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Coherent states of the Kratzer-Fues oscillator
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The coherent states for the Kratzer-Fues potential, which are eigenstates of the annihilation operator and
minimize the generalized position-momentum uncertainty relation, are constructed using the algebraic ap-
proach. The method is extended to include the rotating Kratzer-Fues oscillator. Construction of such states is
important in the theory of molecular interactions with coherent electromagnetic fields, for example, in calcu-
lation of the dynamic alternation of the refractive index due to the interactions of the laser pulse with the
coherent vibration-rotational states of the diatomic molecule.
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I. INTRODUCTION

In 1926 Schrodinger [1] discovered the coherent states of
harmonic oscillator, which minimize the position-momentum
uncertainty relation. The term coherent reflects the fact that
such states are localized on the corresponding classical tra-
jectory and do not change their functional form during
propagation. The coherent states of the harmonic oscillator
are defined as [2] (i) eigenstates of the annihilation operator,
(ii) states that minimize the position-momentum uncertainty
relation, and (iii) states that arise from the operation of a
unitary displacement operator to the ground state of the os-
cillator.

Recently, much effort has been undertaken to generate
coherent states for anharmonic potentials, particularly the
Morse potential [3—10]. Such states are usually constructed
using a transformation of the basic Hamiltonian to the form
resembling that of a harmonic oscillator [3,4] or by making
use of the irreducible representations of a Lie group which
provides a spectrum generating algebra [11]. The generalized
coherent states can also be constructed using an algebraic
method [9,12] employing the supersymmetric quantum me-
chanics [10,13]. The algebraic approach is particularly useful
as it straightforwardly leads to the construction of not only
coherent but also squeezed states endowed with nonclassical
features. Applying the above procedures the coherent states
have been obtained for the Morse [3-9], Poschl-Teller [14],
hydrogen atom [15], Eckart and Rosen-Morse [16], double-
well and linear (gravitational) potentials [17]. Unfortunately,
such states have not been constructed so far [18] for the
Kratzer-Fues (KF) potential [19],

v<r>=De{(ﬂ)2—1] (1)
r

widely used for description of anharmonic vibrations in di-
atomic systems [20]. Here, D, denotes the dissociation en-
ergy of the system, whereas r, is the equilibrium internuclear
separation. The potential function (1) has four valuable prop-
erties: (i) it correctly behaves for united-atom (r—0) and
dissociation (r—cc) limits, (ii) it takes into account the
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quasiharmonic behavior of the oscillator in the vicinity of the
potential minimum, (iii) the Schrédinger equation with the
KF potential can be exactly solved, and (iv) it can be easily
generalized to include the rotating KF oscillator for which
the exact analytical solutions are directly derived. Nowadays,
the multiparametric generalization of Eq. (1) in the form of
the Simons-Parr-Finlan potential [21]

r=r,\? Y r—r,\"
V(r)=co< ) 1+Ecn< ) 2)
r n=1 r

has been widely applied in spectroscopy of rotation-
vibrational diatomic systems as it contains the proper amount
of potential parameters c, indispensable to fit the spectral
data [22]. In this work, we use the first term of the expansion
(2), which differs from Eq. (1) by the additive term D, =c,,.
The aim of this study is construction of the coherent states
of the KF potential, which are eigenstates of the annihilation
operator and minimize the position-momentum uncertainty
principle. We shall also be concerned with their generaliza-
tion to include the rotating KF oscillator and calculation of
the dynamic alternation of the refractive index due to the
interactions of the laser pulse with the coherent vibration-

rotational states of the diatomic molecule.

II. COHERENT STATES OF THE KF OSCILLATOR

In order to construct the coherent states of KF oscillator,
we employ the algebraic (or operator) method successfully
applied by Cooper [9] to generate the coherent states of the
anharmonic Morse oscillator. The starting point for this ap-
proach is the vibrational Schrodinger equation

2 p _r\2
{ 4 D(rr’3> —EU:|¢(F)U=0, (3)

-——+
2mdr? ¢

which can be transformed to the dimensionless form

e

in which

)2
< xf) —1} +B5}¢(x>u=0, (4)
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The solution of Eq. (4) in arbitrary normalization reads [23]

#x), =x" exp[= BXIFIN = VB, 2N 2B,x],  (6)

in which A=1/2+\9?+1/4 is the positive solution of the
parabolic relation A2—\ —?=0, whereas F(c,b;z) stands for
the confluent hypergeometric function defined by the gamma
function I'(¢c),

[

I'(c+0v)I'(b)Z*
Fle,biz)= > ———————. 7
(c.b:2) z;,r(bw)r(c)vz @
The eigenvalues of Eq. (4),
E,=D,| 1- yz/ , v=0,12...,
(v+ 12+ VY +1/4)?
(8)

are derived from the relation \—v?/8,=—v for which the
wave function (6) converges for x— oo,

A simple calculation reveals that Eq. (4) can be factorized
to the form

ATAJv) = (5~ &), )
in which ¢(x),=|v) and

A=i<i+ﬁ—§> A?=L—(—i+ﬁ—§>
P 0 ’ V2 ’ ’
(10)

whereas
mri(Ev—EO)
h? ’

The proof is starightforward if the relations N\—y?/8,=-v
for v=0 and N>~\ =+ are taken into considerations. Then

& - & =(By- B2 = (11)

A

(ATA- &+ &)lv)

1] & NP
=5{_E+{'B‘)_;} —;+ﬁ5—ﬁé}|v>

2 _ 2 2
=l{ d_+{ 2B+ N A+ x —)/2}+,83}|v>

T dx?

2 X
1] & 1-x)?

Additionally, one may show that the operator A annihilates
the ground state A|O)=0 hence the coherent states |a) of the
KF oscillator are eigenstates of the annihilation operator A,

Ala)=ala), |ay=x"expl[- fprlexp[\2ax].  (13)

It should be pointed out that Eq. (9) has the same form as
that obtained for the anharmonic Morse oscillator by Cooper
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[9]. In particular, for the ground state it reduces to

AtAl0y=0. (14)

II1I. MINIMUM UNCERTAINTY COHERENT STATES

It is a straightforward matter to demonstrate that states |a)
minimize the generalized position-momentum uncertainty re-
lation (A=1) [9]

[y(x).p] = ig(x) = i"ff") ,
X

(15)

[y P(Ap)? = {alg(]a”,

in which y(x) denotes an anharmonic coordinate, whose ex-
plicit form depends on the oscillator type, whereas p=
—id/dx is the associate momentum operator. Adopting Eq.
(15) to the KF oscillator we put

A
y(x)=Bo—;, (16)

which is, to within the constant B, the KF coordinate ap-
pearing in Eq. (10), whereas from Egs. (15) and (16) one gets

N
glx)=. (17)
X
Now we can pass to calculate

1 P 1 .
(aly(x)|ay = —’,—<a|A +ATa)y= =(a+a’), (18)
V2 V2

1 Ao 1 ,
alpla)y=-i—=(a|A -AT|a)=—i—=(a-a’), 19
(alpla) == el - Ale) == (e a). (19

2aly(x)|a) = (a]AA + 24TA + ATAT - g(x)|a) = [(a+ a")?
- <a|g(x)|a>], (20)

—2(a|p?|a) = (a|AA - 2ATA + ATAT + g(x)|a) = [(a - )2
+({alg(x)|a)], 21

taking advantage of the operator relation
AAT=ATA - g(x). (22)

Taking into account Egs. (18)—(21) one may evaluate

[y (9 = aly (07l - (ay () ]a? =~ (g,

(23)

1
(Ap)* = (alp?*|a) ~(alp|a)® =~ Slalgtla) — (24)

providing that Ay(x)=Ap and
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2Ap) = L 2o Lt a2
[Ay(x)](Ap) —4<a|g(x)|a> —4<a|x2|a> - (29

The calculations performed reveal that the states |a) mini-
mize the generalized position-momentum uncertainty rela-
tion for the KF anharmonic coordinate y(x), and they are the
eigenstates of the operator A, which annihilates the ground
state A|O)=O. Hence they satisfy the two fundamental re-
quirements established for the coherent states of anharmonic
oscillators [2]: they are eigenstates of the annihilation opera-
tor and they minimize the generalized position-momentum
uncertainty principle.

The integral on the right-hand side of relation (25) can be
easily calculated using the well-known formulas [24]

f e M dr = n!,uf("ﬂ), Re[u] >0 (26)
0

and the normalized form of |a) [Eq. (13)],

|a) = N expl~ Byxlexp[\2ax], (27)

No=(ala)™ 2 = {r,20)[26, - \2(a" + )12,
(28)
As the result one gets

-
(a|)%|a) = %[2&) - \E(ae* +a)>. (29)
The above expression has a mathematical and physical
meaning only for the non-negative integer part of Int[2(\
—1)], Int[2\], and B,>0, which holds for the vibrational
states below dissociation level (E,<D,).

Taking into account Egs. (5) and (8) one gets

A200 = 1)]!

Ay)Ap = 2020)!

29N = \2(a" + &)= f(y.a).

(30)

Bearing in mind that \=1/2++9’+1/4, the right-hand side
of the above equation can be calculated for specified values
of a and y parameters. The latter depends on the reduced
mass of the diatomic molecule m=mm,/(m,+m,), internu-
clear separation r,, and dissociation energy D,. For example,
in the case of dihydrogen 'H2, we have m
=1.0078250319/2 au., r,=0.74141301 A, and D,
=36118.11 cm™', hence y*=593.45 and f(y,0)=11.69 for
a=0. This indicates that in the ground coherent state of the
dihydrogen described in terms of the KF oscillator, both po-
sition and associated momentum uncertainties Ay(x)=Ap
=3.42 are greater than those for the harmonic oscillator
model yielding f(y,0)=0.5 and Ay(x)=Ap=0.7071.

IV. COHERENT STATES OF THE ROTATING
KF OSCILLATOR

Interactions of molecules with electromagnetic field in the
microwave region excite their rotational degrees of freedom
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in the ground vibrational quantal state. If we use the infrared
radiation, the vibrational degrees of freedom will be excited
together with rotational ones. Then the rotating oscillator
changes its characteristics, for example the potential param-
eters like dissociation energy and equilibrium distance are
modified due to the deformational action of the centrifugal
force generated by the rotation [25]. In such circumstances,
the coherent states of the rotationless KF oscillator intro-
duced in the previous section should be generalized to in-
clude the rotating oscillator.

The starting point to realize this aim is the rotation-
vibrational Schrodinger equation

r—r,

2
) - EvJ:| lﬂ(r)v1= 0,
€2V

in which B(r)=#2/(2mr?) and J=0,1,2... is the rotational
quantum number. The rotational term together with the KF
potential form an effective KF potential V(r);, which attains
a minimum for [25]

n d*
[— 2—P+B(r)J(J+ 1)+De<
mdar

[ BJ(J+1)
ry=r,| 1+ ————
D,

to be determined from the condition dV(r),/dr=0 [25]. Here
B,=B(r=r,) is the rotational constant. Employing the quan-
tity r;, Eq. (31) can be rewritten in the form [25]

K d? r—ry
“omar TP\

] =r[1+y2J+1)], (32

2
) +V(r)), - EUJ:| r),, =0,

(33)
in which
D,r
D - € e’
J r
R2IJ+1 -r,\? -
R i : >+De<r, ) :Dj(r, ) (34)
2mry Ty ry

In the next step Eq. (33) is transformed to the dimensionless
J-dependent variable ¢,

2 _ a2
l{—dd—§2+’y3|:(1 J _1:|+B3J}¢/(§)UJ:O’ (35)

2 &
in which
2mr3DJ r by
= =y +J(J+1), ==,
75 h? rHIIHD, rp 1+y2JJ+1)
(36)
> 2mr[D;+ V(r); - E,] B 2mry(D, - E,;) (37)

v~ ﬁZ ﬁ2

The solution of Eq. (35) in arbitrary normalization is the
function
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&)y = EV expl— BuEIFIN, = V)l By 2N 1,28, €],
(38)

in which
N= 124N+ 14 =12+ VYV + (T +1/2),  (39)

whereas its eigenvalues

EU]=D€{1 72

T +124\ P+ U+ 1/2)2]2} (40)

can be determined from the relationship

4
,32 Y

= ) (41)

Proceeding along the lines of the algebraic approach, Eq.
(35) can be factorized

ATy = (8, - & )v), (42)
AA—L(i+ﬁ _)\_J> A?_L(_i_’_ﬁ _7\_]>
2\ae TP e T T o\ Y )
(43)

in which
mrj(E,; — Eq))

72 (44)

551 - 520J = (:8(2)1 - :331)/2 =
The J-dependent operator A annihilates the vibrational

ground state A|OJ>=0 in an arbitrary rotational quantum J
state hence the coherent states |aJ) of the rotating KF oscil-

lator are eigenstates of the annihilation operator A,
Alal)=dlal), |al) =& expl- By tlexp[\2ag].
(45)

It is easy to demonstrate that the states |aJ/) minimize the
generalized position-momentum uncertainty relation (15)
yielding

[P = (| Flar)’ (46)
in which
y
1O =Bu- @)

is, to within the constant 3, the J-dependent KF coordinate,
whereas \,;/&=g(£).

Proceeding along the lines of the previous section one
may calculate the integral on the right-hand side of uncer-
tainty relation (46) yielding

M2, - D]

2(2)\ )' [2BOJ_ \/’E(Of* + a)]2 =f('y, 0[,.]),
7

Ay(&)Ap =
(48)

It has a mathematical and physical meaning only for the
non-negative integer part of Int[2(\,—1)], Int[2\,], and B,
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>(), which holds for the rotation-vibrational states below
dissociation limit (E,;<D,). Remembering that By,=7v;/\,
and \;=1/2+/y*+(J+1/2)?, the right-hand side of Eq. (48)
can be calculated for specified values of « and y parameters
in an arbitrary rotational state J. We have performed the
symbolic calculations for dihydrogen le, using the Maple
vs 7 processor, which revealed that for @=0, f(y,a,J) in-
creases (approximately) parabolically with J and takes the
exemplary values f(y,0,0)=11.69, f(vy,0,10)=12.77,
f(7,0,25)=17.14, f(,0,50)=27.54. They indicate that in
the ground coherent state of the dihydrogen described in
terms of the rotating KF oscillator, both position and associ-
ated momentum uncertainties increase with J.

V. THE TIME EVOLUTION OF THE KF
COHERENT STATES

In the absence of external fields the time evolution of the
coherent states of the KF oscillator is governed by the equa-
tion [2]

lat)y = |af)yeE (49)

in which

1 1 )
a(t) = —=[y(1) + ip()]= —=[y(0) + ip(0)]e ", (50)
V2 V2

y(0)=(a)]ja(r)), p(t)=(a(n)|pla®)).  (51)

Here y(r) is the J-dependent KF coordinate (47), which in-
cludes the time-dependent radial variable &(r), whereas p is
the associated momentum.

The states (49) minimize the position-momentum uncer-
tainty relation (15) and follow the classical motion of the KF
oscillator,

(1) = V2 Re[a(r)] = y(0)e ™, (52)

p(1) =2 Im[ ()] = p(0)eEM, (53)

Such states evolve coherently in time, remaining localized on
the corresponding classical space trajectory; being coherent
for t=0, they remain coherent at an arbitrary moment of time
[2]. This property makes the coherent states a convenient
tool to interpret the micro-macro or quantum-classical corre-
spondences [26]. For example, using the Husimi Q represen-
tation [27], one finds precise patterns of classical trajectories
corresponding to the wave function of the system. The Q
distribution follows the classical periodic orbits [28],
whereas the classical unstable periodic orbits are endowed
with “scars” in the Q distribution [29].

VI. INTERACTION OF THE ROTATING KF OSCILLATOR
WITH LASER PULSE

The resonant interaction of the laser beam with molecules
produces the coherent effects such as self-induced transpar-
ency, soliton formation [30], excitation of a coherent super-
position of rotational states [31], periodic alternations of the
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refractive index in both nuclear [32] and molecular systems
[31,33,34]. In the latter case the variation of the refractive
index appears due to interaction of the coherent radiation
with the coherent rotational states of the molecules. The
same effect has been theoretically predicted by Avram et al.
[35] for vibrating diatomic systems described in terms of the
coherent states of the Morse oscillator. Here, we extend the
research area onto the interaction of the rotating KF oscilla-
tor with monochromatic, polarized, and coherent radiation
|B) satisfying the Glauber relation [36]

bio|B) = BB (54)

in which bAk!U denotes the annihilation operator whereas & is
the wave vector of the radiation quanta endowed with the
spin o.

The refractive index of a material interacting with the
radiation can be expressed in the form [35]

n=ng+ n, (01 (55)

in which n; stands for the refractive index in the absence of
radiation, whereas n;,, represents the variation of the refrac-
tive index due to the interaction of a material with the radia-
tion of intensity 1. The term n,,,() can be calculated using the
following relationship [35]:

ql k z - ik-7] —iw
nim(t) == \/j<¢| €o® rbk,ae * |¢>€ ! (56)
VW V2

in which V stands for the normalization volume, Ek’a is the
polarization vector of the radiation characterized by the an-
gular frequency w; ¢ is an effective electric charge generat-

ing a dipolar moment d=gr of a molecule, whereas

|#) =B e) (57)

represents the molecule in the coherent state |aJ) interacting
with laser beam in the state |3).

The crucial for determining n;,() is the vector product
€., It can be easily calculated for purely vibrational sys-
tems and static orientation of molecules with respect to laser
pulse polarization [37]. In the case of rotation-vibrational
systems, 7 changes both its length due to vibration and ori-
entation due to rotation. In such circumstances the term
€., changes its value and for the molecule bond orienta-
tion orthogonal to the laser pulse polarization, it can vanish.
Hence the coherent excitation leading to the dynamic alter-
nation of n;,(r) is impossible. To overcome this difficulty
Hornung and de Vivie-Riedle [38] introduced a technique,
which employes suitably shaped pulses to restore a high laser
control of the rotational degrees of freedom. In this approach
it is assumed that €_,-r=rcos(6) in which 6 is the angle
between €, and 7, which alters due to rotation.

Another possibility is to use the circularly polarized radia-
tion, which excites the rotational degrees of freedom due to
the transfer of spin angular momentum of a laser mode to
molecule [39]. If the polarization vector is parallel to the
rotating molecule bond then
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€o T=r k-7=0 (58)

and the relation (56) reduces to the simple form

D)= %\/g<af|§|af>r,e-w. (59)

The integral on the right-hand side of Eq. (59) can be easily
calculated using Eq. (26) and the normalized form of |aJ)
(31), yielding

iB kN +1)!
mi) = TE 5220

v V2 (2! (280~ \2(a" + )] ' e,
v By

(60)

The derived formulas have a mathematical and physical
meaning only for the non-negative integer part of Int[2\;
+1] and By;>0, which holds for the states below dissocia-
tion level (E,;<D,). Equation (60) contains the time-
dependent exponential term responsible for the periodic
change of the refractive index due to the interaction of cir-
cularly polarized coherent radiation of frequency w with di-
atomic molecule in the coherent rotation-vibrational state
|a). Such an effect has been reported in [31,33,34].

VII. CONCLUSIONS

The KF potential is a realistic zero-order model useful for
a description of the anharmonic rotation-vibrational motion
in diatomic molecules. Although the function (1) provides
only a crude approximation to the true molecular potential it
has many valuable advantages which make it a powerful tool
for investigation of the rotation-vibrational diatomic systems.
In particular, it allows the system to dissociate, which is
forbidden for a harmonic oscillator and the rotation-
vibrational Schrodinger equation can be exactly solved.

Studies of the rotating anharmonic oscillators are of inter-
est in respect to their interactions with intense electromag-
netic radiation [40]. The theoretical models describing such
interactions employ mainly the Morse potential as a reliable
representation of the anharmonic vibrations in molecules
[41]. The problem appears when we try to generalize the
problem of the Morse oscillator to include rotation. Then
only the approximate parabolic expansion of the rotational
term in the rotation-vibrational Schrodinger equation can be
taken into consideration to obtain the analytical solutions
[23]. In the case of the KF oscillator, the exact analytical
solutions can be obtained without any approximations.
Hence this model seems to be a better physical representa-
tion of the internal rotation-vibrational motion in diatomic
systems than the Morse one. In particular it permits construc-
tion of the coherent states of the rotating and rotationless KF
oscillator. In this work the coherent states of the KF oscilla-
tor have been constructed by a simple algebraic procedure
applied by Cooper [9] to the Morse oscillator. The method
can be generalized to include the rotating KF oscillator. To
this aim the basic rotation-vibrational Schrodinger equation
is expressed in the J-dependent parameter r;, which permits
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mapping of the J-dependent problem onto the purely vibra-
tional one. The resultant effective Schrodinger equation can
be factorized to obtain the operator, which annihilates the
ground vibrational state |0J) for an arbitrary rotational quan-
tum number J. The constructed states represent both mini-
mum uncertainty coherent states and annihilation operator
eigenstates, where the annihilation operator is chosen to an-
nihilate the ground state of the KF oscillator. In view of this,
from the three fundamental requirements established for the
coherent states of the harmonic oscillator [2], namely the (i)
states which minimize the uncertainty relation, (ii) eigen-
states of the annihilation operator, and (iii) states which are

PHYSICAL REVIEW A 76, 022107 (2007)

produced by the action of the displacement operator, only the
first two can be applied directly to the KF oscillator since the
third one relies on the form of the displacement operator,
which is specific to harmonic oscillator [9]. In this case, only
approximate KF coherent states can be derived using Nieto
and Simons [3] or Kais and Levine [8] approaches. In the
former, the vibrational Hamiltonian is expressed in terms of
transformed position and momentum variables which permit
formulation of the problem in terms of the harmonic oscilla-
tor, whereas the latter uses the Perelomov [11] method of the
construction of generalized coherent states via the Lie group
algebra.
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