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An analogy is found between Wigner resonant tunneling and tunneling across a static potential barrier in a
static magnetic field. Whereas in the process of Wigner tunneling an electron encounters a classically allowed
region where a discrete energy level coincides with its energy, in the magnetic field the potential barrier is
constant in the direction of tunneling. Along the tunneling path, certain regions are formed where, in the
classical language, the kinetic energy of the motion perpendicular to tunneling is negative. These regions play
the role of potential wells, where a discrete energy level can coincide with the electron energy. This phenom-
enon, which occurs at a certain magnetic field, is called Euclidean resonance and substantially depends on the
shape of the potential forces in the direction perpendicular to tunneling. Under conditions of Euclidean reso-
nance, a long-distance underbarrier motion is possible, which can be observed in experiments.

DOI: 10.1103/PhysRevA.76.022108 PACS number�s�: 03.65.Xp, 03.65.Sq

I. INTRODUCTION

It is known that long-distance motion under a classical
static potential barrier is impossible except for a short WKB
penetration �1�. This is true in the one-dimensional case. In
two dimensions x and y, the situation can be more compli-
cated. When, in addition, a magnetic field is applied along
the z axis the scenario under the barrier, where classical mo-
tion is impossible, may become very peculiar. If the barrier,
described by a potential energy V�x ,y�, is flat, the wave func-
tion decays in the x direction in the classically forbidden
region as ��exp�−c1x2 / l2� where l=�� /m�c is the mag-
netic length, �c= �e�H /mc is the cyclotron frequency, and c1
is a numerical constant �1�. This result is true when x ex-
ceeds the cyclotron radius.

The underbarrier decay of the wave function becomes
substantially different when the potential barrier is not a con-
stant in the �x ,y� plane, with a typical spatial scale a �2–6�.
In this case, when the cyclotron length is shorter than a, the
wave function decays more slowly, as ��exp�−c2ax / l2�.
This result looks unusual since it is valid even when the
nonhomogeneous barrier is higher at each point than the flat
one. In other words, a higher potential barrier is more trans-
parent, which is counterintuitive from the standpoint of
WKB theory.

Even more counterintuitive physics is related to a lower
magnetic field, when the cyclotron radius is of the order of a
�7�. In this case, when the magnetic field is close to a certain
value HR, decay of the wave function under the barrier can
be nonexponential in space. This means a long-range pen-
etration of a particle under an almost classical potential bar-
rier. This phenomenon is called Euclidean resonance.

In �7� Euclidean resonance was investigated on the basis
of classical underbarrier trajectories in imaginary time. This
method allowed the phenomenon to be established, but its
characteristics important for experimental observation re-
mained in shadow. The main characteristic is the coordinate
dependence of the wave function under the barrier.

This paper is focused on two aspects. First, the coordinate
dependence of the wave function is found here. At a small

magnetic field, the underbarrier wave function decays almost
according to WKB theory. It has only small periodically dis-
tributed peaks. At a higher magnetic field, those peaks in-
crease, giving rise to strong oscillations of the wave function
under the barrier. There is a certain field H0, such that at H
�H0 the main peak in the electron density is located at a
finite distance inside the barrier. When the magnetic field
approaches the resonance value HR�H0, the periodically
distributed underbarrier peaks have almost the same ampli-
tude. Their amplitudes decrease inside the barrier but not
exponentially with distance. This means that the particle can
penetrate over a long distance under the classical barrier. We
emphasize that the particle energy is strictly below the po-
tential barrier at each point. A possible experimental situation
is described in Sec. X.

Second, in this paper an interpretation of Euclidean reso-
nance in a magnetic field is proposed. A topological vortex
state under the barrier is formed, which results in an effective
potential well. Euclidean resonance corresponds to coinci-
dence of a level in that well with the electron energy.

Euclidean resonance �formation of long-range coherence�
constitutes a phenomenon that can be considered as the op-
posite pole with respect to Anderson localization �destruction
of the long-range coherence� �8�.

Tunneling in a magnetic field was addressed in Refs.
�2–7,9–14�. The physical part of the paper relates to Secs. II
and IX–XI. The mathematical part is presented in Secs.
III–VIII.

II. GENERAL ARGUMENTS

In this section we consider some general properties of an
underbarrier motion in a magnetic field. In the classical lan-
guage, besides a kinetic energy in the direction of tunneling,
there is also a transverse kinetic energy �in the perpendicular
direction�. In terms of the Schrödinger equation, those parts
are proportional to second derivatives of the wave function.
An underbarrier propagating motion, in principle, is possible
if the transverse kinetic energy is negative, in order to com-
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pensate the total negative energy, allowing a positive kinetic
energy in the direction of tunneling.

Let us specify the problem in more detail. Suppose that
the tunneling path is in the x direction, and away from the
ends of the path the total potential energy is u�y�. This func-
tion is even and has the minimum u�0�=0. The magnetic
field is directed along the z axis. So the negative electron
energy E corresponds to an underbarrier motion. One can
write down the effective Schrödinger equation for motion in
the x direction for the wave function ��x�=��x ,0�,

−
�2

2m

�2��x�
�x2 + U�x�� = E� , �1�

where U�x�=−��2 /2m���2� /�y2 is taken at y=0. We use the

gauge A� = �−Hy ,0 ,0	. The wave function can be expressed
through the modulus and the phase as �= ���exp�i��. Since
the potential u�y� is symmetric, the modulus of the wave
function is even and the phase � is odd with respect to y. For
this reason, the effective potential

U�x� =
�2

2m

� ��

�y
�2

−
1

���
�2���
�y2 

y=0

�2�

is real.
In the absence of the magnetic field there is nothing sur-

prising. An electron is localized at the center of the potential
u�y�, at y=0, where ��� has a maximum. Therefore, both
terms in Eq. �2� are positive. In this case, U�x� is positive and
the underbarrier motion with total negative energy E relates
to an exponential decay of the wave function of the WKB
type.

In a magnetic field the situation can be substantially dif-
ferent. Although the minimum of the potential energy u�y� is
at y=0, due to Lorentz forces, the maxima of the electron
distribution can be shifted symmetrically away from the line
y=0 �disjoining effect�. In this case �2��� /�y2 is positive at
y=0, and the second term in Eq. �2� is negative. Such a
disjoining electron distribution was pointed out in Refs.
�10,7�. We discuss the disjoining effect below.

It is hard to conclude in advance that the disjoining dis-
tribution of the electron density away from the center, y=0,
�the second term in Eq. �2�� is sufficient to drive the total
U�x� to a negative value. Nevertheless, on the basis of the
analytical solution of Ref. �7�, it is found that the potential
U�x� has the form of negative potential wells. One can com-
pare the positions of discrete energy levels in those wells
with the value of the electron energy E�0 according to Eq.
�1�. If, under variation of the magnetic field, some level in
the well U�x� approaches the energy E, this should result in
the resonance phenomenon called Euclidean resonance �7�.

Euclidean resonance in a magnetic field recalls the phe-
nomenon of Wigner resonant tunneling �1�, when in the
middle of a potential barrier there is a well with a level close
to the particle energy. But an essential difference is that in
Euclidean resonance the initial system is homogeneous along
the direction of tunneling and the effective wells are formed
by an intrinsic mechanism due to transverse motion.

When the negative underbarrier energy E is fixed, one can
compare it with the energy parameter m�c

2a2, where a is the
typical spatial scale of the potential u�y�. In the limit of high
magnetic fields, m�c

2a2� �E�, energy levels in the potential
well U�x� are of the order of −m�c

2a2, which is substantially
lower than the energy E. In this case there is no level coin-
cidence.

Upon reduction of the magnetic field, the two energies
become of the same order of magnitude, −m�c

2a2�E, which
indicates the possibility in principle of level coincidence. As
calculations show, this occurs at the magnetic field HR,
which can be called the resonance magnetic field. The ana-
lytical form of the potential u�y� in the plane of complex y
plays a crucial role. For example, Euclidean resonance is
absent for a pure quadratic u�y�. This sensitivity is a conse-
quence of interference of underbarrier cyclotron paths that
are reflected from the potential u�y�.

Near the resonance field HR, the underbarrier exponential
decay of the wave function becomes weak due to the reso-
nant connection of different potential wells. At H=HR there
is no exponential decay �perhaps a power law�. In the fol-
lowing sections we consider this problem in detail.

III. FORMULATION OF THE PROBLEM

We consider an eigenstate with a negative energy E1 of
the Schrödinger equation

−
�2

2m
� �

�x
−

iy

l2 �2

� −
�2

2m

�2�

�y2 + �V�x� + u�y��� = E1� �3�

in a magnetic field directed along the z axis. The x part of the
potential is the negative 	 well V�x�=−��2�E� /m	�x�. The y
part has the form

u�y� = u0� y

a
�4N

, �4�

where N is a large integer number. The potential �4� repre-
sents approximately two infinite potential walls at the points
y= ±a. In the absence of a magnetic field the lower discrete
energy level in the potential u�y� can be estimated as
�2 /ma2. The energies �E� and ��c are supposed to be large
compared to that energy

�2

ma2 
 �E�, l 
 a . �5�

The second condition �5� can also be expressed in the form
1
n, where

n =
Ha2

�0
�6�

is the number of flux quanta �0=�c� / �e� of the total mag-
netic flux through the area a2.

The boundary condition for the region x�0 has the form

��� �

�x
−

iy

l2 ���x,y��
x=0

= − �2m�E���0,y� . �7�

Under the semiclassical conditions �5� the eigenvalue E1 al-
most coincides with E.
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IV. THE HAMILTON-JACOBI EQUATION

One can always specify the wave function in the form

��x,y� = exp� iS�x,y�
�

� , �8�

where S�x ,y� satisfies the equation

1

2m
� �S

�x
− m�cy�2

+
1

2m
� �S

�y
�2

−
i�

2m
�2S = E . �9�

The boundary condition �7� is now transformed into

� �S�x,y�
�x

�
x=0

= i�2m�E� + m�cy . �10�

Below we measure x and y in units of the cyclotron length

L =� 2�E�
m�c

2 = l�2�E�
��c

. �11�

The new function �x ,y� is introduced,

S�x,y� = i
2�E�
�c

�x,y� , �12�

which obeys the equation

� �

�x
+ iy�2

+ � �

�y
�2

−
��c

2�E�
� �2

�x2 +
�2

�y2 � = 1 �13�

with the boundary condition

� ��x,y�
�x

�
x=0

= 1 − iy . �14�

Reflection occurs at the points y= ±�, where

� =�m�c
2a2

2�E�
=

a

L
. �15�

We consider below the limit of a relatively small magnetic
field ��c
 �E�. In this case one can write Eq. �13� in the
form of the Hamilton-Jacobi equation

� �

�x
+ iy�2

+ � �

�y
�2

= 1, �16�

where  plays the role of a classical action.

V. SOLUTION OF THE HAMILTON-JACOBI EQUATION

Equation �16� can be solved by the variation of constants
as described in �15�. The general integral of the Hamilton-
Jacobi equation has the form

�x,y� = vx + �
0

y

dy1
�1 + �y1 − iv�2 + F�v� , �17�

where a certain function v�x ,y� is introduced which should
be determined from the condition �independence of  on v�

x − i�
0

y �y1 − iv�dy1

�1 + �y1 − iv�2
+

�F�v�
�v

= 0. �18�

According to that, the following relations hold:

��x,y�
�x

= v�x,y�,
��x,y�

�y
= �1 + �y − iv�x,y��2.

�19�

The function F�v� should be determined from the condition
�14�, which now reads

v�0,y� = 1 − iy . �20�

If we express y through v�0,y� and insert it into Eq. �18� at
x=0, we obtain the functional dependence

�F�v�
�v

= �v2 − 1. �21�

Equation �18�, which determines the function v�x ,y�, takes
the form

x = i�
iv−i

y �y1 − iv�dy1

�1 + �y1 − iv�2
. �22�

As follows from Eq. �22�, v�x ,y�=�1+x2− iy. With this defi-
nition, Eq. �19� yields

��x,y�
�x

= �1 + x2 − iy,
��x,y�

�y
= ix . �23�

The form �17� and Eqs. �21�–�23� hold at a certain part of the
�x ,y� plane. The integration variable y1 in Eq. �22� varies
between the limits y and i��1+x2−1�+y. Our reflectionless
approach �u�y��0� is valid when �y1���. This condition
reads

��1 + x2 − 1�2 + y2 � �2. �24�

The condition �24� defines the area in the �x ,y� plane,
marked as 1 in Fig. 1. The area 1 is restricted by the solid
curve, which can be treated as reflection-induced. This
means that it accumulates interfering waves reflected from
the walls. The period of the structure is �x=2���2+��. In
physical units

�x = 2a�1 +� 8�E�
m�c

2a2�1/2

. �25�

According to Eqs. �8�, �12�, and �23�, at 0�x��x /2, in
physical units,

xx/2
−α

1

α

∆ ∆

x
3

0

y

x2∆

2

FIG. 1. Reflection-induced curves restrict the regions 1, 2, and
3, where the reflectionless approximation holds. The dashed paths
show the electric current of vortices.
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���x,0�� � exp�−
�E�
��c


 x

L
�1 +

x2

L2 + ln� x

L
+�1 +

x2

L2�� .

�26�

At a distance 	 around the point x=�x /2, y=0, the semi-
classical approximation breaks down. The scale 	 can be
estimated from Eq. �13�. The two terms px

2 and
���c / �E���px /�x, where px=� /�x, should be of the same
order of magnitude within the nonsemiclassical region. In
physical units this gives the estimate 	� l2 /a. There is a
clear interpretation of the quantum length 	. The cyclotron
length �11� is estimated as L� p /m�c. The length 	 can be
obtained from the same relation if we set L�a and use the
quantum uncertainty condition p�� /	. The length 	 has the
meaning of a quantum uncertainty in the position of the cen-
ter of a cyclotron orbit �Lorentz drift uncertainty�.

How can we go beyond the region 1 in Fig. 1? In the
semiclassical problem of a one-dimensional overbarrier mo-
tion, there is an effect of formation of a reflected wave at a
certain point x �Stokes phenomenon�. At this point the Stokes
line, which starts at the complex point xR, intersects the real
axis �16�. The easiest way to obtain the reflected wave is to
go in the complex plane up to xR, where the two branches
�incident and reflected� merge, and to return to the real axis.
This method accounts for the delicate interference of partial
de Broglie waves emitted by the particle.

In our problem the situation is qualitatively similar. The
two branches, related to the regions 1 and 2 in Fig. 1, also
merge at a certain complex point x=�x /2, y=−i�. At that
point the root in Eq. �19� becomes zero if we take account
into the entire potential �4�. The solution, generated in this
way in the region 2, is 2�x ,y�=�x−�x ,y�+const. The con-
stant can be determined by the same method of going in to
the complex plane of the variables. This program is per-
formed in the next section.

VI. CLASSICAL TRAJECTORIES

The classical path from the region 1 to the region 2 in Fig.
1 goes through the complex plane of coordinates between the
physical points �x=0, y=0	 and �x=�x, y=0	. Along this
path, x is real but y=−i� is imaginary. This path corresponds
to a trajectory in imaginary time t=−i�. The proper formal-
ism is developed in Ref. �7� and results in

����x,0�
��0,0�

�2

� exp�− A� , �27�

where

A = AWKB��x� −
2m

�
� d�� ��

��
�2

. �28�

The integral in Eq. �28� is taken along one period of the
periodic motion described by the classical equation

m

2
� ��

��
�2

−
m�c

2

2
�� + L�2 + u�− i�� = E . �29�

The last term in Eq. �28� reduces the total action and can be
interpreted as originating from the transverse kinetic energy

as discussed in Sec. I. The action �28� has the form

A = �1 − �
0

�

d����2 + ��
��2 + ���AWKB��x� , �30�

where the WKB action is AWKB��x�=2�x�2m�E� /�. The
wave function in the region 1 in Fig. 1 is given by Eqs. �8�,
�12�, �17�, �21�, and �22�. In the region 2 the action 2�x ,y�
is expressed through the function �x ,y� by the equation

2�x,y� − �x − �x,y� = �x − 2�
0

�

d���� + 1�2 − 1.

�31�

The same relation holds for the region 3 in Fig. 1, namely,
the difference 3�x ,y�−2�x−�x ,y� coincides with the
right-hand side of Eq. �31�.

The function ���x ,y�� does not depend on y in the regions
1, 2, and 3. The modulus ���x ,0�� is plotted schematically in
Fig. 2. The vortex cores are located at the points x=�x /2 and
x=3�x /2, where �=0 �1�. This is analogous to Fig. 3.

|ψ |(x,0)

x

2∆x∆x

1.0

0

FIG. 2. Modulus of the wave function decays slightly, when H is
close to HR. The long-range semiclassical parts are connected by
short vortex regions, of width l2 /a, localized near the points x
=�x /2 and 3�x /2, where �=0.

FIG. 3. Modulus of the wave function from Ref. �7�, when the
magnetic field is high, m�c

2a2� �E�. The plot is symmetric with
respect to the line y=0. The variables x and y are measured in units
of 2l2 /a.
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Under an increase of the magnetic field, the parameter �
increases and, when it reaches the value �R�1.66, the right-
hand sides of Eqs. �30� and �31� formally become zero. This
occurs at the resonance magnetic field

HR =
c�2m�E�

�e�a
�R. �32�

One can simply show that, close to HR,

���R,0�
��0,0�

�2

� exp�− 0.94
HR − H

HR
AWKB�R�� , �33�

where R is an integer multiple of �x. Under the resonance
condition H=HR, the spatial scale in Figs. 1 and 2 is �x
�2.97a. Our semiclassical method is applicable when the
action is formally large. So there is a restriction 1/AWKB

 �HR−H� /HR
1. To really approach the resonance field
HR one should go beyond the semiclassical approximation.

VII. ELECTRIC CURRENT UNDER THE BARRIER

The electric current j�=−e2���2Q� /mc is expressed through

the gauge-invariant vector potential Q� =A� +Hl2��, which
depends on the phase �=−2�E�Im  /��c of the wave func-

tion �= ���exp�i�� �1�. With the gauge A� = �−Hy ,0 ,0	 used,

there is only a y component of Q� in the regions 1, −Hx, and
2, −H�x−�x�. The electric current distribution is shown by
the dashed curves in Fig. 1.

There are topological vortices at the points ��x /2 ,0	 and
�3�x /2 ,0	, as in Fig. 3. The vorticity along the dashed small
loop, of size 	, in Fig. 1,

� Q� dl� = − 2�0, �34�

is determined by the topological properties �17�. The vortic-
ity along the large dashed loop, of size a, changes sign in
order to provide the total positive magnetic flux

� = 2�0 + � Q� dl� �35�

through the area restricted by the large loop. In Eqs. �34� and
�35�, the contours of integration are counterclockwise. In
contrast to vortices in superconductors, in this case there is
no Meissner screening, which would cancel the second term
in Eq. �35� at a large distance, resulting in quantization of
flux �17�. One should emphasize the opposite roles of differ-
ent parts of the vortices. At the outer part of the vortex �the
large dashed loop in Fig. 1� the Lorentz force is directed
inside the loop, leading to joining of the electron density to
the vicinity of the vortex. This results in the peaks of ��� in
Fig. 2. At the inner part �the small dashed loop� the Lorentz
force is directed outside the loop, leading to the local disjoin-
ing of the electron density in close vicinity to the vortex
topological point ��=0� in Fig. 2.

The current paths are continued outside the regions 1, 2,
and 3 in Fig. 1, where we do not know the detailed form of
the wave function. The vortex structure of the wave function

is the consequence of the specific analytical form of the po-
tential u�y� �7� and does not depend on the magnetic field.
For example, for a quadratic u�y�, topological vortices under
the barrier are absent and there are smooth current curves
only.

VIII. CHOICE OF u„y…

We use the potential u�y� determined by Eq. �4� with a
large N, which allows us to treat the potential �4� as infinite
walls at y= ±a and y= ± ia. For the semiclassical approach,
N should not be too large. The typical scale near the wall,
	y�a /N, has to be not very short, satisfying the semiclassi-
cal condition �5� with 	y instead of a. This leads to the
condition N
n, where the number of magnetic flux quanta n
is determined by Eq. �6�. That condition does not contradict
1
N, since the number n is large.

The potential walls should not be infinitely steep. Other-
wise, in the limit of N→� �perfectly rectangular potential
barriers� the semiclassical approach is not valid. In the per-
fectly rectangular limit, the condition �y1 � ��, resulting in
Eq. �24�, is substituted by Re y1��, which yields the con-
dition y2��2. The consequence is that the reflection-induced
curves in Fig. 1 degenerate into two lines y= ±� and the
underbarrier vortex state is not formed. The effect exists for
any N=1,2 , . . .. in formula �4� �see also the discussion of the
form of u�y� in Ref. �7��. We use a large N since it simplifies
the solution of the Hamilton-Jacobi equation, allowing the
reflectionless approach at some parts of the �x ,y� plane.

IX. INTERPRETATION

The maxima of the electron density are shifted away from
the line y=0 due to the disjoining effect near the vortex
cores. An example of this distribution is shown in Fig. 3. The
path y=0 provides a convenient indication of the resonance
since along this path the effective potential �2� is real which
allows interpretation in terms of the conventional
Schrödinger equation �1�.

The potential U�x� can be calculated analytically in the
case of a high magnetic field, m�c

2a2� �E�, considered in Ref.
�7�, where u�y�=u0�y2 /a2+y4 /a4� was used. The decaying
wave function is illustrated in Fig. 3. According to Eq. �1�,
apart from the vortex singularity, x�0, the potential U�x�
can be written in the form

U�x� =
�2

2m���x,0��
�2���x,0��

�x2 + E . �36�

As follows from Fig. 3, at the extrema of ���x ,0�� the func-
tion �36� is negative. In other words, the second term in Eq.
�2� dominates. The derivative �2 �� � /�y2 at y=0 is positive
since the electron density is disjoined near the line y=0.

It is easy to calculate U�x� on the basis of the results of
Ref. �7�. Inside the barrier this potential has the form

U�x� =
m�c

2a2

4

1 + �3 tan�a�x − x0�

2l2 � . �37�

The shift x0 is chosen in order to get the singularities in the
expression �37� at the vortex positions. The potential U�x�
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contains discrete energy levels of the order of −m�c
2a2,

which are smeared out to bands of the same order of magni-
tude. Since E is much smaller than that scale, it is not placed
inside an allowed energy band. For this reason, the state is
exponentially decaying.

The distribution of ���x ,y�� in Fig. 3 corresponds to the
limit m�c

2a2� �E�. As usual, it should be qualitatively similar
at the border of applicability, m�c

2a2��E�. In this limit, the
topological vortex structure has to be of the same type as in
Fig. 3, and the energy levels in the well −m�c

2a2 are of the
order of E. In this case energy coincidence is expected,
which results in the resonance.

At the magnetic field m�c
2a2��E� the periodic potential

U�x� �2� can be evaluated from the results of Sec. V. At
�x /2�x�3�x /2 the potential has the form U�x�=m�c

2�x
−�x�2 /2 shown in Fig. 4. These periodic parabolic segments
are connected by potential wells located close to the points
�x /2 and 3�x /2 within the nonsemiclassical interval 	
� l2 /a estimated in Sec. V. The total U�x��E is plotted
schematically in Fig. 4. The discrete energy levels, shown in
Fig. 4, are of the order of −m�c

2a2 and slightly smeared out
into narrow energy bands. Now one can expect a coincidence
of the energy level −m�c

2a2 with the electron energy −E,
which is of the same order of magnitude. As we know from
the calculations, it happens at H=HR �Euclidean resonance�.

X. WHAT CAN BE OBSERVED IN EXPERIMENTS?

On the basis of the results of Sec. VI one can easily show
that at H�H0, where H0�0.37HR, the maximum of ���x ,0��
is reached at x=0. At H�0.16H0 this situation is demon-
strated in Fig. 5 where

P =
ln ���x,0��2

AWKB�a�
. �38�

In Fig. 5 only the semiclassical parts are shown, with empty
spaces at the positions of vortices at the points �x /2 and
3�x /2. The total horizontal interval is 2�x. The coordinate
dependence in Fig. 5 is close to the case of zero magnetic
field excepting small jumps at �x /2 and 3�x /2. The jumps
occur only in the semiclassical approximation used in Sec. V.
The physical wave function is continuous. At higher mag-

netic field, H0�H�HR, the maximum of ���x ,0�� is reached
at x=�x /2. It is shown at H�0.96HR in Fig. 6 where, as in
Fig. 5, only the semiclassical parts are presented with empty
spaces at the vortex positions. The total horizontal interval is
also 2�x. In contrast to Fig. 5, there are strong oscillations of
the wave function under the barrier. Close to the resonance
field HR, the amplitudes of the peaks decrease slowly in
space according to a relation analogous to Eq. �33�. Figure 6
corresponds to the schematic Fig. 2.

Looking at Figs. 5 and 6, one can draw conclusions about
experimental observations of underbarrier phenomena in a
magnetic field. Suppose, in a thin film, there is a quantum
wire along the y axis with the discrete energy level E
�−10−2 eV. Along the x axis there is a potential valley of
the type �4� and of the width a�200 Å. At these parameters,
H0�10 T and the wave function is localized under the bar-
rier at the distance x=�x /2�420 Å apart from the quantum
wire. This shift of the electron density far inside the barrier
can be measured by a flat tunnel junction, which covers the
region x�400 Å, or some other technique. At a magnetic
field much smaller than H0 the electron density is localized at
the wire and at the distance of 420 Å apart it is 10−19 com-
pared to the wire region. The observable effect is caused by
the threshold �H�H0� appearance of the underbarrier peak
in the electron density.

One should note that instead of a potential of the type �4�
one can take a positive potential, which is localized at the
line y=0 �antiwire�, for example, u�y�=u0 exp�−y2 /a2�. In

∆

∆x/2

2∆xx

U(x)

x
0
E

FIG. 4. Potential U�x� close to the condition of Euclidean reso-
nance. The parabolic semiclassical segments are connected in the
vicinities of the points �x /2 and �3x /2 by the nonsemiclassical
wells of width 	�a /n
�x�a, which are shown schematically.
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FIG. 5. Coordinate dependence of the logarithm of the wave
function modulus at H�0.16H0. Only semiclassical parts are
shown. We leave empty spaces at the vortex positions. The total
horizontal interval is 2�x.

0 1 2 3 4 5 6
X/a

-4

-3

-2

-1

0

P

FIG. 6. As in Fig. 5 but at the field H�0.96HR.
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this case the maxima of the wave function are localized at
the line y=0 where the barrier is higher. Figures analogous to
Figs. 5 and 6 look qualitatively the same. Proper calculations
will be presented elsewhere with a discussion of more ex-
perimental details.

XI. DISCUSSION

We established an analogy between Euclidean resonance
and conventional resonant Wigner tunneling by means of the
effective potential U�x�, where a level coincides with the
negative electron energy. It is clear that U�x� should be nega-
tive at least in some regions. The necessary condition for this
property, as follows from Eq. �2�, is positivity of �2 �� � /�y2

at some regions of x on the line y=0. In other words, the
electron density should be disjoined at those regions. The
disjoining effect is provided by the Lorentz force in the inner
part of topological vortices, as noted in Sec. VII. So the
logical chain of explanation of Euclidean resonance is the
following: �1� creation of topological vortices; �2� disjoined
electron density due to the Lorentz force produced by the
vortex current; �3� a local positive �2��� /�y2 as a result of the
disjoined distribution; �4� an effective potential U�x� with
local negative potential wells; and �5� coincidence of a level
in the well with the electron energy �Euclidean resonance as
a form of resonant Wigner tunneling�. In this sequence the
transition from one item to another is logical. The last item
provides the analogy we explore. The only unclear item is
the initial one, creation of topological vortices. Actually, this
question is the heart of the problem. Topological vortices
under the barrier are created, for example, when u�y��y4,
and are not created in the case of a quadratic u�y�. There is a
mathematical way to understand this �the analytical proper-
ties of the function u�y� in the complex plane� but it is im-
possible to propose general physical arguments to explain
that difference. Indeed, why for some potential u�y� the un-
derbarrier state has a different topology? As a rule, physical
arguments do not work for explanations of complicated in-
terference. An example is the nonreflectivity of certain po-

tentials due to interference of emitted partial de Broglie
waves �1�.

Euclidean resonance provides an example in condensed
matter physics when the result is unexpected and cannot be
predicted prior to calculations. Also, the dependence of to-
pology on the form of the potential cannot be explained by
hand-waving arguments.

Euclidean resonance means the formation of long-range
coherence among effective potential wells, which is opposite
to Anderson localization, when the coherence is destroyed
�8�. One should note that Euclidean resonance is not only a
property of a static potential barrier in a magnetic field, but
also occurs in tunneling through nonstationary barriers
�7,18–21�. In both cases an important issue is the formation
of a phase of the wave function in the process of underbarrier
motion. This leads to an interference of different underbarrier
paths.

XII. CONCLUSION

In the process of conventional Wigner tunneling an elec-
tron encounters a classically allowed region, where the dis-
crete energy level coincides with its energy. In our case the
potential barrier is a constant in the direction of tunneling.
But along the tunneling path certain regions are formed
where, in the classical language, the kinetic energy of motion
perpendicular to tunneling is negative. These regions play
the role of potential wells, where a discrete energy level can
coincide with the electron energy. This phenomenon, which
occurs at a certain magnetic field, is called Euclidean reso-
nance, and substantially depends on the shape of the poten-
tial forces in the direction perpendicular to tunneling. Under
the conditions of Euclidean resonance, a long-distance un-
derbarrier motion is possible, which can be experimentally
observed. Euclidean resonance �formation of long-range co-
herence� constitutes a phenomenon that can be considered as
the opposite pole with respect to Anderson localization �de-
struction of the long-range coherence�.
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