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The entanglement fidelity provides a measure of how well the entanglement between two subsystems is
preserved in a quantum process. By using a simple model, we show that in some cases this quantity in its
original definition fails in the measurement of entanglement preservation. On the contrary, the modified en-
tanglement fidelity, obtained by using a proper local unitary transformation on a subsystem, is shown to exhibit
behavior similar to that of the concurrence in quantum evolution.
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Quantum entanglement is a key element for applications
of quantum communications and quantum information. A
complete discussion of this has been given in Ref. �1�. Char-
acterizing and quantifying the entanglement is a fundamental
issue in quantum-information theory. For pure and mixed
states of two qubits, this problem about the description of the
entanglement has been well elucidated �2–7�. Recently, Jor-
dan et al. �8� considered two entangled qubits, one of which
interacts with a third qubit named the control qubit that is
never entangled with either of the two entangled qubits. They
found that the entanglement of these two qubits can be both
increased and decreased by the action of the control qubit on
just one of them. If we regard the control qubit as an envi-
ronment and the state of the qubit interacting with the control
qubit as the information source, this example is just a model
for the time evolution of quantum information via a noisy
quantum channel originating from the interaction with the
control qubit. Schumacher �9� and Barnum et al. �10� have
investigated a general situation where R and Q are two quan-
tum systems and the joint system RQ is initially prepared in
a pure entangled state ��RQ�. The system R is dynamically
isolated and has a zero internal Hamiltonian, while the sys-
tem Q undergoes some evolution that possibly involves in-
teraction with the environment. The evolution of Q might
represent a transmission process via some quantum channel
for the quantum information in Q. They introduced a fidelity
Fe= ��RQ ��RQ� ��RQ�, which is the probability that the final

state �RQ� would pass a test checking whether it agrees with
the initial state ��RQ�. This quantity is called the entangle-
ment fidelity �EF�. The EF can be defined entirely in terms of
the initial state �Q and the evolution of the system Q, so the
EF is related to a process, specified by a quantum operation
�Q, which we shall discuss later in more detail, acting on
some initial state �Q. Thus, the EF can be denoted by a
function of the form Fe��Q ,�Q�. The EF is usually used to
measure how well the state �Q is preserved by the operation
�Q and to identify how well the entanglement of �Q with
other systems is preserved by the operation of �Q. A com-
plete discussion of the EF can be seen in �9,11�. In the
present work we will investigate the following question: Is
EF a good measurement of entanglement preservation? Us-
ing the example of Jordan et al., we find that in some cases

the EF defined above completely fails at measuring entangle-
ment preservation though it may be a good measurement of
entanglement preservation in the case of slight noise. We
also find that in order to make the EF indeed equivalent to an
entanglement measure, the modified entanglement fidelity
�MEF� should be used. Some detailed discussions about the
MEF have been given in �9,12,13�. Recently, Surmacz et al.
�14� have investigated the evolution of the entanglement in a
quantum memory and showed that the MEF can be used to
measure how well a quantum memory setup can preserve the
entanglement between the qubit undergoing the memory pro-
cess and an auxiliary qubit. For the example of Jordan et al.,
we derive an analytic expression for the MEF and give a
comparison of it with the concurrence.

The quantum operation �Q is a map for the state of Q,

�Q� = �Q��Q� . �1�

Here �Q is the initial state of the system Q, and after the
dynamical process the final state of the system becomes �Q�.
Then the dynamical process is described by �Q. In the most
general case, the map �Q must be a trace-preserving and
positive linear map �15,16�, so it includes all unitary evolu-
tions. They also include unitary evolving interactions with an
environment E. Suppose that the environment is initially in
state �E. The operator can be written as

�Q��Q� = TrEU��Q
� �E�U† = TrEU��Q

� 	
i

pi�i��i�
U†

= 	
j

Ej
Q�QEj

Q†, �2�

where 	ipi � i��i� is the spectral decomposition of �E, with
��i�� being a base in the Hilbert space HE of the environment
E, and Ej

Q=	i

pi�j �U � i�. Now we can use Eq. �2� to get the

intrinsic expression for ��RQ ��RQ� ��RQ�, i.e., Fe��Q ,�Q�.
Because

�RQ� = IR
� �Q��RQ� = 	

j

�1R
� Ej

Q��RQ�1R
� Ej

Q�†, �3�
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Fe = ��RQ��RQ���RQ�

= 	
j

��RQ��1R
� Ej

Q���RQ�

���RQ��1R
� Ej

Q�†��RQ�

= 	
j

�Tr �QEj
Q��Tr �QEj

Q†� . �4�

If systems R and Q both have zero internal Hamiltonian and
there is no interaction between R and Q, the operation �Q

entirely originates from the interaction between Q and the
environment. In this sense the example of Jordan et al. is a
special case of this situation.

We consider two entangled qubits A and B, and suppose
that qubit A interacts with a control qubit C. Then A, B, and
C, respectively, correspond to systems Q, R, and the envi-
ronment E that we have just mentioned. We suppose that the
initial states of the three qubits are

W = �±
AB

�
1

2
1c, �5�

where

�±
AB =

1

4
�1 ± �1

A�1
B ± �2

A�2
B − �3

A�3
B� , �6�

with �i
A �B�, i=1,2 ,3, being Pauli matrices for qubit A �B�.

�+
AB and �−

AB are two Bell states, representing maximally en-
tangled pure states for the combined system of qubits A and
B. The total spins of states �−

AB and �+
AB are 0 and 1, respec-

tively.
We suggest an interaction between qubits A and C de-

scribed by the unitary transformation

U = e−itH, �7�

where

H =
��3

A

2
������� − ������� , �8�

� is the strength of the interaction, and ��� and ��� are two
orthonormal vectors for system C. Then the changing density
matrix for the combined system of qubits A and B can be
calculated as

�±
AB� = Trc��U � 1B�W�U � 1B�†�

=
1

4
�1 ± ��1

A�1
B + �2

A�2
B�cos��t� − �3

A�3
B�

= �±
ABcos2��t

2

 + �	

ABsin2��t

2

 . �9�

The changing density matrix �±
AB� usually represents a

mixed state. In order to quantify its entanglement we use the
Wootters concurrence �5� defined as

C��� � max�0,
�1 − 
�2 − 
�3 − 
�4� , �10�

where � is the density matrix representing the investigated
state of the combined system of A and B, �1, �2, �3, and �4

are the eigenvalues of ��2
A�2

B�*�2
A�2

B in decreasing order, and
�* is the complex conjugate of �. From Eq. �9� we can obtain

C��±
AB�� = �cos �t� . �11�

It is found that at time �t=
 /2 the state �±
AB� is changed

from a maximally entangled state at t=0 to a separable state

and at time �t=
 the state �±
AB� returns to the maximally

entangled state. The explicit calculation of �AB� and C��±
AB��

can be seen in �8�.
Now we adopt the EF to investigate this example. Using

Eqs. �2�, �5�, �7�, and �8�, we obtain the quantum operation
on qubit A,

�A��A� = TrCU��A
� �C�U†

= TrCU��A
� �1

2
������� + �������
�U†

=
1

2
e−i�3

A��t/2��Ae+i�3
A��t/2� +

1

2
e+i�3

A��t/2��Ae−i�3
A��t/2�.

�12�

So E�
A= �1/
2�e−i�3

A��t/2� and E�
A= �1/
2�e+i�3

A��t/2�. Substitut-
ing them into Eq. �4� and noting that �A�TrB��±

AB�= 1
21, we

can get the EF as

Fe = 	
j

�Tr �AEj
A��Tr �AEj

A†�

= � 1

2

Tr��e−i�t/2 0

0 e+i�t/2 
1

2
�1 0

0 1

��2

+ � 1

2

Tr��e+i�t/2 0

0 e−i�t/2 
1

2
�1 0

0 1

��2

= �cos
�t

2

2

. �13�

We can easily find the disagreement between the evolu-

tions of Fe and C��±
AB��. At �t=
, the state �±

AB� returns to
the maximally entangled state as can be seen from the con-
currence, but its entanglement fidelity is zero �Fe=0�. On the
contrary, the initial maximally entangled state has been
changed to a separable state at �t=
 /2, but the EF at this
time is not zero. The evolutions of the EF Fe and concur-

rence C��±
AB�� are depicted in Fig. 1.

In fact, Fe��Q ,�Q�=Fs
2��RQ ,�RQ��, where Fs��RQ ,�RQ�� is

the static fidelity �11�. The static fidelity satisfies 0
�Fs��RQ ,�RQ���1, where the first symbol � becomes an

equality if and only if �RQ and �RQ� have orthogonal support,
and the second symbol becomes an equality if and only if

�RQ=�RQ�. When �t=
, from Eq. �9� we can see that �±
AB�

=�	
AB. The �±

ABare two different Bell states and correspond,
respectively, to eigenstates of total spin one and total spin
zero of the combined system of qubits A and B. So they have
orthogonal support in the Hilbert space HA � HB. This is the
reason that Fe��A ,�Q�=Fs

2��AB ,�AB��=0 at �t=
.
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The concept of the EF arises from the mathematical de-
scription for the purification of mixed states. Any mixed state
can be represented as a subsystem of a pure state in a larger
Hilbert space. The entanglement of a pure state may cause
the states of subsystems to be mixed. The EF is usually used
to measure how faithfully a channel maintains the purifica-
tion, or, equivalently, how well the channel preserves the
entanglement. In the above simple example, however, we
found that, except for some special cases, only in the case of
slight noise, i.e., �t− →0, the does EF approximately agree
with the concurrence. This means that this quantity may not
be a good measurement for the evolution of the entanglement
in the processes of interaction with the environment.

In fact, Schumacher �9� has noted that the EF can be
lowered by a local unitary operation but the entanglement
cannot be so. From this consideration he defined the MEF

Fe� = max
UQ

��RQ��1R
� UQ��RQ��1R

� UQ�†��RQ� , �14�

where UQ is any unitary transformation acting on Q. It is
clear that Fe��Fe. Since by using a proper local unitary op-
eration we can make the Bell state �±

AB become the Bell state
�	

AB, we can find that in the above example Fe�=1 at time
�t=
 whereas Fe=0 at this time. So at �t=
, the MEF
equals the concurrence. By using the quantum operation that
we discussed above, we can get the intrinsic expression for
the MEF,

Fe� = max
UQ

	
j

��RQ��1R
� UQEj

Q���RQ�

���RQ��1R
� UQEj

Q�†��RQ�

= max
UQ

	
j

�Tr �QUQEj
Q��Tr �Q�UQEj

Q�†� . �15�

For this example we can derive an analytic expression for
Fe�. Suppose U is an arbitrary unitary operation on a single
qubit. Then it can be written as �11�

U = e−i�Rz���Ry�
�Rz���

= e−i��ei�−�/2−�/2�cos



2
− ei�−�/2+�/2�sin




2

ei�+�/2−�/2�sin



2
ei�+�/2+�/2�cos




2
� ,

where �, �, 
, and � are real numbers, and Ry�z� is the rota-
tion operator about the y �z� axis. We have

	
j

�Tr �AUEj
A��Tr �A�UEj

A�†�

=
1

2�1

2
Tr�ei�−�/2−�/2−�t/2�cos




2
0

0 ei��/2+�/2+�t/2�cos



2
��

2

+
1

2�1

2
Tr�ei�−�/2−�/2+�t/2�cos




2
0

0 ei��/2+�/2−�t/2�cos



2
��

2

=
1

2
cos2�


2

cos2��/2 + �/2 + �t/2� +

1

2
cos2�


2

cos2��/2 + �/2 − �t/2� . �16�

We should find a unitary operator U that makes 	 j�Tr �AUEj
A��Tr �A�UEj

A�†� take its maximum value. Since cos2�� /2
+� /2+�t /2��0 and cos2�� /2+� /2−�t /2��0, we can take 
=0. So one obtains

	
j

�Tr �AUEj
A��Tr �A�UEj

A�†� = 1 + cos2��/2 + �/2��2 cos2��t/2� − 1� − cos2��t/2� . �17�

When 2 cos2��t /2�−1�0 we take cos2�� /2+� /2�=1 and
get Fe�=cos2��t /2�; when 2 cos2��t /2�−1�0 we take
cos2�� /2+� /2�=0 and get Fe�=1−cos2��t /2�.

The evolutions of the MEF Fe� and the concurrence

C��±
AB�� are depicted in Fig. 2. We can see that the MEF and

the concurrence exhibit a similar behavior, although their

values do not exactly agree with each other at all moments.

When the state �±
AB� returns to the maximally entangled state,

the MEF is equal to 1. The maximal difference between them
comes at the separable states where the MEF is equal to 1/2
while the concurrence is zero.

We have mentioned that the EF equals 1 if and only if

1 2 3 4 5 6
Λt

0.2
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0.6

0.8

1

Fe,C

FIG. 1. Evolutions of the EF Fe �solid line� and the concurrence
C �dashed line�. We take �=1 so �t is dimensionless.
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�RQ=�RQ�. This means that the EF can be used to measure
the difference between a quantum channel and the identity
channel. If the concern is about entanglement preservation in
an evolution process, however, one has to use the MEF be-
cause the EF can be lowered by a local unitary operation in

this process, but the entanglement cannot be so. If a quantum
channel is just a unitary operator, the entanglement is cer-
tainly invariant and the MEF always equals 1 in the quantum
process. In this sense the MEF can be used to measure the
difference between a quantum channel and an arbitrary uni-
tary operator.

In summary, for the example of Jordan et al., we have
derived the analytic expressions of both the EF and the MEF,
and show comparisons of them with the concurrence. From
these we find that the MEF may admirably reflect the en-
tanglement preservation in a quantum process.
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FIG. 2. Evolutions of the modified entanglement fidelity Fe�
�solid line� and the concurrence C �dashed line�.

BRIEF REPORTS PHYSICAL REVIEW A 76, 014301 �2007�

014301-4


