
Observable effects of Kerr nonlinearity on slow light
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We show how the slow light propagation through a four-level N-type system can be significantly influenced
by the application of the Kerr field under the condition of electromagnetically induced transparency. The
change due to the Kerr field under fairly general conditions can be about 10–15 %.
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In a remarkable paper Schmidt and Imamoğlu �1� discov-
ered that the Kerr nonlinearities could be enhanced by sev-
eral orders of magnitude by taking advantage of electromag-
netically induced transparency. Hau et al. reported one of the
largest Kerr nonlinearity in a Bose condensate �2�. Kang and
Zhu �3� reported a large enhancement of Kerr nonlinearity
with vanishing linear susceptibilities in coherently prepared
four-level Rb atoms. Using electromagnetically induced
transparency �EIT� large cross phase modulation has also
been reported �4�. Wang et al. proposed �5� the use of double
EIT schemes �6–9� for optimal production of cross phase
modulation. Kang and Zhu also reported the nature of probe
absorption and dispersion under double EIT conditions �3�.
However, it would be worthwhile to study the consequences
of enhanced Kerr nonlinearities for slow light. This is a re-
gime different from that of double EIT. We demonstrate in
this report that under the condition of EIT �not double EIT�
the Kerr effect can make a very significant contribution to
the group velocity and one should be able to observe this
rather easily.

The atomic medium under investigation is a N-shaped
four-level system as depicted in Fig. 1. This level scheme has
been extensively studied to exhibit large cross-phase modu-
lation �1,3�, enhanced nonlinear susceptibilities �10–13�, as
well as subluminal and superluminal propagation �14�. Here
we define all fields as

E� i�z,t� = E� i�z,t�e−i��it−kiz� + c.c., �1�

where E� i is the slowly varying envelope of the field and ki is
the wave vector; i=1,2 ,3 refers to the probe field, control
field, and Kerr field, respectively. The level �3� is coupled to
the lower levels �1� and �2� by the probe field E1 at frequency
�1 and the control field E2 at frequency �2, respectively, as
shown in Fig. 1. This results in a �-type EIT system pro-
vided the probe and control fields satisfy a two-photon reso-
nance condition, i.e., �1−�2=�12. Note that the states �1�
and �2� are metastable states. We apply an additional field
which acts on the transition �2�↔ �4� to demonstrate the ef-
fect of Kerr nonlinearity on slow light propagation. The den-
sity matrix equations of motion for the four level system

under dipole and the rotating wave approximation can be
written as follows:

�̇22 = 2�2�33 + 2�3�44 + iG1
*�32 − iG1�23 + iG2

*�42 − iG2�24,

�̇33 = − 2��1 + �2��33 + iG1�23 + ig�13 − iG1
*�32 − ig*�31,

�̇44 = − 2�3�44 + iG2�24 − iG2
*�42,

�̇31 = − ��1 + �2 − i�1��31 + iG1�21 + ig��11 − �33� ,

�̇32 = − ��1 + �2 − i�2��32 + ig�12 + iG1��22 − �33� − iG2�34,

�̇21 = − �� − i��1 − �2���21 + iG1
*�31 + iG2

*�41 − ig�23,

�̇43 = − ��1 + �2 + �3 − i��3 − �2���43 + iG2�23 − ig*�41

− iG1
*�42,

�̇42 = − ��3 − i�3��42 + iG2��22 − �44� − iG1�43,

�̇41 = − ��3 − i��1 − �2 + �3���41 + iG2�21 − ig�43, �2�

where �’s and �’s represent the detuning and the rate of
spontaneous emission, respectively. The decay rate of the off
diagonal element �21 is given by �. These density matrix
equations �2� are to be supplemented by the population con-
servation law

�11 + �22 + �33 + �44 = 1. �3�

In the original frame of reference, the density matrix ele-
ments are given by �31e

−i�1t, �32e
−i�2t, �21e

−i��1−�2�t, �42e
−i�3t,

�34e
−i��2−�3�t, and �41e

−i��1−�2+�3�t. The Rabi frequencies of

*Present address: Max-Planck-Institut für Kernphysik,
Saupfercheckweg 1, D-69117 Heidelberg, Germany;
tarak.dey@gmail.com

†agirish@okstate.edu

ω21G ,
ω32G ,

∆ 1

∆ 2 ∆ 3

γ
1

2 γ
2

2 γ
3

2
g, ω1

| >2

| >4

| 3>

| >1

FIG. 1. �Color online� A schematic diagram of a four-level
N-type atomic system.
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the probe, control and Kerr fields are related to the slowly
varying amplitudes of E1, E2, and E3 according to the relation

2g =
2d�31 · E�1

�
, 2G1 =

2d�32 · E�2

�
, 2G2 =

2d�42 · E�3

�
, �4�

where d� ij is the dipole matrix element corresponding to the
atomic transitions. The susceptibility � can be obtained by
considering the steady-state solution of equations �2� to the

first order in the probe field g and to all order in control field
G1 and Kerr field G2. For this purpose we assume that �1
=�2=�3=� /2 and write the solution as

� = �0 +
g

�
�+ +

g

�
*�− + . . . . �5�

The 13 element of �+ will give the susceptibility at the an-
gular frequency �1 which can be expressed as

���1� =
in�d31�2

�

1

�� − i�1� +
�G1�2

�� − i��1 − �2�� +
�G2�2

�

2
− i��1 − �2 + �3�

, �1 = �1 − �31, �6�

where n is the density of the atoms. It is clear from the above
expression that ���1� will depend strongly on the intensities
and the detunings of the control and Kerr fields. The above
equation �6� produces double EIT. In the limit �→0, the

denominator leads to a cubic equation for �1 and the two real
solutions �whenever they occur� of the cubic equation give
positions of zero absorption. In this Brief Report, however,
we are interested in demonstrating the effect of Kerr nonlin-
earity on slow light under the EIT condition. Therefore we
do not work under the conditions of double EIT. In Figs. 2�a�
and 2�b� we show the behavior of the susceptibility as a
function of the detuning of the probe field in the presence of
the control field as well as the Kerr field. The real part of
susceptibility gives the normal dispersion. It is clear from
Fig. 2�a� that the slope of normal dispersion decreases with
an increase in the intensity of the Kerr field. The imaginary
part of � exhibits minimum absorption when the control field
and the Kerr field satisfy equal detuning conditions, i.e., �2
=�3=� as shown in Fig. 2�b�. The next most relevant quan-
tity is the group velocity vg of the probe field which is re-
lated to the susceptibility ���1� as follows:

vg =
c

ng
=

c

1 + 2	����� + 2	�1� ���

��1
�

�1=�

, �7�

where ����� is the real part of the susceptibility �. Equation
�7� shows that vg depends on ����� and its slope. The group
index ng can be expressed as

ng = 1 + 2	����� + 2	�1� ���

��1
�

�1=�

= 1 +
2	�1n�d31�2

�



G1

2��� − 2i��2 − 4G2
2	 − �2G2

2 + ��� − 2i��	2

��� − i���2G2
2 + ��� − 2i��� + G1

2�� − 2i���2 . �8�

In the above equation, probe, control, and Kerr fields satisfy
equal detuning conditions i.e., �1=�2=�3=�. To understand
the effects of the Kerr field in the group index calculation,
the susceptibility can be expanded in the following fashion:
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FIG. 2. �Color online� ��a�,�b�� The real and imaginary parts,
respectively, of the susceptibility � at probe frequency �1 in the
presence of the control field G1 and the Kerr field G2. Both control
and Kerr field are satisfied equal detuning conditions, i.e., �2=�3

=0. The common parameters of the three plots for 87Rb vapor are
chosen as follows: density n=2
1011 atoms cm−3; G1=0.6�, �
=0.001�, and 2�=2	
5.746
106 rad/s.
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�p = ��0� + I2� ��

�I2
�

I2=0
=

n�d31�2

� 
 i�� − i��1 − �2��
�� − i�1��� − i��1 − �2�� + �G1�2

+
i�G1�2I2

��

2
− i��1 + �3 − �2����� − i�1��� − i��1 − �2�� + �G1�2�2
 , �9�

where I2= �G2�2. The first term in the large square brackets corresponds to the standard EIT expression in absence of the Kerr
field. The second term represents the properties of the EIT system modified by the application of the Kerr field. In the
perturbation limit of �G2�2, the group index of the probe field can be derived as

ńg = ńg
�0� + ńg

�K� = Re�1 +
2	�1n�d31�2

�
� G1

2 − �2

�G1
2 + ��� − i���2 −

4G1
2G2

2�G1
2 + ��� + 2�� − 3i��� + �� − 2�2�

�G1
2 + ��� − i���3�� − 2i��2 �� , �10�

where

ńg
�0� = Re�1 +

2	�1n�d31�2

�

G1
2 − �2

�G1
2 + ��� − i���2�

ńg
�K� = − Re�2	�1n�d31�2

�

4G1
2G2

2�G1
2 + ��� + 2�� − 3i��� + �� − 2�2�

�G1
2 + ��� − i���3�� − 2i��2 � . �11�

The expression ńg
�0� represents the effect of control field on

the group velocity of the probe in the absence of the Kerr
field and this was originally calculated by Harris et al. �15�.
The effect of the Kerr field on the group index is denoted by
ńg

�K�. Here the prime of the group index indicates the approxi-
mate results obtained from the derivative of the susceptibility
expression �9� with respect to the detuning of the probe field

at equal detuning conditions. Figure 3 presents the fractional
change in the group index ng

�K� /ng
�0� due to the presence of the

Kerr field as a function of the control field for different val-
ues of the common detuning parameter �. The solid black
curve of Fig. 3 shows the results obtained from the approxi-
mate analysis of the group index as given by Eq. �11�. The
approximate results match well with the exact results when
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FIG. 3. �Color online� The
fractional change in the group in-
dex of the probe as the function of
the control field at different equal
detuning conditions. The equal
detuning � varies from 0 to 0.3�
in the step of 0.1� from �a� to �d�.
The common parameters are cho-
sen as G2=0.1�, �=0.001�, �1

=�2=�3=�, and 2�=2	
5.746

106 rad/s.

BRIEF REPORTS PHYSICAL REVIEW A 76, 015802 �2007�

015802-3



the control field is much stronger than the Kerr field. From
Fig. 3�b�, we observe a 15% change in the group index
of the probe for �=0.2�. Such a significant change is
because of the enhanced nonlinearity due to EIT. It should be
kept in mind that the width of the transparency window is
like in any other EIT experiment using hot atomic vapors as,
for example, in the experiment of Kash et al. �16�. It is
of the order G1

2 /�. The transparency window broadens

with the field G2 in the region of G2 values considered here
�17�.

In conclusion, we have discussed the effect of Kerr non-
linearity on the slow light propagation through a four-level N
system under an EIT condition. Our analytical and numerical
results clearly show how the group index of the probe field
�18� changes significantly due to the presence of Kerr non-
linearity.
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