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Simple examples are constructed that show the entanglement of two qubits being both increased and de-
creased by interactions on just one of them. One of the two qubits interacts with a third qubit, a control, that
is never entangled or correlated with either of the two entangled qubits, and is never entangled, but becomes
correlated, with the system of those two qubits. The two entangled qubits do not interact, but their state can
change from maximally entangled to separable or from separable to maximally entangled. Similar changes for
the two qubits are made with a SWAP operation between one of the qubits and a control; then there are
compensating changes of entanglement that involve the control. When the entanglement increases, the map that
describes the change of the state of the two entangled qubits is not completely positive. The combination of
two independent interactions that individually give exponential decay of the entanglement can cause the
entanglement to not decay exponentially but, instead, go to zero at a finite time.
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I. INTRODUCTION

We construct simple examples here that show the en-
tanglement of two qubits being both increased and decreased
by interactions on just one of them. In our first and basic
step, taken in Sec. II, we have one of the two qubits interact
with a third qubit, a control, that is never entangled or cor-
related with either of the two entangled qubits, and is never
entangled, but becomes correlated, with the system of those
two qubits. In Sec. III, we do this for each of the two en-
tangled qubits, and consider the combination of the two in-
teractions, with separate control qubits that are not correlated
and do not interact with each other. The two entangled qubits
do not interact, but their state can change from maximally
entangled to separable or from separable to maximally en-
tangled. Similar changes for the two qubits are made with a
SWAP operation between one of the qubits and a control; then
there are compensating changes of entanglement that involve
the control. This is described in Sec. II A.

Whenever the entanglement increases, and in some cases
where the entanglement decreases, the map that describes the
change of the state of the two entangled qubits is not com-
pletely positive and does not apply to all states of two qubits.
It all depends on whether there are correlations with the con-
trols at the beginning of the interval for which the dynamics
is considered. The maps are described in Sec. IV and dis-
cussed in Sec. V. The completely positive maps that decrease
the entanglement have already been described �1�.

When the interaction of each qubit with its control by
itself gives exponential decay of the entanglement, the com-

bination of the two interactions gives exponential decay at
the rate that is the sum of the rates for the individual inter-
actions, when the two interactions are made the same way.
Making them differently can cause the entanglement to not
decay at that rate or at any single rate. Instead, the entangle-
ment goes to zero at a finite time; the state becomes sepa-
rable and remains separable at later times. This is described
in Sec. III A. Similar behavior has been observed in more
physically interesting and mathematically complicated mod-
els �2–4�.

These examples are built on the same framework, but to a
very different design, from those we made for Lorentz trans-
formations that entangle spins �5�. There, the momenta that
played the roles of controls were purposely correlated. Here,
the controls are kept independent. The framework makes the
operations transparent by describing the qubit states with
density matrices written in terms of Pauli matrices, so one
can see the Pauli matrices being rotated by the interactions.
States are shown to be separable by writing out the density
matrices explicitly as sums of products for pure states. For
each interaction here, the map that makes the change of the
density matrix for the entangled qubits is described by a
simple rule that particular Pauli matrices in the density ma-
trix are multiplied by a number; equivalently, the map of the
state of the entangled qubits is described by a rule that par-
ticular mean values are multiplied by a number.

Our examples show that statements like “entanglement
should not increase under local operations and classical com-
munication” �6,7� are not generally true outside the set of
local operations considered in the original proof �6�. In our
examples, each control qubit interacts with only one of the
two entangled qubits. In this sense, the quantum operations
are local. Correlation with a control at the beginning of the
interval for which the dynamics is considered can give local
operations that increase entanglement.
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II. ONE INTERACTION

We consider the entanglement of two qubits A and B. We
use Pauli matrices �1 ,�2 ,�3 for qubit A, and Pauli matrices
�1 ,�2 ,�3 for qubit B. We let qubit A interact with a third
qubit, which we call C. We think of C as a control. By
interacting with qubit A, it will control the entanglement of
qubits A and B. We work with states represented by ortho-
normal vectors ��� and ��� for C. We consider a state of the
three qubits represented by a density matrix

� = � �
1

2
1C �2.1�

with � the density matrix for the state of qubits A and B.
We follow common physics practice and write a product

of operators for separate systems, for example a product of
Pauli matrices � and � for qubits A and B, simply as ��,
not � � �. Occasionally, we insert a � for emphasis or clar-
ity. We write 1A, 1B, and 1C, but we do not put labels A and B
on the � j and �k. The single statement that the � j are for
qubit A and the �k are for qubit B eliminates the need for
continual use of both A and B lalels and � signs.

Suppose � is one of the density matrices

�± =
1

4
�1 ± �1�1 ± �2�2 − �3�3� . �2.2�

Both �+ and �− represent maximally entangled pure states for
the two qubits. They are Bell states. The state of zero total
spin is represented by �−, and the state obtained from that by
rotating one of the spins by � around the z axis is repre-
sented by �+.

For a rotation W, let DA�W� be the 2�2 unitary rotation
matrix made from the � j so that

DA�W�†�DA�W� = W��� �2.3�

where W��� is simply the vector � rotated by W. Let W�	�
be the rotation by 	 around the z axis, and let DA�	� be
DA(W�	�).

We consider an interaction between qubits A and C de-
scribed by the unitary transformation

U = DA�	������� + DA�− 	������� �2.4�

or, in Hamiltonian form,

U = e−i	H �2.5�

with

H = �3
1

2
������� − ������� . �2.6�

This changes the density matrix � for qubits A and B to

�� = TrC��U � 1B���U � 1B�†�

=
1

2
DA�	��DA�	�† +

1

2
DA�− 	��DA�− 	�†. �2.7�

For �± this gives

�±� = �1

2
	1

4
�1 ± ��1 cos 	 + �2 sin 	��1 ± �− �1 sin 	

+ �2 cos 	��2 − �3�3� + �1

2
	1

4
�1 ± ��1 cos 	

− �2 sin 	��1 ± ��1 sin 	 + �2 cos 	��2 − �3�3�

=
1

4
�1 ± ��1�1 + �2�2�cos 	 − �3�3�

= �± cos2�	/2� + �
 sin2�	/2� . �2.8�

A. From maximally entangled to separable and back

We focus first on the case where 	 is � /2. Then both �+
and �− are changed to

�� =
1

4
�1 − �3�3�

= �1

2
	1

2
�1 − �3�

1

2
�1 + �3�

+ �1

2
	1

2
�1 + �3�

1

2
�1 − �3� . �2.9�

The density matrix � for a maximally entangled state is
changed to the density matrix �� for a separable state that is
a mixture of just two products of pure states. The inverse of
the unitary dynamics of qubits A and C takes �� back to �; it
changes a separable state to a maximally entangled state.

The dynamics continuing forward also changes this sepa-
rable state to a maximally entangled state. As 	 goes from
� /2 to �, the density matrix �±� changes from that of Eq.
�2.9� to

�±� = �
. �2.10�

There can be revivals of entanglement between two qubits
when there is no interaction between them, as well as when
there is �8�.

Changes in the state of qubits A and B from maximally
entangled to separable and back to maximally entangled can
also be made very simply with a SWAP of states �9� between
A and C. This can be done with a unitary operator U � 1B
with U a unitary operator for qubits A and C that acts on a
basis of product state vectors simply by interchanging the
states of A and C. There is interaction between qubits A and
C only; qubit B is not involved.

Applied to an initial state described by Eqs. �2.1� and
�2.2�, where qubits A and B are maximally entangled, this
SWAP operation gives a separable state for A and B. Applied
a second time, it restores the initial state where A and B are
maximally entangled. For qubits A and B, this is similar to
what happens when 	 goes from 0 to � /2 to �. For the three
qubits, it is different. The SWAP operation does not change
the complete inventory of entanglements for the three qubits.
It just moves the entanglements around. In particular, C be-
comes maximally entangled with B. We will see, in Secs.
II C and II D, that the interaction described by Eqs.
�2.4�–�2.6� does change the complete inventory of entangle-
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ments for the three qubits. When the state of qubits A and B
changes from maximally entangled to separable and back to
maximally entangled, there are no compensating changes of
other two-part entanglements. In particular, qubit C never
becomes entangled with anything.

B. Concurrence

The change of entanglement is smaller when 	 does not
change by � /2. From Eq. �2.8�, we have

�±� =
1

4
�1 ± ��1�1 + �2�2�cos 	 + ��1�1���2�2�� ,

�2.11�

after rewriting the last term. This shows that for both �+� and
�−� the eigenvalues are

1

2
�1 + cos 	�,

1

2
�1 − cos 	�, 0, 0 �2.12�

because �1�1 and �2�2 each have eigenvalues 1 and −1,
and together they make a complete set of commuting opera-
tors: their four different pairs of eigenvalues label a basis of
eigenvectors for the space of states for the two qubits. The
Wooters concurrence �10� is a measure of the entanglement
in a state of two qubits. It is defined by

C��� 
 max�0,��1 − ��2 − ��3 − ��4� , �2.13�

where � is the density matrix that represents the state and
�1 ,�2 ,�3 ,�4 are the eigenvalues, in decreasing order, of
��2�2���2�2, with �� the complex conjugate that is ob-
tained by changing �2 and �2 to −�2 and −�2. From Eq.
�2.11� we have

�±��2�2��±����2�2 = �±���±�����2�2�2 = ��±��2, �2.14�

so for �±� the ��i are the eigenvalues of �±� and the concur-
rence is

C��±�� = �cos 	� . �2.15�

We can consider the change of entanglement as 	 changes
through any interval. When �cos 	� decreases, the entangle-
ment decreases. When �cos 	� increases, the entanglement
increases.

C. Two-part entanglements

The only two-part entanglements are when qubit A is in
one part and qubit B is in the other. There is entanglement
between qubit A and the subsystem of two qubits B and C
and between qubit B and the subsystem of two qubits A and
C, as well as between qubits A and B. There is never en-
tanglement between the state of qubit C and the state of the
subsystem of two qubits A and B. The density matrix

�U � 1B���U � 1B�† =
1

2
DA�	��±DA�	�†������

+
1

2
DA�− 	��±DA�− 	�†������

�2.16�

is always a mixture of two products of pure states. The re-
duced density matrix for the subsystem of qubits A and C,
obtained by taking the trace over the states of qubit B, is just
1A � 1C /4, and the reduced density matrix for qubits B and C,
obtained by taking the trace over the states of qubit A, is
1B � 1C /4. There is never entanglement or correlation be-
tween qubits A and C or between qubits B and C. The re-
duced density matrices for the individual single qubits are
just 1A /2, 1B /2, and 1C /2. The only subsystem density matrix
that carries any information is the density matrix � for the
qubits A and B, which is changed by the interaction with
qubit C. The entropy of the subsystem of qubits A and B can
increase or decrease, but there is no change of entropy for
any other subsystem or for the entire system of three qubits.

D. Three-part entanglement

There is three-part entanglement. The state represented by
the density matrix �2.16� is called biseparable because it is
separable as the state of a system of two parts, with C one
part and the subsystem of two qubits A and B the other part.
It is not separable as the state of a system of three parts A, B,
and C. The density matrix �2.16� is not a mixture of products
of density matrices for pure states of the individual qubits A,
B, and C. If it were, its partial trace over the states of C, the
reduced density matrix that represents the state of the sub-
system of the two qubits A and B, would be a mixture of
products for pure states of A and B. That happens only when
cos 	 is 0. In that case, we can see that the density matrix
�2.16� is not a mixture of products for pure states of the
individual qubits A, B, and C, because its partial transpose
obtained by changing �2 to −�2 is not a positive matrix.

In the classification of three-part entanglement for qubits,
biseparable states are between separable states and states that
involve Werner �W� or Greenberger-Horne-Zeilinger �GHZ�
entanglement �11–13�. Let �1, �2, and �3 be Pauli matrices
for the qubit C such that ������ is �1/2��1+�3� and ������ is
�1/2��1−�3�. Bounds from Mermin witness operators say
that for separable or biseparable states

− 2 � �� j� j� j − � j�k�k − �k� j�k − �k�k� j� � 2

�2.17�

for j ,k=1,2 ,3 and j�k; a mean value outside these bounds
is a mark of W or GHZ entanglement �14�. In our examples,
these mean values are always 0. A mean value
Š�GHZ��GHZ�‹ larger than 3/4 for the projection operator
onto the GHZ state,

�GHZ� =
1
�2

�0��0��0� +
1
�2

�1��1��1� , �2.18�

is a mark of GHZ entanglement; it cannot be larger than 3/4
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for a W state �13�. A mean value Š�GHZ��GHZ�‹ larger than
1/2 is a mark of a W state; it cannot be larger than 1/2 for a
biseparable state �13�. In our examples, Š�GHZ��GHZ�‹ is
always 0. A mean value Š�W��W�� larger than 2/3 for the
projection operator onto the W state,

�W� =
1
�3

�1��0��0� +
1
�3

�0��1��0� +
1
�3

�0��0��1� ,

�2.19�

is a mark of W entanglement; it cannot be larger than 2/3 for
a biseparable state �13�. In our examples,

Š�W��W�‹ =
1

6
�1 ± cos 	� . �2.20�

This mean value does not involve either entanglement or
correlation of the qubit C; it would be the same if both ������
and ������ in the density matrix �2.16� were replaced by
�1 /2�c, the completely mixed density matrix for C.

For any 	, the density matrices �2.16� for the two cases 

and � are changed into each other by the local unitary trans-
formation that changes the Pauli matrices for one of the qu-
bits A or B by rotating its spin by � around the z axis. As a
function of 	, the mean value Š�W��W�‹ changes in opposite
directions for 
 and � cases. So will any mean value for the
states described by the density matrices �2.16�, if it changes
at all.

For the states described by the density matrices �2.16�, the
only nonzero mean values that involve the qubit C are

��1�2�3� = 
 sin 	 ,

��2�1�3� = ± sin 	 . �2.21�

These would be the same if they were calculated with only
the ������ part or only the ������ part of the density matrix
�2.16�. In fact, they are the same as ��1�2���3� and
��2�1���3� calculated for one of those parts. Their values do
not require either entanglement or correlation of C.

III. TWO INTERACTIONS

If a control were coupled similarly to qubit B as well, then
cos 	 would be replaced by cos 	A cos 	B in the next to last
line of Eq. �2.8� and in Eqs. �2.11� and �2.15�. If the coupling
of qubit B is made with a rotation around the x axis instead
of the z axis, then the next to last line of Eq. �2.8� becomes

�±� =
1

4
�1 ± �1�1 cos 	A

± �2�2 cos 	A cos 	B − �3�3 cos 	B� . �3.1�

Rewriting the last term and looking at eigenvalues in terms
of �1�1 and �2�2 as before yields the concurrence

C��±�� =
1

2
max�0, �cos 	A� + �cos 	A cos 	B� + �cos 	B� − 1� .

�3.2�

When cos 	A is 1, these equations �3.1� and �3.2� describe
the result obtained when there is only the interaction of qubit

B made with a rotation around the x axis. If neither cos 	A
nor cos 	B is 1, the concurrence becomes zero, and the state
separable, before cos 	A or cos 	B is zero. The interactions
of qubits A and B with their controls change maximally en-
tangled states to separable states. The inverses change sepa-
rable states to maximally entangled states. In the following
section, we describe the density matrices that show explicitly
that the separable states are mixtures of products of pure
states.

A. Exponential decay

To describe exponential decay of entanglement we let

cos 	A = e−�At, cos 	B = e−�Bt, �3.3�

by letting each interaction be modulated by a time-dependent
Hamiltonian H�t� that is related to the Hamiltonian H of Eqs.
�2.4� and �2.5� by

H�t� = H
d	

dt
= H� cot 	 , �3.4�

where 	 and � are 	A and �A or 	B and �B. The same result
could be produced in different ways. The interactions could
be with large reservoirs instead of qubit controls �2–4�. Each
qubit A or B could interact with a stream of reservoir qubits
�15�. Here, we are interested in the way the entanglement is
changed by the combination of the two interactions. That
depends only on the changes in the density matrix � for
qubits A and B, not on the nature of the controls and the
interactions. Maps that make the changes in � will be de-
scribed in the next section.

If there is only the interaction of qubit A with qubit C, the
concurrence is e−�At. If there is only interaction of qubit B
with its control, the concurrence is e−�Bt. If there are both,
and both are made with rotations around the z axis, the con-
currence is e−�Ate−�Bt. If there are both, and the interaction of
qubit B with its control is made with a rotation around the x
axis, the concurrence is

C��±�� =
1

2
max�0,e−�At + e−�Ate−�Bt + e−�Bt − 1� . �3.5�

This concurrence �3.5� is zero when

e−�At + e−�Ate−�Bt + e−�Bt = 1. �3.6�

Then the state is separable; it is a mixture of six products of
pure states: from Eqs. �3.1� and �3.3�

�±� =
1

2
e−�At1

2
�1 + �1�

1

2
�1 ± �1� +

1

2
e−�At1

2
�1 − �1�

1

2
�1 
 �1�

+
1

2
e−�Ate−�Bt1

2
�1 + �2�

1

2
�1 ± �2� +

1

2
e−�Ate−�Bt1

2

��1 − �2�
1

2
�1 
 �2� +

1

2
e−�Bt1

2
�1 + �3�

1

2
�1 − �3�

+
1

2
e−�Bt1

2
�1 − �3�

1

2
�1 + �3� . �3.7�

The state remains separable at later times; when the sum of
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the exponential decay factors is less than 1, the density ma-
trix is a mixture in which just a multiple of the density ma-
trix 1 /4 for the completely mixed state is added to the terms
of Eq. �3.7�. This change of maximally entangled states to
separable states can be described without reference to expo-
nential decay by continuing to use cos 	A and cos 	B instead
of e−�At and e−�Bt. Similar behavior involving exponential
decay has been observed in more physically interesting and
mathematically complicated models �2–4�.

IV. MAPS

The maps that make the changes in the density matrix �
for qubits A and B could be described in different ways using
various matrix forms. That is not needed here. Writing � in
terms of Pauli matrices provides a very simple way to de-
scribe the maps. For any density matrix

� =
1

4
�1 + �

j=1

3

�� j�� j + �
k=1

3

��k��k + �
j,k=1

3

�� j�k�� j�k	
�4.1�

for qubits A and B, the result of the interaction of qubit A
with qubit C, described by Eq. �2.7�, is that in �, in both the
� j and � j�k terms,

�1 → �1 cos 	A, �2 → �2 cos 	A; �4.2�

the result of the interaction of qubit B with its control is that
in �

�1 → �1 cos 	B, �2 → �2 cos 	B �4.3�

if the interaction is made with a rotation around the z axis;
and the result of the interaction of qubit B with its control is
that in �

�2 → �2 cos 	B, �3 → �3 cos 	B �4.4�

if the interaction is made with a rotation around the x axis.
The terms with sin 	 cancel out because there is an equal
mixture of parts with 	 and parts with −	.

The changes in the state of qubits A and B can be de-
scribed equivalently by maps of mean values that describe
the state: the result of the interaction of qubit A with qubit C,
described by Eq. �2.7�, is that

��1� → ��1�cos 	A,

��2� → ��2�cos 	A,

��1�k� → ��1�k�cos 	A,

��2�k� → ��2�k�cos 	A �4.5�

for k=1,2 ,3; the result of the interaction of qubit B with its
control is that

��1� → ��1�cos 	B,

��2� → ��2�cos 	B,

�� j�1� → �� j�1�cos 	B,

�� j�2� → �� j�2�cos 	B �4.6�

for j=1,2 ,3 if the interaction is made with a rotation around
the z axis; and the result of the interaction of qubit B with its
control is that

��2� → ��2�cos 	B,

��3� → ��3�cos 	B,

�� j�2� → �� j�2�cos 	B,

�� j�3� → �� j�3�cos 	B �4.7�

for j=1,2 ,3 if the interaction is made with a rotation around
the x axis.

When 	A and 	B change over intervals from initial values
	Ai and 	Bi to final values 	Af and 	Bf, the cos 	A and
cos 	B factors in the maps are replaced by cos 	Af / cos 	Ai
and cos 	Bf / cos 	Bi. If either of these factors is larger than 1,
the map is not completely positive and does not apply to all
density matrices � for qubits A and B. This happens when-
ever the entanglement increases. It also happens in cases
where the concurrence �3.2� decreases, when one of cos 	A
and cos 	B increases and the other decreases and there is
more decrease than increase. The completely positive maps
that decrease the entanglement have already been described
�1�.

V. RECONCILIATION

Entanglement being increased by local interactions may
seem surprising from perspectives framed by experience in
common situations where it is impossible. Entanglement is
not increased by a completely positive map of the state of
two qubits produced by an interaction on one of them. The
interaction will produce a completely positive map if it is
with a control whose state is initially not correlated with the
state of the two qubits, as in Eq. �2.1�. In our examples, that
happens only when the initial value of 	 is 0 or a multiple of
�. Otherwise, the state of the control is correlated with the
state of the two qubits as in Eq. �2.16�. When a subsystem is
initially correlated with the rest of a larger system that is
being changed by unitary Hamiltonian dynamics, the map
that describes the change of the state of the subsystem gen-
erally is not completely positive and applies to a limited set
of subsystem states �16,17�. We see this in our examples
whenever the entanglement increases, and in some cases
when the entanglement decreases.

The map depends on both the dynamics and the initial
correlations. It describes the effects of both in one step.
Completely positive maps are what you get in the simplest
set-up, where you bring a system and control together in
independent states and consider the effect of the dynamics
that begins then. Dynamics over intervals where the maps
are not completely positive can be expected to play roles in
more complex settings. We should not let expectations for
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completely positive maps prevent us from seeing things that
can happen.

Our perspective is enlarged when we look beyond the
map and include the dynamics. We can see the dynamics and
the initial preparation as two related but separate steps. We
can consider the effect of the dynamics, whatever the prepa-
ration may be.

Local interactions that increase entanglement are com-
pletely outside a perspective that is limited to pure states. An
interaction on one of the qubits cannot change the entangle-
ment at all if the state of the two qubits remains pure �18�.
The entanglement of a pure state of two qubits depends only
on the spectrum of the reduced density matrices that describe
the states of the individual qubits, which is the same for the

two qubits. If that could be changed by an interaction on one
of the qubits, there could be a signal faster than light. In our
examples, the state of the two qubits is pure only when it is
maximally entangled. In our examples, the spectrum of the
density matrices for the individual qubits never changes, and
gives no measure of the entanglement.
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