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In the relativistic theory of magnetic molecular properties which involve the magnetic field of a magnetic
nucleus, difficulties associated with the divergence of four-component Dirac spinors in the vicinity of the
nucleus need be considered with care. Within the point dipole model of the nucleus, singular operators may be
involved. This is the case, for instance, of the relativistic calculation of the nuclear magnetic shielding tensor
and indirect spin-spin coupling tensor in the context of Kutzelnigg’s minimal coupling approach. We show that
matrix elements of the magnetic interaction yield divergent values for every single Fermi contact, spin dipolar,
paramagnetic spin orbit, and Kutzelnigg’s anisotropic Dirac’s � operator. However, when all terms are added
together the divergent results cancel each other and a finite convergent result is obtained. It is concluded that
Kutzelnigg’s minimal coupling approach can be safely applied in the case of a point dipole model of the
nucleus, and numerical results should be equivalent to those of the direct linear response approach for the
operator V=e� ·A. The importance of the inclusion of the anisotropic Dirac’s � operator is emphasized.
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I. INTRODUCTION

Relativistic effects on molecular magnetic properties can
be of great importance in heavy-atom-containing compounds
�1�. This is particularly true for properties which depend
heavily on the electronic density in the vicinity of the atomic
nucleus.

The correct description of such effects depends to a large
extent on the proper evaluation of the electron-nucleus mag-
netic interaction. Both at the four-component level and
within quasirelativistic two-component approaches the prob-
lem of handling properly such an interaction has subtle dif-
ficulties. For instance, in the leading-order elimination of the
small component �ESC� approach, relativistic corrections to
such an interaction lead to divergent operators �2,3�. Such
divergent matrix elements are not involved in the calculation
of the nuclear magnetic shielding tensor, and the ESC ap-
proximation has proven to be a very good one in this case
�4–6�. But such divergent operators make it impossible to
apply the same approximation in the case of the indirect
spin-spin coupling tensor �2�. Even though spin-orbit effects
can be considered, other important scalar relativistic effects
cannot be properly handled in this approach. At present only
the zeroth order regular approximation �ZORA� and related
quasirelativistic approaches have proven to give good results
of J couplings �7–10�. However, in some cases ad hoc
nuclear models were introduced �10�. More recently promis-
ing results were obtained within the Douglas-Kroll-Hess de-
composition within the point dipole model for the nucleus
�11�.

At the four-component level, benchmark results of mag-
netic shieldings and J couplings have been obtained, within

linear response �second-order� perturbation theory for the op-
erator V=e� ·A �12–14�. Matrix elements of this operator are
well behaved when calculated between Dirac four-
component spinors considering a point dipole moment for
the nucleus. However, in such an approach the magnetic in-
teraction operator largely couples the small and large com-
ponents of Dirac spinors and the whole magnetic property is
expressed formally as a second-order Rayleigh-Schrödinger
perturbation theory �RSPT� energy correction.

In recent work �15�, Kutzelnigg introduced a novel ap-
proach of “minimal coupling” between the large and small
components with several interesting features. A separation
into linear and quadratic operators describing the magnetic
interaction is obtained. The linear operator closely resembles
its nonrelativistic counterpart and does not couple the large
and small components of 4-spinors. The quadratic operator
has two terms and also closely resembles the nonrelativistic
operators. In this way an interesting connection between the
relativistic and nonrelativistic results is obtained. It has been
argued that this procedure yields a more natural decomposi-
tion of paramagnetic and diamagnetic effects in magnetic
properties �15�. These operator forms were explicitly applied
in recent work by Visscher to obtain the nuclear magnetic
shielding tensor �16�. However, a difficulty is found in this
case when the point dipole model of the nucleus is consid-
ered: Fermi-contact- �FC-� like, paramagnetic-spin-orbit-
�PSO-� like, and spin-dipolar- �SD-� like operators are ob-
tained. But the FC operator yields divergent matrix elements
for four-component spinors. This fact may introduce difficul-
ties in the numerical evaluation of magnetic properties like
the nuclear magnetic shielding and J coupling. The impossi-
bility of its application has been pointed out �17�. Moreover,
significant differences were found in numerical values be-
tween the total shieldings of the linear response and Kut-
zelnigg’s minimal coupling approach. On the opposite side,*azua@df.uba.ar
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it has been shown that full agreement between both methods
is found at the leading order in �Z��2 ��: fine structure con-
stant� in the context of the elimination of the small-
component formalism �18�.

In the present work we present a thorough discussion of
the divergent results occurring in the evaluation of the mag-
netic interaction matrix elements within Kutzelnigg’s ap-
proach at the four-component level. The need of the inclu-
sion of an extra FC-like operator in agreement with previous
work �19� is discussed as well. Despite the appearence of
divergent results of individual operators, the overall result is
shown to be finite. Explicit formal relations are presented
proving the equivalence of the total magnetic properties
within different approaches. In particular, an alternative de-
composition into first- and second-order RSPT expressions
of magnetic properties is obtained on the basis of the Kut-
zelnigg’s transformation. The present analysis could be use-
ful in the search for the mentioned differences in the numeri-
cal results of both formalisms found by Visscher in the
calculation of the nuclear magnetic shielding tensor. The
present theoretical analysis is of general character, and con-
clusions are in line with recent work by Xiao et al. �20�.

II. THEORY

A. Nonrelativistic theory

In nonrelativistic theory we can apply the minimal cou-
pling recipe �p→p+ e

cA� �where A is the vector potential� in
order to introduce the magnetic interaction to the
Schrödinger Hamiltonian

H0 =
p2

2m
+ V �1�

to obtain the corresponding Hamiltonian for an electron
within an electromagnetic field:

H =
�p + e

cA�2

2m
+ V +

e�

2mc
� · B �e � 0� , �2�

where the last term is added in an ad-hoc manner and the
Coulomb gauge is assumed. e is the absolute value of the
electron charge, m its rest mass, � the Pauli operator, and B
is the external magnetic field. If we consider the following
partition of the Hamiltonian,

H0 =
p2

2m
+ V ,

H1 =
e

mc
A · p +

e�

2mc
� · B ,

H2 =
e2

2mc2A2, �3�

we can solve the Schrödinger equation applying perturbation
theory with the use of intermediate normalization, expanding
it in a power series of �, the perturbation parameter of the
field:

H = H0 + �H1 + �2H2,

� = �0 + ��1 + �2�2 + ¯ ,

E = E0 + �E1 + �2E2 + ¯ . �4�

First- and second-order magnetic properties are obtained as

E1 = ��0�H1��0� ,

E2 = E2
d + E2

p,

E2
d = ��0�H2��0� ,

E2
p = Re��0�H1��1� , �5�

where Re stands for the real part of a complex quantity and
�0 and �1 are solutions of

�H0 − E0��0 = 0,

�H0 − E0��1 = − �H1 − E1��0. �6�

B. Relativistic theory

In relativistic theory, the Dirac Hamiltonian for a particle
in an electromagnetic field is

D = �mc2 + c� · � + V , �7�

where � and � are the four-component Dirac matrices and
�=p+ e

cA. Now the separation is

D0 = �mc2 + c� · p + V ,

D1 = e� · A �8�

and

D = D0 + �D1,

	 = 	0 + �	1 + ¯ ,

W = W0 + �W1 + �2W2 + ¯ . �9�

In order to obtain magnetic properties, the first- and second-
order corrections to the energy are

W1 = �	0�D1�	0� ,

W2 = Re�	0�D1�	1� , �10�

where the unperturbed and perturbed wave functions fulfill
the intermediate normalization condition and are solutions of
Eqs. �11�:

�D0 − W0�	0 = 0,

�D0 − W0�	1 = − �D1 − W1�	0. �11�

Let us observe that magnetic properties which are quadratic
in A can only come from W2, which is formally a second-
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order expression. There is no close resemblence between the
relativistic and nonrelativistic expressions and the
diamagnetic-paramagnetic separation is not evident. In re-
cent work an alternative approach was presented by Kut-
zelnigg �15� which has several interesting features. It is
briefly discussed here. A unitary transformation of the Dirac
Hamiltonian yielding a “minimal coupling” of large and
small components of a given 4-spinor is introduced:

U = exp� �

2mc2� · A	 . �12�

The transformed Dirac Hamiltonian, expanded up to second
order in A, is �15�

D̃ = D0 + �H1 + �H2 + D̃2, �13�

where H1 and H2 are the operators defined in Eqs. �3� and D̃2
is given by

D̃2 = −

D1,H1�

4mc2 = −
e2

4m2c3 
� · A,A · p� . �14�

In this case application of perturbation theory with the inter-
mediate normalization condition yields the system of equa-
tions

D̃ = D0 + ��H1 + �2��H2 + D̃2� ,

	̃ = 	̃0 + �	̃1 + ¯ ,

W̃ = W̃0 + �W̃1 + �2W̃2 + ¯ , �15�

and, therefore, first- and second-order corrections to the en-
ergy are given by

W̃2 = �	̃0��H1�	̃0� ,

W̃2 = W̃2
p + W̃2

d1 + W̃2
d2,

W̃2
d1 = �	̃0��H2�	̃0� ,

W̃2
d2 = �	̃0�D̃2�	̃0� ,

W̃2
p = Re�	̃�0�H1�	̃1� . �16�

It is seen that in this case, magnetic properties which are

quadratic in A gathered in W̃2 are expressed as first- and
second-order corrections to the energy in close resemblence
with the nonrelativistic counterparts. The connection be-
tween this “minimal coupling” formalism and the standard
“linear response” formalism at the four-component level can
be established considering the transformed wave function
upon the action of the unitary operator of Eq. �12�. Expan-
sion up to first order �as is required in order to evaluate W2

and W̃2� yields the following formal relation between the
wave functions of the two formalisms:

	̃0 = 	0,

	̃1 = 	1 +
�

2mc2D1	0. �17�

III. FORMAL RELATIONS CONNECTING THE
STANDARD “LINEAR RESPONSE” AND MINIMAL

COUPLING FORMALISMS

A unitary transformation of the Hamiltonian must yield
the same results of magnetic properties, even though their
formal appearence may be different, and eventually more
suitable for physical interpretation. However, in four-
component calculations, this equivalence will only hold if
negative energy �“positronic” states� are considered on the
same footing as electronic excitations. In order to verify the
fulfillment of such a condition it is useful to discuss the
formal relations �sum rules� connecting both formalisms.
Such a relation is obtained from the unitary transformation,
Eq. �12�, itself �18�:

�W0
�n� − W0

�i��
2mc2 �	0

�i���D1�	0
�n�� = �	0

�i��
��D1,D0�

2mc2 �	0
�n��

= �	0
�i��

��D1,c� · p�
2mc2 �	0

�n��

+ �	0
�i��

��D1,�mc2�
2mc2 �	0

�n��

= �	0
�i���H1�	0

�n�� − �	0
�i��D1�	0

�n�� ,

�18�

finally giving:

�	0
�i��D1�	0

�n�� = �	0
�i��

�D0,�D1�
2mc2 �	0

�n�� + �	0
�i���H1�	0

�n�� ,

�19�

where 	0
�i� and 	0

�n� are eigenstates of the unperturbed Hamil-
tonian and W0

�i� and W0
�n� the corresponding energies.

The energy correction W2 in the standard linear response
approach, Eq. �10�, can be explicitly evaluated as the follow-
ing RSPT expression:

W2
�i� = �

n�i

�	0
�n��D1�	0

�i���	0
�i��D1�	0

�n��
W0

�i� − W0
�n� , �20�

whereas the corresponding W̃2 of Kutzelnigg’s formalism
can be expressed as

W̃2
�i� = �	0

�i���H2 + D̃2�	0
�i��

+ �
n�i

�	0
�i���H1�	0

�n���	0
�n���H1�	0

�i��
W0

�i� − W0
�n� . �21�

The equivalence between both expressions can be proven
making use of the result in Eq. �19�. This is explicitly shown
in Appendix A.
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Making use of the result in Eq. �17� it can be shown that
yet a third expression of the energy can be found in close
connection with Kutzelnigg’s transformation. The RSPT ex-
pression of the first-order corrected state in Eq. �10� is

�	1
�i�� = �

n�i

�	0
�n��

�	0
�n��D1�	0

�i��
W0

�i� − W0
�n� . �22�

Introducing the result, Eq. �17�, the following is obtained:

�	̃1
�i�� = �

n�i

�	0
�n��

�	0
�n��D1�	0

�i��
W0

�i� − W0
�n� +

�

2mc2D1�	0
�i�� . �23�

Therefore, W̃2 in Eq. �16� can be written as

W̃2
�i� = �	0

�i���H2 −

D1,H1�

4mc2 �	0
�i�� + Re�	0

�i���H1�	̃1
�i��

= �	0
�i���H2�	0

�i�� − �	0
�i��


D1,H1�
4mc2 �	0

�i��

+ Re�	0
�i��

�H1�D1

2mc2 �	0
�i��

+ Re�
n�i

�	0
�i���H1�	0

�n���	0
�n��D1�	0

�i��
W0

�i� − W0
�n� . �24�

Taking into account that

Re�	0
�i��

�H1�D1

2mc2 �	0
�i�� = �	0

�i��

D1,H1�

4mc2 �	0
�i�� , �25�

we arrive at the final expression:

W̃2 = W2�
�i� = �	0

�i���H2�	0
�i��

+ Re�
n�i

�	0
�i���H1�	0

�n���	0
�n��D1�	0

�i��
W0

�i� − W0
�n� , �26�

which is an alternative expression for a second-order mag-
netic property. In fact, this expression is coincident to the one
obtained by Szmytkowski �21� and by Kutzelnigg �15� in the
context of the Gordon-Pyper decomposition �22–24� of the
one-particle current density in a relativistic framework. In
this expression, the first-order term is closely related to the
diamagnetic nonrelativistic expression, but the second-order
RSPT expression mixes different operators and, strictly
speaking is not related to a first-order correction of the
Hamiltonian. For a detailed proof of the equivalence see Ap-
pendix A.

IV. ANALYSIS OF DIVERGENCES IN THE CALCULATION
OF MAGNETIC PROPERTIES

A. Magnetic field of an atomic nucleus

Magnetic properties which involve the magnetic field of a
magnetic atomic nucleus, like the nuclear magnetic shielding
or the indirect spin-spin coupling tensors, present particular
difficulties. Within the standard linear response approach,
matrix elements of the magnetic operator V=e� ·A between
four-component Dirac spinors yield finite convergent results

within the point dipole model of the nucleus. If Kutzelnigg’s
minimal coupling approach is followed, the operators in Eq.
�13� for a magnetic point dipole contain singularities in the
vicinity of the nucleus. In this section the nuclear potential
and field of a point dipole nucleus at the origin are derived
following the work by Kutzelnigg �25�. The following opera-
tors �which must be worked out in the “distribution” sense�
are obtained �see Appendix B�:

A
 =
� � r

r3 ��r� ,

�27�
where

��r� = 1 for r � 0,

0 for r = 0,
� �28�

� is the nuclear dipole moment, and r is the electron position
with respect to the nucleus.

It is important to remark on the presence of the third and
fourth terms in Eq. �27�. We will refer to both terms as the
“K” term, as the eventual importance of this term in relativ-
istic theory was pointed out in Kutzelnigg’s work.

The linear operators of Kutzelnigg’s formalism are those
of Eqs. �13�. The explicit expressions are given below �16�:

�H1

 = �H1


 · � ,

where

H1

 = HPSO + HSD + HFC + HK-SD + HK-FC, �29�

with

HPSO = � e

mc
	L

r3��r� ,

HSD = � e

mc
	3�S · r̂�r̂ − S

r3 ,

HFC = � e

mc
	2

3

��r�
r2 S , �30�

and also the “K” terms are included:

HK-SD = − � e

mc
	 �S · r̂�r̂

r3 ,

HK-FC = � e

mc
	1

3

��r�
r2 S , �31�

where S= �
2 � is the spin operator. This term combines a �

operator and a traceless second-rank tensor �in the spatial
coordinates� dependence and makes no contribution in non-
relativistic theory, as will be shown explicitly.
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B. Behavior of four-component Dirac spinors in the vicinity of
the nucleus

The behavior of four-component Dirac spinors in the
close vicinity of the nucleus has been analyzed in previous
work �26,27�. In this section we present a detailed discussion
in order to be able to find out the kind of divergences that
will occur in the evaluation of matrix elements of Kut-
zelnigg’s formalism. To this end the Dirac Hamiltonian for a
particle in the presence of the Coulomb field of all nuclei of
a molecule is considered:

W�n�	�n��r� = ��mc2 + c� · p + �
K

VK		�n��r� . �32�

In the close vicinity of the magnetic nucleus of interest the
relative importance of the Coulomb potential of the rest of
the molecule is negligibly small and therefore the solutions
in this region can be obtained from the following equation:

W�n�	�n��r� →
r→0

��mc2 + c� · p −
Ze2

r
		�n��r� , �33�

where Z=ZN is the charge of the nucleus of interest and the
eigenvalue W�n� is given by the general problem, Eq. �32�.
Alternatively, it can be considered that the spectrum of
eigenstates of the atomic Dirac equation constitutes a com-
plete basis set to expand any eigengstate of the molecular
problem. Therefore, in what follows, we consider the atomic
Dirac equation

W	�r� = ��mc2 + c� · p −
Ze2

r
	 ,

r  a, a → 0, �34�

in the close vicinity of the magnetic atomic nucleus of inter-
est. Eigenstates of the atomic problem are explicitly found in
�28,29�. However, in order to discuss the general behavior in
the vicinity of the nucleus the following procedure may be
followed.

The general structure of the solutions is obtained consid-
ering the following operators: total angular momentum J2, its
projection on a reference z axis Jz, the total spin S2, and the
parity operator �28�:

P = �0� = �1 0

0 − 1
	�, with ��r� = − �r� �35�

to write

	 jm
k �r� = � f j�r�Y jm

k �r̂�

ıgj�r�Y jm
−k�r̂�

	 , �36�

where Y jm
k �r̂� are generalized spherical harmonics:

Y jm
k �r̂� = − sgn�k��k + 1

2 − m

2k + 1
��+�Yl

m−1/2�r̂�

+�k + 1
2 + m

2k + 1
��−�Yl

m+1/2�r̂� , �37�

where k= ± �j+ 1
2

�, l= j+ 1
2 if k�0 and l= j− 1

2 if k0. These
solutions satisfy the following conditions:

J2	 jm
k �r� = �2j�j + 1�	 jm

k �r� ,

Jz	 jm
k �r� = �m	 jm

k �r� ,

P�0	 jm
k �r� = sgn�k�	 jm

k �r� . �38�

In particular, making use of the relation

− ı�c� · � = − ı�c� · r̂
�

�r
+ ıc� · r̂

� · L

r
, �39�

the following is obtained:

� · r̂Y jm
k �r̂� = − Y jm

−k�r̂� ,

� · LY jm
k �r̂� = − ��k + 1�Y jm

k �r̂� . �40�

As a consequence, the following equations must be satisfied
by the reduced radial functions fR��� and gR���:

dfR

d�
+

k

�
fR − �1

�
+

Z�

�
	gR = 0,

dgR

d�
−

k

�
gR − �� −

Z�

�
	 fR = 0, �41�

where

� =
1

�c
�m2c4 − W2r, � =�mc2 − W

mc2 + W
,

fR��� = �f���, gR��� = �g��� , �42�

and �=e2 /�c. It is interesting to emphasize that following
the present line of reasoning W and � are imposed by the
general problem. The general form of the reduced radial
functions can be written as �28�:

fR = A0Pf�����,

gR = B0Pg�����, �43�

where Pf��� and Pg��� stand for series expansions in � with
the property

Pf�0� = 1, Pg�0� = 1. �44�

Inserting these forms for the solutions in Eq. �41� the follow-
ing is found:

�A0Pf�� + k� − B0PgZ����−1 + �A0
dPf

d�
−

B0Pg

�
	�� = 0,
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�B0Pg�� − k� + A0PfZ����−1 + �B0
dPg

d�
− A0Pf�	�� = 0.

�45�

Multiplying by �1−� and setting �=0 the following equations
for A0 and B0 are obtained:

A0�� + k� − B0Z� = 0,

B0�� − k� + A0Z� = 0. �46�

In order to obtain nonzero solutions, � must have the value

�2 − k2 + Z2�2 = 0 ⇒ �k = ± �k2 − Z2�2. �47�

It is seen that the value of � depends on �k�= j+ 1
2 and the

relative values of A0 and B0 are independent of the eigen-
value of the corresponding solution. As will be shown later,
it is this relative value which plays a fundamental role to
analyze the relative contributions of the large and small com-
ponents to the matrix elements of interest.

Under the condition Z118, only the positive root leads
to normalizable solutions, and the following condition for the
coefficients is found:

�k = �k2 − �Z��2. �48�

Since

B0

A0
=

�k + k

Z�
, �49�

the general form of a solution can be written as

	 jm
k �r� = r�k−1� Pf

− ı
�k + k

Z�
Pg� · r̂ �Y jm

k �r̂� . �50�

The complete four-component spinor is left unnormalized, as
the normalization constant is not relevant for the present
analysis. The behavior of 	 jm

k is divergent in the vicinity of
the nucleus in the case �k−10—i.e., only in the case �k�
=1.

C. Matrix elements of the magnetic interaction

In this section the evaluation of matrix elements of all
operators of Eq. �29� is considered for the cases where diver-
gent results may occur. In the region close to the nucleus the
general form of a given matrix element is given by

�	 j1,m1
k1 ��H1


�	 j2,m2

k2 �r�a

= �
0+

a

dr r�k1
+�k2��Y j1,m1

k1 �H1

�Y j2,m2

k2 �

−
��k1

+ k1���k2
+ k2�

�Z��2 �Y j1,m1

−k1 �H1

�Y j2,m2

−k2 �	 . �51�

For all operators in Eq. �29�, divergent results are obtained
only for the case �k1�=1 and �k2�=1. In such a case, j1= j2

= 1
2 , �−1=�1=�1− �Z��2��.

Taking into account that

�Z��2 = 1 − �2, �52�

the only matrix elements to be considered are

�	1/2,m1
±1 ��H1


�	1/2,m2

±1 �r�a = �
0+

a

dr r2���Y1/2,m1

±1 �H1

�Y1/2,m2

±1 �

+
� ± 1

� � 1
�Y1/2,m1

�1 �H1

�Y1/2,m2

�1 �	 ,

�53�

where H1

 is given in �29�. Matrix elements mixing states

with k1=1 and k2=−1 vanish by symmetry.
The integral of the angular variables can be carried out

directly making use of Wigner-Eckart theorem, as each term
in H1


 is a first-rank tensor. The detailed calculation is pre-
sented in Appendix C. The radial function to be integrated in
all cases is one of the following:

h�r� =
1

r3 for the PSO and SD operators,

h�r� =
��r�
r2 for the FC and “ K ” operators. �54�

In order to discuss the appearance of divergent results related
to the behavior of the wave functions near the nucleus, the
relevant part of the radial function to be considered is ��−1

and the series expansion involved in P��� can be replaced by
P��=0�=1. The radial integral is analyzed within a sphere of
fixed radius a. Therefore the following is obtained:

�	1/2,m1
±1 ��Tq

1h�r��	1/2,m2

±1 �r�a

= � e

mc
	�m1,m2+q�1,q; 1

2 ,m2� 1
2 ,m2 + q�

��� 1
2 , ± 1�T�1�� 1

2 , ± 1� +
� ± 1

� � 1
� 1

2 , � 1�

�T�1�� 1
2 , � 1�	�

0+

a

dr r2�h�r� . �55�

Such radial integrals have a divergent behavior of type

�
0+

a

dr r2�h�r� = �−
1

2�� − 1�
�I�0+� − I�a�� if h�r� =

1

r3 ,

I�0+� if h�r� =
��r�
r2 ,�

�56�

where I�r� is given by:

I�r� = r2��−1� �57�

and I�0+� stands for the limit

I�0+� = lim
r→0+

r2��−1� = � . �58�

Strictly speaking, the above results express the relative
importance of the two types of integrals. It is interesting to
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remark that all integrals yield divergent results and not only
those involving the delta–type operator. The detailed calcu-
lation of each term is carried out in Appendix C and the
overall result is:

�	1/2,m1

±1 ��
Lq

1

r3 �	1/2,m2

±1 �r�a = Cm1,q,m2
�−

I�0+� − I�a�
� � 1

	 ,

�59�

�	1/2,m1

±1 ��
�
2 �3�r̂ · ��r̂ − ��q

1

r3 �	1/2,m2

±1 �r�a

= Cm1,q,m2
�−

I�0+� − I�a�
� � 1

	 , �60�

�	1/2,m1

±1 ��
�
3 ��r��q

1

r2 �	1/2,m2

±1 �r�a = Cm1,q,m2
�2

3

� + 2

� � 1
I�0+�	 ,

�61�

�	1/2,m1

±1 ��
− �

2 ��r��r̂ · ��r̂q
1

r2 �	1/2,m2

±1 �r�a

= Cm1,q,m2
�−

�

� � 1
I�0+�	 , �62�

�	1/2,m1

±1 ��
�
6 ��r��q

1

r2 �	1/2,m2

±1 �r�a = Cm1,q,m2
�1

3

� + 2

� � 1
I�0+�	 ,

�63�

where

Cm1,q,m2
= � e�

mc
	�m1,m2+q

�1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

�64�

and q stands for a given component of the tensor operators of
Eq. �29�.

As is seen, each separate term FC, PSO, SD, and “K”
yields divergent results when evaluated for states with �k�
=1. The overall matrix element, however, obtained as the
sum of all such separate terms leads to a cancellation of the
infinite terms. This is readily verified by adding together the
coefficients of the separate results in Eqs. �59�–�63�:

−
1

� � 1
−

1

� � 1
+

2�� + 2�
3�� � 1�

−
�

� � 1
+

� + 2

3�� � 1�
= 0.

�65�

It is interesting to remark that in order to obtain such a can-
cellation, the role played by the extra “K” term is crucial. In
recent work by Xiao et al. �20�, a similar analysis was car-
ried out for 1s1/2 atomic Dirac spinors. The “K” contribution
was taken into account in their “FC�SS�” term.

D. Nuclear magnetic shielding tensor in Kutzelnigg’s formalism

The nuclear magnetic shielding tensor can be obtained
from the molecular energy in the presence of the magnetic
fields of the nucleus and the uniform magnetic field of the
spectrometer as

�ij

 =

�2E

�
i � Bj
. �66�

The operators of the nuclear magnetic field in Kut-
zelnigg’s formalism were discussed in the previous sections.
The necessary linear operator associated with the uniform
magnetic field is

�H1
B = �H1

B · B , �67�

where

H1
B = HOZ + HSZ, �68�

with

HOZ =
e

2mc
L ,

HSZ =
e

2mc
2S , �69�

and the necessary bilinear operators in � and B are given by

�H2

B =

e2

2mc2�� ·
1r2 − r · r

r3 · B �70�

and �see Appendix D for details�

D̃2

B = −

e2

4m2c3� �r � ��L + L�r � ��
r3 −

ı�

2
� r · � − � · r

r3 	� ,

�71�

in agreement with a previous derivation of Visscher �16�. As
a consequence, the nuclear magnetic shielding tensor is ex-
pressed as

�kutz

 = �D̃2


B� + ��H2

B� + ���H1


;�H1
B�� . �72�

Taking into account the discussion of the previous sections,
the result of the second-order term is well defined and cov-
ergent. The “diamagnetic” contributions of the first two
terms yield also finite convergent results. This is readily seen
as the dependence of the two operators in the vicinity of the
nucleus is 1 /r2 in the first case and 1/r in the second one,
and both expressions yield convergent results for Dirac four-
component spinors.

E. Discussion

From the discussion in Sec. IV C it is seen that in Kut-
zelnigg’s approach convergent matrix elements are obtained
in the case of a point dipole model for the atomic nucleus,
despite the appearance of FC-like operators. In fact, all op-
erators yield divergent results. As a consequence, the separa-
tion into FC, PSO, SD, and “K” contributions becomes
meaningless and only the full matrix element has a definite
value. As mentioned above, this result is only obtained if the
“K” term is included in the first-order operator. The follow-
ing comments are worthy to mention regarding such opera-
tor. It is neglected in the usual description of the magnetic
field of a point dipole nucleus. The reason is that this “dis-
tribution” operator may only give nonzero values when it is
evaluated for a function with an angular dependence which
does not vanish in the limit r→0. This corresponds to a
function which is not continuous at r=0. In particular, dif-
ferent values are obtained by approaching r=0 from different

ANALYSIS OF SINGULAR OPERATORS IN THE … PHYSICAL REVIEW A 76, 022105 �2007�

022105-7



directions. For all functions which are continuous and differ-
entiable at r=0 the “K” term vanishes. This is the reason
why it is usually not included in the magnetic field of a point
dipole. But in the case of four-component Dirac spinors, the
small component of 	�−� is precisely the kind of function
described above: near the atomic nucleus it behaves as
f�r�Y1m�r̂�. The correctness of the “K” term in this case can
only be established by verifying that it corresponds to the
correct limit of the relativistic theory for a finite nucleus, as
was indicated by Kutzelnigg �19�.

It is interesting to analyze the non relativistic limit of
results in the previous section. In such limit �=1, and I�0+�
in Eq. �58� is replaced by 1. This means only that all inte-
grals are convergent and the relative values expressed in Eqs.
�59�–�63� no longer hold. Only the state with k=−1 belongs
to the Schrödinger spectrum as only in this case the lower
part of the four-component spinor is the “small” component.
It is interesting to observe that in such case the “K” term
disappears, as it should. To this end we consider the addition
of the two factors accompanying the “K” term:

−
�

� + 1
+

� + 2

3�� + 1�
= −

2�� − 1�
3�� + 1�

. �73�

It is seen that the result is zero for the non relativistic limit
�=1. The leading order of this contribution has an extra fac-
tor of order �Z��2 compared to the remaining ones. It is
therefore shown to yield a contribution at the leading-order
relativistic correction of the magnetic interaction matrix ele-
ment.

V. CONCLUDING REMARKS

In the present work the relation of the standard “linear
response” and Kutzelnigg’s “minimal coupling” approaches
to calculate molecular magnetic properties at the four-
component level was analyzed. In particular, the case of
properties involving a point dipole model of the atomic
nucleus was studied in detail. It was explicitly shown that not
only matrix elements of the FC operator, containing a � dis-
tribution, yield divergent results, but also the PSO and SD
operators do so when evaluated for four-component Dirac
states with �k�=1. However, it was explicitly verified that
there is a cancellation of such infinities when the “K” term is
included and the total magnetic operator is considered to-
gether. The overall result is well defined and convergent.

As a consequence of this analysis, it is concluded that
there should be full equivalence between the final result of
magnetic properties in both formalisms. However, in practi-
cal numerical applications such an equivalence could only be
found if electronic excitations and electron positron “rota-
tions” are considered on equal footing, in such a way that the
“sum rule” expressed in Eq. �19� is fulfilled.

The lack of the “K” term and numerical difficulties asso-
ciated with the evaluation of matrix elements of the point
dipole magnetic nucleus could in part explain differences
found in numerical evaluation of the nuclear magnetic
shielding tensor in previous work �16�. In order to avoid
numerical problems associated with the divergent results in

numerical applications with large but finite Gaussian basis
sets, it would be very interesting to develop a method allow-
ing one to eliminate such divergences in an a priori way.
Recent numerical results by Xiao et al. �20� are very encour-
aging in this regard. As a final remark, we would like to
point out that the “K” operators yield zero results in the
nonrelativistic limit, but yield nonzero values at the leading
order in �Z��2. Therefore, the corresponding effects should
be included in quasirelativistic two-component methods.

Financial support from UBACYT �Grant No. X222� and
CONICET �Grant No. PIP 5119� is gratefully acknowledged.

APPENDIX A: EQUIVALENCE OF RSPT EXPRESSIONS
OF EQS. (20) AND (21)

1. Equivalence of W2 and W̃2

The equivalence is proven by inserting the formal relation
of Eq. �19� into Eq. �20�:

W2
�i� = �

n�i

�	0
�i��D1�	0

�n���	0
�n��D1�	0

�i��
W0

�i� − W0
�n�

= �
n�i

�	0
�i��D̃1�	0

�n���	0
�n��D̃1�	0

�i��
W0

�i� − W0
�n�

+ �
n�i

�W0
�i� − W0

�n��
2mc2

�	0
�i���D1�	0

�n���	0
�n��D̃1�	0

�i��
W0

�i� − W0
�n�

− �
n�i

�W0
�i� − W0

�n��
2mc2

�	0
�i��D̃1�	0

�n���	0
�n���D1�	0

�i��
W0

�i� − W0
�n�

− �
n�i

�W0
�i� − W0

�n��2

4m2c4

�	0
�i���D1�	0

�n���	0
�n���D1�	0

�i��
W0

�i� − W0
�n�

= �
n�i

�	0
�i��D̃1�	0

�n���	0
�n��D̃1�	0

�i��
W0

�i� − W0
�n�

+
1

2mc2 �
n�i

�	0
�i���D1�	0

�n���	0
�n��D̃1�	0

�i��

−
1

2mc2 �
n�i

�	0
�i��D̃1�	0

�n���	0
�n���D1�	0

�i��

− �
n�i

�W0
�i� − W0

�n��
4m2c4 �	0

�i���D̃1�	0
�n���	0

�n���D1�	0
�i��

= �
n�i

�	0
�i��D̃1�	0

�n���	0
�n��D̃1�	0

�i��
W0

�i� − W0
�n� +

�	0
�i����D1,D̃1��	0

�i��
2mc2

+
�	0

�i�����D1,D0�,�D1��	0
�i��

8m2c4 . �A1�

Taking into account that
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��D1,D̃1�
2mc2 = −


D1,H1�
2mc2 ,

��D1,D0� = ��D1,�mc2� + ��D1,c� · p�

= − 2mc2D1 + �
D1,c� · p� ,

†��D1,D0�,�D1‡

8m2c4 = �
D1

2

2mc2 +
��
D1,c� · p�,�D1�

8m2c4

= �H2 +

D1,H1�

4mc2 , �A2�

the result of Eq. �21� is obtained.

APPENDIX B: MAGNETIC FIELD DISTRIBUTION OF A
POINT MAGNETIC DIPOLE

The magnetic field is obtained from the vector potential of
Eq. �27�:

� � �� � � r

r3��r�	� = � · � · � r

r3��r�	 − �� · ��� r

r3��r�	 .

�B1�

Taking into account that

�f = r̂�rf +
�̂

r
��f +

�̂

r
sin�����,

� · F =
1

r2�rr
2Fr +

1

r
sin����� sin���F� +

��F�

r sin���
,

� = 
�r̂�r̂ · ẑ� + �̂��̂ · ẑ�� = 
 cos���r̂ − 
 sin����̂ , �B2�

the following is obtained:

� · � · � r

r3��r�	 − �� · ��� r

r3��r�	
= �

��r�
r2 − �
 cos����r − 


sin���
r

��	� r̂

r2��r�	
= �

��r�
r2 − 
 cos���r̂���r�r − 2��r�

r3 	 + 
 sin���r̂
��r�
r3

= �
��r�
r2 −

� · r̂

r2 ��r� + 3� · r̂
��r�
r3 − � · r̂

��r�
r3

+ 
 sin���r̂
��r�
r3 , �B3�

where the FC, SD, PSO, and “K” terms are readily recog-
nized.

APPENDIX C: MATRIX ELEMENTS OF THE NUCLEAR
MAGNETIC INTERACTION

We consider the vector operators:

Tpso = L ,

Tsd =
�

2
�3�r̂ · ��r̂ − �� ,

Tfc =
�

3
� ,

Tk-sd = −
�

2
�r̂ · ��r̂ ,

Tk-fc =
�

6
� . �C1�

Taking into account Eq. �37�,

Y1/2,+1/2
1 �r̂� = − �1

3��+�Y1
0�r̂� + �2

3��−�Y1
1�r̂� ,

Y1/2,−1/2
1 �r̂� = − �2

3��+�Y1
−1�r̂� + �1

3��−�Y1
0�r̂� ,

Y1/2,+1/2
−1 �r̂� = ��+�Y0

0�r̂� ,

Y1/2,−1/2
−1 �r̂� = ��−�Y0

0�r̂� , �C2�

the “reduced” matrix elements of a rank-1 tensor operator
� 1

2 , ±1�T�1�� 1
2 , ±1� satisfy the relation, according to the

Wigner-Eckart theorem,

�Y1/2,1/2
±1 �T0

1�Y1/2,1/2
±1 � = �1,0; 1

2 , 1
2 � 1

2 , 1
2�� 1

2 , ± 1�T�1�� 1
2 , ± 1�

= �1
3� 1

2 , ± 1�T�1�� 1
2 , ± 1� , �C3�

and therefore, the following rule can be applied:

� 1
2 , ± 1�T�1�� 1

2 , ± 1� = �3�Y1/2,1/2
±1 �T0

1�Y1/2,1/2
±1 � . �C4�

We consider separately each operator of Eq. �C1�.

1. �	1/2,m1

±1 �� Lq
1

r3 �	1/2,m2

±1 �
r�a

From

�Y1/2,1/2
+1 �L0

1�Y1/2,1/2
+1 � =

1

3
�Y1

0�Lz�Y1
0� +

2

3
�Y1

1�Lz�Y1
1� =

2

3
� ,

�C5a�

�Y1/2,1/2
−1 �L0

1�Y1/2,1/2
−1 � = �Y1

0�Lz�Y1
0� = 0, �C5b�

the following is obtained:

� 1
2 , ± 1�Tpso

�1� � 1
2 , ± 1� =

1 ± 1
�3

� �C6�

and, therefore, according to Eq. �55�,
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�	1/2,m1

+1 ��
Lq

1

r3 �	1/2,m2

+1 �r�a

= � e�

mc
	�m1,m2+q�1,q; 1

2 ,m2� 1
2 ,m2 + q� 2

�3
�−

I�0+� − I�a�
2�� − 1� 	

= � e�

mc
	�m1,m2+q

�1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

�−
I�0+� − I�a�

� − 1
	 ,

�C7a�

�	1/2,m1

−1 ��
Lq

1

r3 �	1/2,m2

−1 �r�a

= � e�

mc
	�m1,m2+q�1,q; 1

2 ,m2� 1
2 ,m2 + q�

�−1
�+12

�3

��−
I�0+� − I�a�

2�� − 1� 	
= � e�

mc
	�m1,m2+q

�1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

�−
I�0+� − I�a�

� + 1
	 .

�C7b�

2. �	1/2,m1

±1 �� �
2 �3�r̂·��r̂−��q

1

r3 �	1/2,m2

±1 �
r�a

Making use of Eq. �40�,

�Y1/2,1/2
+1 �

�

2
�3�r̂ · ��r̂ − ��0

1�Y1/2,1/2
+1 �

= −
�

2
3�Y1/2,1/2

+1 �cos����Y1/2,1/2
−1 � −

�

2
�Y1/2,1/2

+1 ��z�Y1/2,1/2
+1 �

=
�

2
�3�Y0

1�cos����Y0
0� −

�

6
���+���z���+�� −

�

3
���−���z���−��

=
�

2
��4��Y0

1�Y0
1�Y0

0� +
1

3
	 =

2

3
� , �C8a�

�Y1/2,1/2
−1 �

�

2
�3�r̂ · ��r̂ − ��0

1�Y1/2,1/2
−1 �

= −
�

2
3�Y1/2,1/2

−1 �cos����Y1/2,1/2
+1 � −

�

2
�Y1/2,1/2

−1 ��z�Y1/2,1/2
−1 �

=
�

2
�3�Y0

0�cos����Y0
1� −

�

2
���+���z���+��

=
�

2
��4��Y0

0�Y0
1�Y0

1� − 1� = 0, �C8b�

and the following holds:

� 1
2 , ± 1�Tsd

�1�� 1
2 , ± 1� =

1 ± 1
�3

� , �C9�

and making use of Eq. �55� it is obtained that

�	1/2,m1

+1 ��
�
2 �3�r̂ · ��r̂ − ��q

1

r3 �	1/2,m2

+1 �r�a

= � e�

mc
	�m1,m2+q

�1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

�−
I�0+� − I�a�

� − 1
	 ,

�C10a�

�	1/2,m1

−1 ��
�
2 �3�r̂ · ��r̂ − ��q

1

r3 �	1/2,m2

−1 �r�a

= � e�

mc
	�m1,m2+q

�1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

�−
I�0+� − I�a�

� + 1
	 .

�C10b�

3. �	1/2,m1

±1 �� �
3 ��r��q

1

r2 �	1/2,m2

±1 �
r�a

Considering

�Y1/2,1/2
+1 �

�

3
�0

1�Y1/2,1/2
+1 � =

�

9
���+���z���+�� +

2�

9
���−���z���−�� =

−
�

9
, �C11a�

�Y1/2,1/2
−1 �

�

3
�0

1�Y1/2,1/2
−1 � =

�

3
���+���z���+�� =

�

6
, �C11b�

the following is found:

� 1
2 , ± 1�Tfc

�1�� 1
2 , ± 1� =

1
�3�−

�

3

�
� , �C12�

and, according to Eq. �55�,

�	1/2,m1

+1 ��
�
3 ��r��q

1

r2 �	1/2,m2

+1 �r�a

= � e

mc
	�m1,m2+q�1,q; 1

2 ,m2� 1
2 ,m2 + q�

�� − �

3�3
+

� + 1

� − 1

�

�3
	I�0+�

= � e�

mc
	�m1,m2+q

�1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

�2

3

� + 2

� − 1
I�0+�	 ,

�C13a�

ZACCARI, RUIZ DE AZÚA, AND GIRIBET PHYSICAL REVIEW A 76, 022105 �2007�

022105-10



�	1/2,m1

−1 ��
�
3 ��r��q

1

r2 �	1/2,m2

−1 �r�a

= � e

mc
	�m1,m2+q�1,q; 1

2 ,m2� 1
2 ,m2 + q�

�� �

�3
−

� − 1

� + 1

�

3�3
	I�0+�

= � e�

mc
	�m1,m2+q

�1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

�2

3

� + 2

� + 1
I�0+�	 .

�C13b�

4. �	1/2,m1

±1 �� −�
2

��r��r̂·��r̂q
1

r2 �	1/2,m2

±1 �
r�a

According to Eq. �40�,

�Y1/2,1/2
+1 � −

�

2
�r̂ · ��r̂0

1�Y1/2,1/2
+1 �

=
�

2
�Y1/2,1/2

+1 �cos����Y1/2,1/2
−1 �

= −
�

2�3
�Y0

1�cos����Y0
0�

= −
�

6
�4��Y0

1�Y0
1�Y0

0� = −
�

6
, �C14a�

�Y1/2,1/2
−1 � −

�

2
�r̂ · ��r̂0

1�Y1/2,1/2
−1 �

=
�

2
�Y1/2,1/2

−1 �cos����Y1/2,1/2
+1 �

= −
�

2�3
�Y0

0�cos����Y0
1�

= −
�

6
�4��Y0

0�Y0
1�Y0

1� += −
�

6
, �C14b�

and the following holds:

� 1
2 , ± 1�Tk−sd

�1� � 1
2 , ± 1� = −

1
�3

�

2
. �C15�

And from Eq. �55� it follows that

�	1/2,m1

+1 ��
− �

2 ��r��r̂ · ��r̂q
1

r2 �	1/2,m2

+1 �r�a

= � e�

mc
	�m1,m2+q

�1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

�1 +
� + 1

� − 1
	

��− I�0+�
2

	
= � e�

mc
	�m1,m2+q

��1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

�−
�

� − 1
I�0+�	

�C16a�

�	1/2,m1

−1 ��
− �

2 ��r��r̂ · ��r̂q
1

r2 �	1/2,m2

−1 �r�a

= � e�

mc
	�m1,m2+q

��1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

�1 +
� − 1

� + 1
	

��−
I�0+�

2
	

= � e�

mc
	�m1,m2+q

�1,q; 1
2 ,m2� 1

2 ,m2 + q�
�3

��−
�

� + 1
I�0+�	 . �C16b�

5. �	1/2,m1

±1 �� �
6 ��r��q

1

r2 �	1/2,m2

±1 �
r�a

This is the same matrix element as

�	1/2,m1

±1 ��
�
3 ��r��q

1

r2 �	1/2,m2

±1 �r�a

with a factor of 1
2 .

APPENDIX D: EXPLICIT EXPRESSION OF OPERATOR

D̃2
�B

The anticommutator of Eq. �14� is explicitly evaluated
retaining terms bilinear in � and B. The Einstein convention
of summation over repeated cartesian indices is applied to
write

D̃2

B = −

e2

4m2c3 
�iAi,Ajpj�

= −
e2

4m2c3 �
�iAi

,Aj

Bpj� + 
� jAj
B,Ai


pi��

= −
e2

4m2c3 ��iAi

Aj

Bpj + Aj
Bpj�iAi


 + � jAj
BAi


pi

+ Ai

pi� jAj

B�

= −
e2

4m2c3 �2�iAi

Aj

Bpj + �Aj
Bpj,�iAi


� + �� jAj
B,Ai


pi�

+ 2Ai

pi� jAj

B� . �D1�

Each term is considered separately. The gauge origin of the
uniform magnetic field is set at the nucleus position:
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�Aj
Bpj,�iAi


� + �� jAj
B,Ai


pi� = Aj
B�pj,�iAi


� + �Aj
B,�iAi


�pj + � j�Aj
B,Ai


pi� + �� j,Ai

pi�Aj

B

= Aj
B�i�pj,Ai


� + � jAi

�Aj

B,pi�

= Aj
B�i�ilm
l�pj,

rm

r3 ��r�� + � jAi

1

2
� jpqBp�rq,pi�

= Aj
B�i�ilm
l�− ı���� j

rm

r3 ��r�	 + � jAi

1

2
� jpqBp�ı���qi

= �− ı��Aj
B�i�ilm
l� rm

r3

rj

r
��r� + ��r��� jm

r3 − 3
rjrm

r5 	� +
ı�

2
� jAi


� jpiBp

= − ı�� jpq
1

2
Bp�ilm
l� rmrjrq�i

r4 ��r� + ��r��� jmrq�i

r3 − 3
rjrmrq�i

r5 	� +
ı�

2
� jAi


� jpiBp

= − ı�� jpq
1

2
Bprq�i�ilm
l��r�

� jm

r3 +
ı�

2
� j�ilm


lrm

r3 � jpiBp = 
l�−
ı�

2r3 �� jpqrq�i�ilj − � j�ilmrm� jpi��Bp

= 
l�−
ı�

2r3 �rl�p + �lpri�i − �lrp − �lp� jrj��Bp = � · �−
ı�

2r3 �r� − �r�� · B , �D2�

2�iAi

Aj

Bpj + 2Ai

pi� jAj

B = 2�� ·
� � r

r3 	��B � r� · p� + 2�p ·
� � r

r3 	�� · �B � r��

= 2�� ·
r � �

r3 	�L · B� + �� ·
L

r3	�B · �r � ���

= � · � �r � ��L + L�r � ��
r3 	 · B . �D3�

Therefore,

D̃2

B = −

e2

4m2c3� �r � ��L + L�r � ��
r3 −

ı�

2
� r� − �r

r3 	� , �D4�

which is an alternative expression to that of Ref. �16�.
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