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Self-steepening of ultrashort optical pulses without self-phase-modulation

Jeffrey Moses,1 Boris A. Malomed,2 and Frank W. Wise'
lDepartment of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
2Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
(Received 23 January 2007; published 28 August 2007)

We report the experimental manifestation in optical physics of wave propagation involving self-steepening
without concomitant self-phase-modulation. The conditions are realized through the interplay of quadratic and
cubic nonlinearities in a frequency-doubling crystal. The experiment constitutes the physical realization of the
Chen-Lee-Liu equation, a derivative nonlinear Schrodinger equation that governs pulse propagation.

DOI: 10.1103/PhysRevA.76.021802

The self-steepening of optical pulses has received much
attention since the invention of the femtosecond laser. Its
source, in mathematical terms, is the first nonlinear correc-
tion to the nonlinear Schrédinger equation (NLSE) for light
pulses temporally narrow enough to violate the slowly-
varying-envelope approximation [1]. Because of this, self-
steepening has been studied only in conjunction with self-
phase-modulation (SPM): together, the two nonlinear terms
account for the asymmetric spectral and temporal shaping of
ultrashort pulses [2].

Outside the realm of nonlinear optics, propagation equa-
tions in which self-steepening is the sole nonlinear effect,
appearing without SPM, received early attention for their
mathematical properties. Like the NLSE, the Kaup-Newell
equation (KNE) [3]
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which feature self-steepening without SPM, are integrable.
The solvability of the NLSE coupled with its successful
modeling of physical systems in many different contexts
make it a very special model. By contrast, isolated self-
steepening is rarely encountered in nature: manifestations of
the KNE and CLLE are few. The KNE is only known to
model Alfvén waves in magnetized plasmas [5]; the CLLE
has heretofore not been recognized to describe any physical
system.

We show here that the CLLE accurately models condi-
tions readily met in a quadratic nonlinear crystal. The equa-
tion serves as a model for a mix of cubic and quadratic
nonlinearities, with the quadratic terms treated in the cascad-
ing limit, corresponding to second-harmonic generation
(SHG) with a large wave-vector mismatch. We find condi-
tions under which the effective Kerr-like nonlinearity gener-
ated by the cascading cancels with the real cubic term, thus
leaving self-steepening in isolation. We experimentally and
numerically demonstrate the basic evolution of the CLLE
and observe an interesting optical phenomenon: self-
steepening without simultaneous nonlinear phase modulation
results in the tilting of the temporal profile of a pulse and
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shock formation, but with little change to the power spec-
trum. With these observations, one may add the CLLE to the
short list of nonlinear propagation equations that, like the
NLSE, are solvable and may be consistently derived from
Maxwell’s equations.

The cascaded-quadratic (y'*: x®) nonlinearity makes it
possible to impress Kerr-like nonlinear phase shifts of con-
trollable sign and magnitude on pulses [6]. It has been ex-
ploited to mimic the propagation of ultrashort pulses under
X, using a quadratic medium [7]. The propagation obeys an
effective NLSE with features usually inaccessible from y,
such as a negative (self-defocusing) sign of the Kerr term
[8], and Raman- [9] or self-steepening-like [10] terms of
controllable sign and magnitude.

We consider the combined action of quadratic and cubic
nonlinearities in a phase-mismatched SHG process. The
coupled propagation equations for fundamental field (FF)
and second-harmonic field (SHF),
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may be reduced to an approximate equation for the FF in the
limit of large wave-vector mismatch, leaving only the
leading-order nonlinear terms that arise from both quadratic
and cubic susceptibilities [10]:
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Here, s=t/1y~z/v, 7, é=2(1/v,1=1/v,4,)/ 7, Ty is an ar-
bitrary temporal scale, whereas a;, v,;, and a; are ampli-
tudes, group velocities, and the normalized group-velocity
dispersion (GVD), respectively, for the FF and SHF. Further,
o is the inverse normalized FF frequency, 8’ the normalized
wave-vector mismatch, x the normalized cubic nonlinear co-
efficient, and v the ratio of cross-phase-modulation to SPM.
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In Eq. (4), a, B, and \ are derived from the mix of y'* and
X effects, and are explicitly defined in Ref. [10].

Equation (4) is a generalized derivative NLSE. For par-
ticular choices of coefficients, it is integrable [3,11]. For ex-
ample, with a=a, B=2b, and \=b, it is the cubic NLSE
modified to describe the propagation of few-cycle pulses [1].
When a=0, it is known as the type-1I derivative NLSE. In
this case, with =2 and A=1 it is the KNE, Eq. (1), and with
B=1 and A\=0 it reduces to the CLLE, Eq. (2).

The sign and size of quadratic components in a, f3,
and A are controllable through the wave-vector mismatch
(Ak=2k;—k,), while the cubic parts are fixed and propor-
tional to the nonlinear index of refraction, n,. Although these
coefficients share dependences on material and experimental
parameters, for a given material one may achieve reasonable
control of their relative values. In particular, Ref. [10] shows
that o and \ vanish in unison when the contributions of y®
and X(3> to the total effective nonlinear index of refraction,

(2)
(19)oi(Ak) =1, + (nz)g{t )(Ak), cancel. Since the cubic nonlin-

ear phase shift is usually positive, one may choose Ak so as
(2)

to make (nz)i’f(lc ) negative and equal in magnitude to n,, thus

reducing Eq. (4) to the CLLE,

A B, PA [ y( 1“2)] LA
=iz s 25+ — | A= =0, 5
&z+l2 a7 I? +w0 | |¢9T )

which occurs when Ak=-I%/y=Akygpy. Here, A is the
complex FF pulse envelope, I' is proportional to ),
and y=ngn,wy/2r. Parameters 6 and B, are the group ve-
locity mismatch (GVM) between the FF and SHF
(6=1/v,,~1/v,,) and the GVD coefficient at the FF, re-
spectively. The absence of SPM in Eq. (5) is the result of the
balance between y'» and ) nonlinearities in Eqs. (3): x?-
and y?-generated nonlinear phase shifts exactly cancel after
each cycle of the energy conversion between the FF and
SHF. However, the intensity-dependent temporal shift of the
energy distribution in the pulse, resulting from the difference
in EF and SHF group velocities, does not cancel, making
self-steepening the dominant nonlinear effect. In this Rapid
Communication, we report conditions found in common bulk
quadratic media that yield Ak=Ak,gpy, and thereby an ex-
perimental implementation of the CLLE.

Numerical simulations of the CLLE, Eq. (5), correctly
reproduce the picture revealed by simulations of the full sys-
tem of Egs. (3). For example, a clear match between solu-
tions of the full system (solid lines) and CLLE (dotted lines)
for zero GVD is shown in Fig. 1. These simulations show the
effect of the isolated self-steepening term, which may be
interpreted as an intensity-dependent group velocity that
transfers energy from the peak of the pulse to its side, tilting
the pulse and eventually forming a shock, Fig. 1(a). While
there is negligible temporal phase modulation [see Fig. 1(b)],
new small-amplitude spectral components emerge symmetri-
cally in the power spectrum [Fig. 1(c)]. These new compo-
nents, together with the change in spectral phase [Fig. 1(d)],
result in the steepening of the temporal profile. In sharp con-
trast to the common case where self-steepening and SPM act
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FIG. 1. Isolated self-steepening: the simulated propagation of
coupled FF and SHF, as obtained from Egs. (3) (solid lines) and
from the corresponding CLLE, Eq. (5) (dotted lines). Initial condi-
tions (dashed lines) correspond to a FF Gaussian pulse at 800 nm,
with a temporal width of 120 fs and intensity of 200 GW/cm?.
Propagation parameters correspond to a 6-cm-long BBO crystal. In
Eqs. (3), Ak is set so as to cancel the ¥ and x® nonlinear phase
shifts (see text), and the GVD is artificially set to zero. (a) The FF
temporal profile; (b) temporal phase; (c) power spectrum; (d) spec-
tral phase.

together [2], strong steepening of the pulse edge occurs here
without a spectral shift and/or generation of conspicuous
new spectral components. The inclusion of GVD disrupts the
formation of the shock front, but the steepening is still ob-
served if it is initially a stronger effect. In this case, the
results of simulations of Egs. (3) and (5) still agree closely.
The degree to which a steepened edge forms depends on the
initial pulse width and intensity and the ratio of the GVD and
self-steepening coefficients: a maximum steepening is
reached, after which the pulse generally decays.

We have observed the predicted pulse steepening directly
in experiments, using the common nonlinear -crystal
B-barium metaborate (BBO) as the quadratic medium.
At wavelengths provided by standard laser sources, expe-
rimental conditions with both negligible GVD and signifi-
cant GVM are not available, but the GVM (~200 fs/mm)
and relatively high ratio of GVM to GVD at 800 nm allowed
us to observe the steepening of 110-fs-wide initial Gaussian
pulses after modest propagation lengths, ~1 cm. Thus, a
Ti:sapphire regenerative amplifier operating at =800 nm
wavelength was used as the source, which allows for suitable
intensity at focus and a long enough confocal parameter to
make the propagation effectively one dimensional. The high
damage threshold of the BBO crystal is a crucial feature, as
will be discussed below. Finally, its high d. and low n,
make it possible to achieve (1,),,=0.

We began by determining Akygpy. To do this, we used
high incident pulse intensity and tuned the propagation di-
rection away from the SHG phase-matching angle (in the
direction appropriate for self-defocusing x'? phase shifts),
until we could see no change to the power spectrum, i.e., no
SPM-induced spectral broadening. This was then repeated in
several steps, increasing the intensity and retuning the angle.
At high intensities the spectral shape is very sensitive to
variations of Ak about Akzgpy, With changes of only 0.1°
(corresponding to ~1 7/mm) resulting in noticeable
changes in the spectrum. We found Akygppy=—31%5 7r/mm,
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with the largest measurement error resulting from un-
certainty in the SHG phase-matching angle. This implies
n,=(4.6+0.8) X 1071 cm?/W (assuming d.=1.8 pm/V), in
line with accepted values [12]. With Akygpy and n, experi-
mentally determined, the simulations suggested 8 mm to be a
suitable propagation length, for which the maximum steep-
ening occurs at intensity =0.7 TW/cm?.

We measured the damage threshold for 110 fs pulses at
Akzspp=—31 7r/mm, and found it to be suitably high. For
both coated and uncoated BBO crystals, damage to the input
surface occurs before there is visible damage to the bulk, at
intensities of 4.4+1.0 and 4.0+0.9 TW/cm?, respectively,
which allowed us to aim for the optimum intensity of
0.7 TW/cm? without worrying about possible damage. The
uncertainty in experimentally measured intensities was
~20%. The 4 TW/cm? intensity might have damaged the
BBO crystal if SPM-induced self-focusing had been present:
n,=4.6X 1071 cm?/W implies that a nonlinear phase of
1.0 rad is accumulated by a 1.0 TW/cm? pulse in only
280 wum of propagation. This would cause self-focusing col-
lapse of a 100-um-radius focused beam after propagating
~6 mm. However, with the self-focusing suppressed, there
is no possibility of damage due to collapse.

At incident intensities of =0.4 TW/cm?, we observed
bright color generation in cones about the propagation axis in
the 8-mm-long crystal, which restricted our experiments to
intensities <1.0 TW/cm?. The observed colors cover the
visible spectrum and form an emission pattern more complex
than the previously observed concentric colored conical
emission pattern at SHG phase matching [13]. At
1.0 TW/cm?, there is already a few percent conversion of
the FF energy to off-axis emission. As intensity increases, the
conversion increases steadily to over 50%, producing a com-
plex pattern of bright white light in a cone about the beam
center, before the surface damage finally occurs at
4 TW/cm?. The enhancement of the conversion with the in-
crease of the intensity and propagation distance are signa-
tures of modulation instability. These instabilities amplify
fluctuations of the initial FF power, which hamper systematic
measurements above 1.0 TW/cm?. Above this intensity, the
loss to the conical emission may become a significant effect
as well. We note that the two-photon absorption edge in BBO
is below 400 nm [15], which allowed us to ignore this loss
channel.

The experimental setup was as follows. The 110 fs, 1 mJ
pulse from the regenerative amplifier was split, with one
half focused in an 8-mm-long BBO crystal oriented such that
Ak=-31 7r/mm, and the other half sent to a 25 mm BBO
crystal to compress the pulse to 50 fs, using the x»:y®
soliton-compression technique [14]. The 50 fs pulse was
used as a reference pulse for cross-correlation (CC) measure-
ments of the steepened signal. In the absence of the 8§ mm
BBO crystal, the focused beam, with 120 um radius and
pulse energy up to 50 uJ (1.0 TW/cm? intensity), does not
feature spectral modulation due to nonlinear phase accumu-
lation in air. The centers of the experimental beam and 50 fs
reference beam were recombined with a variable path-length
delay in a 100-um-thick BBO sample to produce the CC by
SHG. Auto- and cross-correlation measurements of the input
pulse were consistent.
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FIG. 2. Cross-correlations as predicted by the simulations (a)
versus experimentally observed cross-correlations (b) for 110 fs
Gaussian pulses after passing 8 mm in BBO at Ak=—31 77/mm and
at various intensities. (c), (d) The first derivative of (a) and (b),
respectively. (e), (f) Spectra; (g) simulated temporal profiles that
were used to generate (a). (h) The experimental autocorrelations of
the input pulse and 50 fs cross-correlation reference pulse.

At intensities up to 1.0 TW/cm? we observe the steepen-
ing predicted by both the CLLE and the full equations (3).
The measured CC traces at selected intensities are shown in
Fig. 2(b), along with simulated CCs generated by Egs. (3)
with identical parameters [see Fig. 2(a)]; the intensities differ
slightly, and were chosen to match the experimental data.
Both the CCs and their temporal derivatives, Fig. 2(d),
closely match the numerical results. We note that the experi-
mental data also match well with simulations of Eq. (5):
differences in the solutions of Egs. (3) and (5) are of minor
detail. At 0.2 TW/cm?, there is very slight pulse tilting. At
0.6 TW/cm?, there is significant steepening of the trailing
edge and softening of the leading edge. Finally, at
1.0 TW/cm? the trailing edge is less steep. The CC has a
smoothing effect on the pulse shape: the intensity profiles
used to generate Fig. 2(a) exhibit clearer steepening [see Fig.
2(g)]. The experimental spectra also closely match spectra
predicted by simulation of Egs. (3) [see Figs. 2(e) and 2(f)],
and, as predicted by the CLLE, the spectral broadening (on
the linear scale) is negligible. The slight difference in spec-
tral shapes between Figs. 2(e) and 2(f) may be attributed to
details of the input experimental spectrum. Both the simula-
tions and experiments show an unexpected slight redshift at
the highest intensity. The simulations of both Egs. (3) and
Eq. (5) included third-order dispersion, which, however, pro-
duced an insignificant effect.
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FIG. 3. Simulations corresponding to the case of 1.2 TW/cm?
intensity in Fig. 2, using the coupled two-field equations, Eq. (3)
(solid line), CLLE, Eq. (5) (dotted line), and the CLLE with the
extra quintic term, i|a|*a (dash-dotted line). Dashed line is input. (a)
Temporal profiles, (b) power spectra, and (c) temporal phase
profiles.

The measured pulses agree well with the numerical pre-
dictions of Egs. (3), and both confirm the character of the
evolution expected from the CLLE, viz., temporal steepening
without substantial spectral broadening. We also notice slight
discrepancies at 1.0 TW/cm?: the redshift of the spectrum
and slight increase in the temporal width of the pulse, ob-
served in this case, cannot be explained by the CLLE. The
decrease in steepening observed at 1.0 TW/cm? is not pre-
dicted either, as the steepening should increase monotoni-
cally. These discrepancies are consequences of using the
high intensity necessary for our experiment in BBO at
800 nm wavelength. Despite the nominal cancellation of the
X and cascaded y'® phase shifts, the simulated temporal
phase profiles feature a SPM-like modulation that becomes
significant at 1.0 TW/cm? (see solid line in Fig. 3). Further
analysis of these phase shifts reveals that they grow in pro-
portion to the squared intensity, which suggests the presence
of an effective ' term as a higher-order perturbation to the
effective CLLE, Eq. (5).
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Indeed, an effective quintic term has been derived previ-
ously as a correction to the cascading-limit approximation
[16], and it must appear as well in the perturbation expansion
which was used to reduce Eqgs. (3) to the single-field equa-
tion, Eq. (4) [note that direct x® effects are not included in
the underlying model based on Egs. (3)]. This correction
should be significant only at extreme intensities, and has not
been identified in previous experimental work, likely due to
the (usual) domination of cubic SPM. A positive phase shift
from the effective quintic term thus derived can explain both
the temporal broadening (positive phase shifts and simulta-
neous action of normal GVD stretch the pulse) and redshift
(an intensity-dependent phase shift applied to an asymmetric
pulse results in a spectral shift [2]). These distortions, in turn,
explain the decrease in pulse steepness observed at
1.0 TW/cm?. Figure 3 displays results corresponding to the
1.2 TW/cm? case of Fig. 2, obtained from simulations of the
two-field equations (3), the CLLE (5), and the CLLE with an
added ila|*a term. The match between the results produced
by Egs. (3) and the y-perturbed CLLE for the 1.2 TW/cm?
intensity indicate a deviation from the CLLE model in the
limit of extremely high intensities. In practice, this regime
can be avoided by properly choosing experimental param-
eters, e.g., selecting larger GVM and thus stronger self-
steepening. We note that the quintic term produces negligible
effects at 0.2 and 0.6 TW/cm?, so the CLLE model is ad-
equate for intensities up to 0.6 TW/cm? [simulations of Egs.
(3) and (5) match].

In conclusion, we have demonstrated clear theoretical and
experimental evidence of an alternative governing equation
in nonlinear optical pulse propagation, the Chen-Lee-Liu
equation. The ability to shape pulses through self-steepening
in the absence of SPM may find straightforward applications
in studies of light-matter interactions.
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