussian and non-Gaussian resources that we have
investigated in the preceding section.

We do not report the explicit analytic expressions of the
fidelities associated to the squeezed Bell-like resource and to
each input state, because they are rather long and cumber-
some. For the same reason we have not reported the explicit
expressions associated to the other non-Gaussian entangled
resources in the preceding section. In fact, besides not being
particularly illuminating, reporting the explicit expressions is
not really needed once the explicit analysis has established
that all fidelities are monotonically increasing functions of
the squeezing parameter r at maximally fixed phase �=�.
Therefore, in the following we will assume �=� and, more-

over, �=0, because one can check that nonvanishing values
of � do not lead to any improvement of the fidelity.

Having established such a framework, we can proceed to
maximize, for each different input state, the fidelity
F�r ,� ,� ,0� over the Bell-superposition angle �. At fixed
squeezing r= r̃, we define the optimized fidelity as

Fopt�r̃� = max
�

F�r̃,�,�,0� . �24�

For instance, in the case of input coherent state, the maximi-
zation of F�r ,� ,� ,0�, at fixed r, leads to the following de-
termination for the optimal Bell-superposition angle �max

�c� :

�max
�c� = 1

2 arctan�1 + e−2r� , �25�

while for an input single-photon Fock state, one finds

�max
�F� =

1

2
arctan� e−2r�1 − e2r + e4r + 3e6r�

3�e2r − 1�2 
 . �26�

Finally, in Fig. 7 we report the behavior of the optimized
fidelities Fopt�r� as functions of r for all the considered input
states.

A relevant improvement of the fidelity is observed in all
cases, even at vanishing squeezing, due to the persistent non-
classicality of the squeezed Bell-like entangled resource in
the limit r→0.

In order to quantify the increase in the probability of suc-
cess for teleportation, we look at the percent increase in fi-
delity relative to a fixed reference. We thus define the differ-
ence between the optimized fidelity Fopt�r� and the reference
fidelity Fref�r ,��, and normalize this difference by Fref�r ,��,

�F�r� =
Fopt�r� − Fref�r,��

Fref�r,��
, �27�

where the reference fidelity is fixed to be the one associated
to a given entangled resource. In Fig. 8, the relative fidelity
�F�r� is plotted as a function of r for two different choices
of the reference resource. In panel I, the reference resource is
the Gaussian twin beam; in panel II the reference resource is
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FIG. 6. �Color online� Behavior of the fidelity of teleportation
F�r ,� ,� ,�� associated to the squeezed Bell-like resource �22� with
�=�, �= �

4 , �=0, plotted as a function of the squeezing parameter
r for the following input states: �a� Coherent state �full line�; �b�
squeezed state �s�=S�s��0�, with s=0.8 �dotted line�; �c� Fock state
�1� �dashed line�; �d� photon-added coherent state
�1+ �
�2�−1/2a†�
�, with 
=0.3 �dotted-dashed line�; �e� squeezed
Fock state �s�=S�s��1�, with s=0.8 �double-dotted-dashed line�.
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FIG. 7. �Color online� Plot of Fopt�r� as a function of r for the
following input states: �a� Coherent state �full line�; �b� squeezed
vacuum �s�=S�s��0�, with s=0.8 �dotted line�; �c� single-photon
Fock state �1� �dashed line�; �d� photon-added coherent state
�1+ �
�2�−1/2a†�
�, with 
=0.3 �dotted-dashed line�; �e� squeezed
Fock state �s�=S�s��1�, with s=0.8 �double-dotted-dashed line�.
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the non-Gaussian two-mode photon-subtracted squeezed
state.

From panel I, as expected, we see that, at fixed squeezing
�or fixed energy�, the optimized non-Gaussian squeezed Bell-
like resource leads to a strong percent enhancement of the
teleportation fidelity �up to more than 50%� with respect to
that attainable exploiting the standard Gaussian twin beam,
for every value of r. Obviously, in the asymptotic limit of
very large squeezing, the two resources converge to perfect
teleportation efficiency. Panel II shows that use of the opti-
mized squeezed Bell-like entangled resource �22� leads to a
significant advantage with respect to exploiting the photon-
subtracted squeezed state resource for low values �up to r
�0.5� of the squeezing. Moreover, the different curves cor-
responding to the different input states, exhibit the same
qualitative behavior. Starting from large, nonvanishing val-
ues, �F�r� decreases monotonically and vanishes at different
points in the interval �0.5�r�0.9�. It then exhibits revivals
with different peaks at intermediate values of the squeezing,
before vanishing asymptotically for large values of r. It can
be checked that for values r= r̄ such that �F�r̄�=0, the
squeezed Bell-like state �22� and the photon-subtracted
squeezed state �6� coincide.

VI. UNDERSTANDING OPTIMIZATION:
ENTANGLEMENT, NON-GAUSSIANITY,
AND SQUEEZED-VACUUM AFFINITY

In this section we will investigate and determine the prop-
erties that appear to be necessary to achieve maximal tele-

portation success with non-Gaussian entangled resources. To
this end, we analyze the entanglement and the non-
Gaussianity of the squeezed Bell-like states and compare
them with those of the photon-added and photon-subtracted
squeezed states. In Fig. 9 we show the behavior of the von
Neumann entropy EvN for two different squeezed Bell-like
resources, respectively, the one optimized for the teleporta-
tion of an input coherent state, i.e., with � given by expres-
sion �25�, and the one optimized for the teleportation of an
input single-photon Fock state, i.e., with � given by the ex-
pression �26�. This behavior is compared with that of the von
Neumann entropy of the photon-added and the photon-
subtracted squeezed states �the two states have the same de-
gree of entanglement at the given squeezing�.

The intersections between the curves correspond to the
values r̄ for which the squeezed Bell-like state reduces to a
photon-subtracted or to a photon-added squeezed state. It is
then important to observe that in the range 0�r� r̄, in which
the fidelity of teleportation using optimized Bell-like re-
sources is always maximal �see Fig. 8, panel II�, the en-
tanglement of the squeezed Bell-like state is always larger
than that of the photon-subtracted �as well as photon-added�
squeezed states. Therefore, a partial explanation of the better
performance of squeezed Bell-like resources lies in their
higher degree of entanglement compared to other non-
Gaussian resources. However, from the graphs one can see
that there are situations in which the entanglement of photon-
added and/or photon-subtracted resources is larger but, nev-
ertheless, the fidelity of teleportation is still below the one
associated to a squeezed Bell-like resource. Entanglement is
thus not the only characterizing property in order to compare
the performances of different non-Gaussian resources.

From the above discussion, it is natural to look at a quan-
tification of the non-Gaussian character of different re-
sources, in order to compare their performances. Clearly, the
subtle problem here is to define a reasonable “measure” of
non-Gaussianity, endowed with some nontrivial operative
meaning. Recently, inspired by the analysis of Wolf, Giedke,
and Cirac on the extremality of Gaussian states �6� at fixed
covariance matrix, a measure of non-Gaussianity has been
introduced in terms of the Hilbert-Schmidt distance between
a given non-Gaussian state and a reference Gaussian state
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FIG. 8. �Color online� Behavior of the relative fidelity �F
=Fopt�r�−Fref�r ,�� as a function of r, for the following input
states: �a� Coherent state �full line�; �b� squeezed state �s�=S�s��0�,
with s=0.8 �dotted line�; �c� single-photon Fock state �1� �dashed
line�; �d� photon-added coherent state �1+ �
�2�−1/2a†�
�, with 

=0.3 �dotted-dashed line�; �e� squeezed Fock state �s�=S�s��1�, with
s=0.8 �double-dotted-dashed line�. In panel I the reference resource
is the twin beam; in panel II the reference resource is the two-mode
photon-subtracted squeezed state.

0 0.2 0.4 0.6 0.8 1
r

0

1

2

3

EvN

FIG. 9. �Color online� Entropy of entanglement EvN for the
squeezed Bell-like state �22�, as a function of r, with � fixed by Eqs.
�25� and �26�. Dashed line, �=�max

�C� , long dashed line, �=�max
�F� . The

entropy of the states �5� and �6� is reported as well for comparison
�dotted-dashed line�.
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with the same covariance matrix �36�. Given a generic state

, its non-Gaussian character can be quantified through the
distance dnG between 
 and the reference Gaussian state 
G,
defined according to the following relation:

dnG =
Tr��
 − 
G�2�

2 Tr�
2�
=

Tr�
2� + Tr�
G
2 � − 2 Tr�

G�

2 Tr�
2�
,

�28�

where, as already mentioned, the Gaussian state 
G is com-
pletely determined by fixing for it the same covariance ma-
trix and the same first-order mean values of the quadrature
operators associated to state 
. Using this definition, in Fig.
10 we report the behavior of the non Gaussianity dnG for the
squeezed Bell-like state �22�.

The quantity dnG depends only on the parameter � �see
panel I�, as the non-Gaussianity of the state cannot change
under symplectic squeezing operations. For � in the interval
�0,��, dnG attains its maximum at �= �

2 : At that point, the
Bell-like state reduces to a Fock state. In fact, as expected, a
�squeezed� number state must be more strongly non-
Gaussian than a �squeezed� superposition of the vacuum and
of a Fock state. In panel II, we report the behavior of dnG for
the squeezed Bell-like resources optimized for the teleporta-
tion of a coherent state input and a single-photon Fock state

input, i.e., respectively, with �=�max
�C� , and �=�max

�F� . For com-
parison, we plot as well the non-Gaussianity dnG for the
photon-added and the photon-subtracted squeezed states. The
intersection points occur once again at the points r̄ where the
squeezed Bell-like states reduce to the photon-subtracted
squeezed states. For r in the range �0, r̄�, the optimized
squeezed Bell-like resources are not only highly more en-
tangled but as well strongly more non-Gaussian than the
photon-subtracted squeezed states. One should note that
limr→+� �max

�C� =limr→+� �max
�F� =1. Therefore, for very large

squeezing the two optimized squeezed Bell-like resources
tend to the state S12�−r��cos �

8 �0,0�
12+sin �

8 �1,1�12	, which
exhibits a dominating Gaussian component. On the other
hand, for large r, the squeezed photon-added and photon-
subtracted squeezed states asymptotically tend to a squeezed
Bell state �corresponding to �max= �

4 �, which has balanced
Gaussian and non-Gaussian contributions.

We have compared the non-Gaussianity of the different
resources according to a measure that is reference dependent.
One might think to define the measure according to an abso-
lute reference. Observing that the squeezed Bell-like states
and the photon-added and/or photon-subtracted squeezed
states are all obtained through a degaussification protocol
from a pure squeezed state, one could modify the definition
�28� by taking the twin-beam ����12 ���=r�ei��� as the uni-
versal reference Gaussian state 
G. Adopting this modified
definition, and observing that the non-Gaussian states are to
be compared and the reference Gaussian states are all pure,
Eq. �28� reduces to dnG=minr�,���1−Tr�

G�	, where the
minimization is constrained to run over the squeezing param-
eters �� of the reference twin beam. However, it turns out
that this modified definition provides results and information
qualitatively analogous to those obtained by applying the
original definition.

There is still one property that plays a crucial role in the
sculpturing of an optimized CV non-Gaussian entangled re-
source. From Figs. 9 and 10 we see that at sufficiently large
squeezing the photon-added and photon-subtracted squeezed
resources have entanglement comparable to that of the opti-
mized squeezed Bell-like states and, moreover, possess
stronger non-Gaussianity. Yet, even in this regime, they are
not able to perform better than the optimized Bell-like re-
sources. This fact can be understood as follows, leading to
the definition of the squeezed-vacuum affinity: It is well
known that the Gaussian twin beam in the limit of infinite
squeezing realizes exactly the CV version of the maximally
entangled Bell state in the case of qubits. These two ideal
resources, respectively, in the CV and qubit case, allow per-
fect quantum teleportation with maximal, unit fidelity. There-
fore, we argue that, even when exhibiting enhanced proper-
ties of non-Gaussianity and entanglement, any efficient
resource for CV quantum information tasks should enjoy a
further property, i.e., to resemble the form of a two-mode
squeezed vacuum, as much as possible, in the large r limit.

The squeezed-vacuum affinity can be quantified by the
following maximized overlap:

G = max
s

�12�− s��res�r��12�
2, �29�

where �−s�12 is a two-mode squeezed vacuum with real
squeezing parameter −s, and ��res�r��12 is any entangled two-
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FIG. 10. �Color online� Non-Gaussianity measure dnG for the
squeezed Bell-like state �22�. In panel I we plot dnG for the state
�22� as a function of �, and for arbitrary r. Panel II reports dnG for
the state �22� as a function of r and for � fixed at the optimized
values �=�max

�C� �dashed line�, and �=�max
�F� �long dashed line�, see

Eqs. �25� and �26�. For comparison the measures for the states �5�
�double-dotted-dashed line� and �6� �dotted-dashed line� are also
reported.

DELL’ANNO et al. PHYSICAL REVIEW A 76, 022301 �2007�

022301-8



mode resource that depends uniquely on the squeezing r as
the only free parameter. This definition applies straightfor-
wardly to the photon-added and photon-subtracted squeezed
resources, and as well to the squeezed Bell-like resources
after optimization with respect to the input state. The maxi-
mization over s is imposed in order to determine, at fixed r,
the twin beam that is most affine to the non-Gaussian re-
source being considered.

In Fig. 11 we study the behavior of the overlap G as a
function of the squeezing r for different non-Gaussian en-
tangled resources.

From Fig. 11 one observes that maximal affinity, and
close to unity, is always and beautifully achieved, at large
values of the squeezing parameter, by the optimized
squeezed Bell-like resources, while the lowest, constant af-
finity is always exhibited by the squeezed number states.

In conclusion, optimized squeezed Bell-like resources are
the ones that in all squeezing regimes are closest to the si-
multaneous maximization of entanglement, non-Gaussianity,
and affinity to the two-mode squeezed vacuum. The opti-
mized interplay of these three properties explains the ability
of squeezed Bell-like states to yield better performances,
when used as resources for CV quantum teleportation, in
comparison both to Gaussian resources at finite squeezing
and to the standard degaussified resources such as the
photon-added and the photon-subtracted squeezed states. In
the next section we will discuss methods and schemes for the
experimental production of squeezed Bell-like entangled
resources.

VII. METHODS FOR THE GENERATION
OF DEGAUSSIFIED AND SQUEEZED

BELL-LIKE RESOURCES

While two-mode �Gaussian� squeezed states are currently
produced in the laboratory, the experimental generation of
non-Gaussian �nonclassical� states in quantum optics is still a

hard task, as it requires the availability of large nonlinearities
and/or the arrangement of proper apparatus for conditional
measurements. Nevertheless, some truly remarkable realiza-
tions of single-mode non-Gaussian states have been recently
carried out through the use of parametric amplification plus
post-selection �12–14�. Recently, by a generalization of the
experimental setup used in Ref. �14� to a two-mode configu-
ration, Kitagawa et al. proposed a method for the generation
of a certain class of two-mode photon-subtracted states �3�.

Here, in some analogy with Ref. �12�, we propose a pos-
sible experimental setup for the generation of the states �5�
and �6�, and of the squeezed Bell-like states �22�. The
scheme, based on a configuration of cascaded crystals, is
depicted in Fig. 12.

In the first stage, by means of a three-wave mixer, func-
tioning as a parametric amplifier, a two-mode squeezed state
���=S12����0,0�12 is produced. In the second stage, a four-
wave mixing process takes place in a crystal with third order
nonlinear susceptibility ��3�. We consider two possible mul-
tiphoton interactions, in the travelling wave configuration,
described by the following Hamiltonians:

HI
�A� = �Aa1

†a2
†a3

† + �A
*a1a2a3, �30�

HI
�B� = �Ba1a2a3

† + �B
*a1

†a2
†a3, �31�

where ai �i=1,2 ,3� denotes three quantized modes of the
radiation field. The complex parameters �A and �B are pro-
portional to the third-order nonlinearity and to the amplitude
of an intense coherent pump field, treated classically in the
regime of parametric approximation. The two-mode
squeezed state seeds modes 1 and mode 3 is initially in the
vacuum state �0�3; mode 4 is the classical pump. Energy
conservation and phase matching are assumed throughout.
Let us remark that, due to the typical orders of magnitudes of
the third-order susceptibilities, the parametric gains are very
small ��A�, ��B��1. The propagation �time evolution� in the
crystal yields ��I

�L��=exp�−itHI
�L�	���12�0�3 �L=A ,B�. Trun-

0 1 2 3
r

0.25

0.5

0.75

1

�

FIG. 11. �Color online� Maximized overlap G between a twin
beam and different non-Gaussian entangled resources ��res�r��12 as
a function of r. Dashed line, squeezed Bell-like state with � fixed at
the optimized value �=�max

�C� . Long dashed line, the same with �
fixed at the optimized value �=�max

�F� . For comparison, we plot as
well the maximized overlap with the photon-added squeezed state
�5� �double-dotted-dashed line�; the photon-subtracted squeezed
state �6� �doted-dashed line�; and the single-photon squeezed num-
ber state �4� �dotted line�.
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FIG. 12. �Color online� Scheme for the generation of the
photon-added squeezed state �5� and of the photon-subtracted
squeezed state �6�. Two nonlinear crystals are used in a cascaded
configuration. The first ��2� crystal is part of a three-wave mixer,
acting as a parametric amplifier for the production of a two-mode
squeezed state ���. The squeezed state seeds the successive nonlin-
ear process, a four-wave mixing interaction occurring in a ��3� crys-
tal. A final conditional measurement reduces the multiphoton state
to a photon-added and/or photon-subtracted squeezed state ���out.
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cating the series expansion of the evolution operator at the
first order in �̃L=−it�L, we get

��I
�A�� � �1 + �̃Aa1

†a2
†a3

†	���12�0�3, �32�

��I
�B�� � �1 + �̃Ba1a2a3

†	���12�0�3. �33�

Finally, a conditional measurement is performed on mode 3,
consisting in a single-photon detection, i.e., a projection onto
the state �1�3. The post-selection reduces the states �32� and
�33�, respectively, to the states �5� and �6�. It is worth noting
that the low values of the parametric gains do not affect the
implementation of the process. In fact, it is analogous to
require low reflectivity of a beam splitter to generate photon
addition and/or photon subtraction by using linear optics.

Regarding the production of the squeezed number state
�4�, it can be generated, in principle, by seeding a parametric
amplifier with single-photon states in the two modes.

Let us now turn to the experimental generation of the
squeezed Bell-like states �22�. They can be engineered by
using the same setup illustrated in Fig. 12, and by simulta-
neously realizing inside the nonlinear crystal the processes
corresponding to the interactions �30� and �31�. In this case
the fundamental requirements are that of energy conservation
and phase matching for each multiphoton interaction must
hold simultaneously at each stage. This condition can be sat-
isfied by suitably exploiting the phenomenon of birefrin-
gence in a negative uniaxial crystal �37�. In particular, the
following set of equations must hold:

�1 = �1 + �2 + �3,

K1
ext = k1

ord + k2
ord + k3

ext, �34�

�2 + �1 + �2 = �3,

K2
ord + k1

ord + k2
ord = k3

ext, �35�

where � j and kj
� �j=1,2 ,3� represent the frequencies and the

wave vectors of the quantized modes with polarization �; � j
and Kj

� �j=1,2� represent the frequencies and the wave vec-
tors of the classical pump fields; the superscript ord and ext
denote, respectively, the ordinary and extraordinary polariza-
tions for the propagating waves. A collinear configuration is
assumed for the geometry of propagation inside the crystal.
Then, at fixed �1 and �2, the energy conservation relations,
the type-II phase matching condition in Eq. �34�, and the
type-I phase matching condition in Eq. �35� can be, in prin-
ciple, satisfied by a suitable choice of �3, �1, �2, and of the
phase-matching angle between the direction of propagation
and the optical axis. Various examples of such simultaneous
multiphoton processes have been demonstrated both theoreti-
cally and experimentally �1,38–42�. The final conditional
measurement on mode 3 yields the superposition state

��I� � �̃Aa1
†a2

†S12����0,0�12 + �̃Ba1a2S12����0,0�12. �36�

By applying a standard Bogoliubov transformation and after
a little algebra, it is straightforward to show that superposi-
tion state �36� reduces to the squeezed Bell-like state �22� if

c1 = − �e−i��̃A tanh r + ei��̃B� ,

c2 = �̃A + e2i��̃B tanh r . �37�

The latter conditions can be successfully implemented by
observing that the complex parameters �̃A and �̃B can be
controlled to a very high degree by means of the amplitudes
of the external classical pumps.

VIII. CONCLUSIONS AND OUTLOOK

In this work we have presented a thorough comparison,
with regard to the performance in continuous-variable quan-
tum teleportation, between standard degaussified resources
such as photon-added and photon-subtracted squeezed states
and a type of sculptured resource that interpolates between
different degaussified states and can be optimized because it
depends on an extra, relative-phase, independent free param-
eter in addition to squeezing. These sculptured non-Gaussian
resources are what we have named squeezed Bell-like states:
They hybridize discrete single-photon pumping, coherent su-
perposition of Bell two-qubit eigenstates, and continuous-
variable squeezing. The maximization of the teleportation
fidelity with respect to different inputs, including coherent
and squeezed states, is achieved by squeezed Bell-like states
in comparison both to Gaussian and other non-Gaussian re-
sources, and for all values of squeezing, including the
asymptotic Einstein-Podolsky-Rosen limit. Understanding
this enhancement yielded by the squeezed Bell-like resources
in the teleportation success is possible when interpreted in
terms of a multiple optimization problem. The squeezed
Bell-like states are those states that are as close as possible to
the simultaneous maximization of entanglement, non-
Gaussianity, and affinity to the two-mode squeezed vacuum.
The analysis performed in the case of pure-state resources
can be extended to the case of mixed-state resources in the
presence of noise, imperfections, and other sources of deco-
herence: We plan to report the results on the study of these
situations in the near future.

The concepts of hybridization, sculpturing, and optimiza-
tion suggest that the present investigation could be extended
and generalized along several directions. Further optimiza-
tion is in principle possible with respect to the local parts of
the resource states, in analogy to the case of standard Gauss-
ian resources �43�. One could think of extending the sculp-
turing to the entire basis of Bell states, to generate entangled
non-Gaussian resources that can never be reduced to proper
truncations of Gaussian squeezed resources. Such “fully
sculptured” resources might allow for the further enhance-
ment of the teleportation success due to the presence of a
larger number of experimentally adjustable free parameters
in addition to squeezing. Fully sculptured states could be
applied to hybrid schemes of teleportation combining
continuous-variable inputs with discrete-variable resources
and vice versa. In this framework, a particularly appealing
line of research would be to look for modified schemes of
teleportation beyond the standard Braunstein-Kimble proto-
col, to be realized by generalized measurements in combina-
tion with state-control enhancing unitary operations. Finally,
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the present discussion could be extended to other types of
quantum information tasks and processes besides teleporta-
tion. For instance, it would be interesting to investigate the
comparative effects of non-Gaussian inputs and non-
Gaussian resources in schemes for the generation of macro-
scopic and mesoscopic optomechanical entanglement �44�.
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