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The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is
investigated. The waveguide contains a negative-index media core, where the permittivity � and permeability
� are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically
calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain
regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along
the surface of the waveguide.
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Waveguides are structures that are typically designed to
transmit energy along a specified trajectory with minimal
attenuation and signal distortion. When transmitting surface
waves, this implies confining the traveling wave within or
adjacent to the waveguide walls �1�. Various avenues can be
pursued when attempting to improve on a waveguides’ capa-
bilities, including modifying the constitutive effective mate-
rial parameters of the guide. The recent surge of interest in
negative index of refraction materials �2�, or negative-index
media �NIM�, has prompted a reanalysis of many conven-
tional results for waveguide devices and a subsequent search
for exotic transmission characteristics when incorporating
this particular composite media, or metamaterial, into a va-
riety of waveguide configurations.

A crucial feature of NIM is the frequency dispersion of
the permittivity � and permeability �, with � and � simulta-
neously rendered negative over a particular bandwidth. This
results in wave propagation in which the phase velocity and
energy flow of an electromagnetic wave can be antiparallel
and also the possibility of a negative index of refraction,
proposed long ago �3�. The study of various NIM based open
waveguide structures and resonators during the past few
years has demonstrated a number of interesting effects: it
was shown �4� that a quasi-one-dimensional �quasi-1D� bi-
layer resonator containing a NIM layer can be substantially
smaller than the usual cavity size due to phase cancellation.
For the case of a thin planar NIM waveguide, the TM mode
can propagate for arbitrary widths and possess a single mode
for slow waves �4�. Guided TE modes were also shown to
have electric field profiles containing nodes �5� and exhibit a
sign-varying Poynting vector �5,6�. Similar results were re-
ported in circular NIM fibers �7�.

Distortion of the circular dielectric waveguide into an el-
liptical guide, while maintaining the cross-sectional area, has
been shown to reduce attenuation of the dominant mode �8�
and modal degeneracy, allowing for practical guiding of trav-
eling electromagnetic waves. Attenuation effects and power
flow expressions were achieved for wave propagation in a
surface-wave transmission line with an elliptical cross sec-
tion �9�. It was found that some modes in the guide have
lower attenuation than the corresponding modes in a circular
guide. The slow and fast hybrid-mode spectrum in a metallic
elliptical waveguide with a confocal dielectric lining was
also calculated �10�, demonstrating the potential for a

surface-wave transmission device. Moreover, the distribution
of electromagnetic fields in a double-layer elliptical wave-
guide was calculated to first order and revealed, in some
cases, dispersion solutions where the power and phase veloc-
ity directions are antiparallel �11�. Spurred by the recent the-
oretical and experimental advances in NIM waveguides and
resonators, we examine in this paper open NIM waveguides
with elliptical cross sections, affording a greater flexibility in
the parameter space determined by the geometry and mate-
rial constraints. For a given eccentricity e, we calculate the
permitted propagation constants over a range of frequencies.
The allowed modes are separated into fast- and slow-
propagating regions of the dispersion diagram, where wave
localization is demonstrated in the form of electric field dis-
tributions.

When searching for exact solutions to Maxwell’s equa-
tions, it is convenient to work in a coordinate system in
which the boundary of the structure coincides with one of the
coordinates being held constant. It is thus appropriate for the
geometry under consideration to work in an orthogonal ellip-
tical coordinate system described by the coordinates � and �,
depicted in Fig. 1. Elliptical coordinates are related to their
rectangular counterparts via x= p cosh � cos � and y
= p sinh � sin �, for 0���� and 0���2	, where p

FIG. 1. �Color online� Cross section of the open elliptical wave-
guide structure. Within the metamaterial core, �1 and �1 are in
general both negative and frequency dispersive. The outer region is
air; �2=1 and �2=1.
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��a2−b2�1/2 is the semifocal length of the ellipse expressed
in terms of the semimajor and semiminor axes a and b, re-
spectively. The waveguide boundary is located at �=�0, and
hence a= p cosh �0 and b= p sinh �0. It then follows that the
eccentricity e is written e= �1− �b /a�2�1/2=1/cosh �0, such
that 0�e�1, with e=0 corresponding to a circular cross
section. In order to obtain the electric �E� and magnetic �H�
fields, we must solve the vector Helmholtz wave equation
obtained from Maxwell’s equations. This yields three
coupled second-order differential equations for either E or
H. The waveguide along the axial �z� direction is translation-
ally invariant, and thus the form of the equation governing
the longitudinal Ez �or Hz� is identical to the scalar Helm-
holtz equation in elliptic coordinates, permitting a semiana-
lytic and more tractable solution. The fields are assumed to
vary harmonically in time, and propagation occurs in the
positive z direction. The wave equation then reduces to the
following form:
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the unattenuated modes of interest here, kz is the real propa-
gation constant along the z direction. We have also sup-
pressed the usual exp�ikzz− i
t� factor. A similar equation
exists for Hz. Due to the cylindrical symmetry, the transverse
field components �E�i ,E�i� and �H�i ,H�i� can be determined
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E�i��,�� =
ikz

ki
2h
� �Ezi

��
− �i

k0

kz

�Hzi

��
� , �2a�

E�i��,�� =
ikz

ki
2h
� �Ezi

��
+ �i

k0

kz

�Hzi

��
� , �2b�

H�i��,�� =
ikz

ki
2h
� �Hzi

��
+ �i

k0

kz

�Ezi

��
� , �2c�

H�i��,�� =
ikz

ki
2h
� �Hzi

��
− �i

k0

kz

�Ezi

��
� . �2d�

We proceed by inserting Ezi�� ,��=Ui���Vi��� into Eq. �1�,
splitting it into two ordinary differential equations with sepa-
ration constant �:

d2Vi���
d�2 + �� − 2qi cos 2��Vi��� = 0, �3a�

d2Ui���
d�2 − �� − 2qi cosh 2��Ui��� = 0, �3b�

where q1= �k1p /2�2 and q2=−�k2p /2�2.

The angular Mathieu equation �3a� describes the angular
variation of the field around the ellipse. Two linearly inde-
pendent periodic solutions exist, akin to the trigonometric sin
and cos functions: the even and odd angular Mathieu func-
tions, denoted cen�� ;qi� and sen�� ;qi�, respectively. For the
elliptical waveguide problem, the angular Mathieu functions
must be periodic with period 2	 and of integer order; other-
wise the solution set is nonperiodic and can be unstable �13�.
We can thus expand the angular Mathieu functions in a Fou-
rier series, where the expansion coefficients can be found
recursively by substituting the expansions back into Eq. �3a�.
The parameter � found in Eqs. �3� can be solved using a
method of continued fractions �13�. The orthogonality and
normalization relations of the angular Mathieu functions are
given by Eq. �A1�. The angular Mathieu functions are also
periodic in � only for special characteristic values of �,
denoted here as an�qi� for the even solutions and bn�qi� for
the odd ones.

The radial Mathieu equation �3b� admits two general
types of solutions: the radial Mathieu functions of the first
and second kind. The solutions of the first kind are divided
into even and odd functions denoted as Cen�� ;qi� and
Sen�� ;qi�, respectively. The calculation of the characteristics
numbers and the Fourier coefficients is exactly the same as
for the angular functions. In identifying a convenient series
expansion to compute the radial Mathieu functions, a number
of techniques are applicable �14�. We found, in agreement
with past works, that the Bessel Jn product series are the
most stable basis of functions to use �15�. Not surprisingly,
the Cen and Sen functions coalesce into Jn, as the elliptical
cross section degenerates to a circular one. The Mathieu
functions of the second kind for qi�0 are denoted
Feyn�� ;qi� �even� and Geyn�� ;qi� �odd� and are calculated
similarly, except the series expansion involves products of
both the Bessel Yn and Jn functions. The functions Feyn and
Geyn are analogous to the Bessel functions of the second
kind, Yn, in circular coordinates. When qi�0, Feyn and Geyn
transform into Fekn�� ;qi� and Gekn�� ;qi� �analogous to the
Bessel K functions�, and they are related �15�—e.g., for even
order, 2Fek2n�� ;−qi�= �−1�n�−Fey2n��+ i	 /2 ;qi�+ iCe2n��
+ i	 /2 ;qi��.

For a general cylindrical open guide with circular cross
section, pure TE or TM modes exist only for symmetrical
electromagnetic fields—i.e., independent of the azimuthal
angle. For an open elliptical waveguide, however, the reduc-
tion in symmetry forces the electromagnetic modes in a
given region to be hybrid in that both longitudinal fields Ezi
and Hzi exist simultaneously �i denotes the region�. Based on
the discussion above, it is clear that field solutions in an
elliptical domain are split into even and odd components:
Ezi→ 	Ezi

e ,Ezi
o 
 and Hzi→ 	Hzi

e ,Hzi
o 
. The procedure adopted

here consists of writing Hzi
e �Hzi

o � waves as products involv-
ing even �odd� Mathieu functions and Ezi

e �Ezi
o � waves in

terms of odd �even� Mathieu functions �8�. The complete
solution is then expanded as products of angular and radial
Mathieu functions of the requisite parity and that obey the
radiative condition. The boundary conditions constrain the
types of Mathieu functions used in the expansions �15�, as
we require “stationary waves” in the transverse � and � di-
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rection. Within each region, we thus seek solutions of the
form

Ezi
e ��,�,z� = �

m=1

�

amiAmi��;qi�sem��;qi�eikzz, �4a�

Hzi
e ��,�,z� = �

m=0

�

bmiBmi��;qi�cem��;qi�eikzz, �4b�

where ami and bmi are constants and the coefficients Ami�� ;qi�
and Bmi�� ;qi� contain the “radial” dependence on the fields,
given below. Without loss of generality, the methodology
used here will focus on waves of even parity, as the proce-
dure for odd waves is similar.

Within the waveguide region �see Fig. 1�, the solutions
are the radial Mathieu functions of the first kind, Am1�� ;q1�
=Sem�� ;q1� and Bm1�� ;q1�=Cem�� ;q1�. For the guided
modes of interest here, the fields must decay from the surface
at �=�0, and therefore within the surrounding medium we
have Am2�� ;q2��Gekm�� ;−q2� and Bm2�� ;q2��Fekm�� ;
−q2�. With this requirement on the fields and for a given set
of material and geometrical parameters, a restricted number

of waveguide modes exist. To determine the allowed modes,
the tangential E and H fields are matched at the boundary
�=�0 separating the two media. The � dependence is inte-
grated out by making use of the orthogonality properties of
the angular Mathieu functions �see the Appendix �. We then
cast the boundary-matched equations into a linear equation
system containing, in principle, an infinite hierarchy of
Mathieu functions. The higher-order Mathieu functions arise
from the lack of a one-to-one correspondence between the
angular Mathieu functions in regions with differing material
parameters: the arguments of the angular Mathieu functions
depend on the parameter qi, which in turn depends on � and
� of the relative media. This is in contrast to a circular wave-
guide, where the angular dependence is a function of only
integer multiples of the azimuthal coordinate, m.

In order to find the nontrivial solution, the problem of
finding the allowed modes thus amounts to finding where the
associated determinant of the linear equation system van-
ishes over a range of frequencies, propagation constants, and
ellipticities. The methodology we shall discuss is valid for
hybrid HE11 or EH11 �the first letter represents the dominant
field� modes �8�, with small e, and frequencies corresponding
to small ��1−�2� �and small ��1−�2��. Under these condi-
tions, the expansions in Eqs. �4� can be limited to the first
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FIG. 2. �Color online� Surface-wave spectrum for the even and odd hybrid modes of an elliptical waveguide filled with NIM and
embedded in air �top panel�. The bottom panel is the same configuration except with positive �1�
� and �1�
�. The propagation constant kz

is normalized by the free-space wave number k0 and is plotted as a function of the operating frequency for a cross section corresponding to
an ellipticity of e=0.44. We take the characteristic frequencies in the material dispersion to be 
p=8�2	� GHz and 
m=7�2	� GHz, which
corresponds to �1 ,�1�−1 within the frequency range f �
m / �2	�2�. The mode spectra illustrate the slow and fast modes, separated by the
q1=0 curve. If the NIM core is replaced with media corresponding to positive �1 and �1 �bottom panel�, the slow-wave solution is absent
and the curves vary in an opposite sense.
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few terms. Taking, for example, the two lowest-order terms
in the outer region yields the following even-mode disper-
sion relation:

��1
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+
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where k0=
 /c, C1�−�11�11−�13�31, and C2��11�11
+�31�31. The quantities �mn , �mn , �mn , �mn, and �mn, out-

lined in the Appendix , arise from the integrals of products of
overlapping angular Mathieu functions. Writing the disper-
sion relation explicitly in this way reduces computational
time considerably by avoiding unstable numerical determi-
nants of large matrices and the associated multiple function
calls to higher-order Mathieu functions. The odd-mode spec-
trum is easily obtained via the interchange �i↔−�i. As the
elliptical cross section degenerates into a circular one, C1
→1, C2→−1, and the Mathieu functions appropriately trans-
form into their corresponding cylindrical Bessel func-
tions: 	Ce1��q1� /Ce1�q1� ,Se1��q1� / Se1�q1�
 →uJ1��u� / J1�u�
and 	Fek1��−q2� / Fek1�−q2� , Gek1� �−q2� / Gek1 �−q2�

→vK1��v� /K1�v�. In this limit, the dispersion relation �5� re-
duces to the familiar characteristic equation for a circular
waveguide:

��1
J1��u�

uJ1�u�
+ �2

K1��v�
vK1�v�
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uJ1�u�
+ �2
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�
−  kz

k0

�u2 + v2�
u2v2 �2

= 0, �6�

where u2=k1
2a2 and v2=−k2

2a2.
The surface-wave dispersion relation �5� is a function of

the parameters kz, 
, and eccentricity e; only particular com-
binations of these quantities that satisfy Eq. �5� are allowed
mode solutions. The hybrid waves that are explored here can
possess even and odd components, and are denoted appropri-
ately in subsequent figures. We present the propagation con-
stant in terms of the convenient dimensionless ratio kz /k0,
and the frequency units are all in GHz. The waveguide cross
section is assumed to not deviate greatly from that of a cir-
cular guide, reflected in moderate values of e. The permittiv-
ity and permeability in the NIM regions, �1 and �1, respec-
tively, have the frequency dispersive form �1=1− �
p /
�2

and �1=1− �
m /
�2, where 
p and 
m are the effective elec-
trical and magnetic plasma frequencies �6�, respectively.
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FIG. 3. �Color online� �a� The total power, P= P1+ P2 �normal-
ized by �P1 � + �P2�� versus the frequency for �odd� slow wave
modes. The eccentricity, e, is set at e=0.59. The propagation con-
stant, kz, increases in going from A→B, in accordance with the
mode dispersion diagram in the inset. In �b� energy-density reversal
is shown by means of the Poynting vector, Sz, normalized by its
maximum, and as a function of the dimensionless coordinate, ��
�� /�0. The dashed vertical line identifies the NIM-air boundary.
The frequency is fixed at f =5.28 GHz, and kz=1.1. The spatial
range is for the angle �=	 /6.

FIG. 4. �Color online� The slow-wave effective mode area
Aeff �normalized by the wavelength �2� as a function of the
eccentricity e.
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Thus for 
�
p /�2, we have �1�−1. The study here is
concerned with frequency regions of parameter space where
�1 and �1 are simultaneously negative.

Determining the allowed modes typically involves hold-
ing the semimajor and semiminor axes of the waveguide
�and hence e� fixed and then scanning Eq. �5� over kz and 
.
Any sign change that occurs signifies a zero crossing that can
be pinpointed through an iterative root-finding process.
Other variable combinations may be used, depending on the
parameter study. In the top panel of Fig. 2 we show the mode
spectra found by solving Eq. �5�, and its odd counterpart, for
a waveguide with eccentricity e=0.44. For clarity, only four
neighboring sets of dispersion curves within the given fre-
quency window are shown. Two sets reside completely be-
neath the q1=0 curve, one set entirely outside of it, and
another set that traverses both regions. For this geometry and
range of frequencies, the paired even-odd-mode solutions
follow similar trends, separating at higher frequencies. The
solutions to the Helmholtz equation �1� depend on the eccen-
tricity e of the elliptical guide through the parameters q1 and
q2. We found as the ellipse flattens, more splitting occurs
between the even and odd modes. In general, each branch of
the even and odd modal curves coalesce at cutoff, where the
propagation constant approaches the free-space value �kz

→k0�. The dispersion diagram portrays the allowed
electromagnetic-wave solutions that travel along the guide,

and it elucidates important information regarding the pos-
sible localization characteristics of guided modes. In particu-
lar, the first three sets of dispersion curves that satisfy
��2�2�kz /k0���1�1 correspond to conventional surface
waves. Within this parameter space region, the phase veloc-
ity of guided waves, vp, exceeds the phase velocity of waves
in a homogeneous bulk medium—i.e., vp�c /��1�1. These
fast-wave solutions to Maxwell’s equations will decay in the
air region, but not necessarily in the waveguide core. Indeed,
as the structure increases in size, or as f decreases �increas-
ing ��1��, the electric and magnetic fields inside the wave-
guide oscillate with shorter wavelengths. At the cutoff, k2
→0 �thus q2→0�, and the ensuing decay length increases
outside the guiding surface. This causes a significant portion
of the energy flow to occur in the air region, where the fields
can then become less sensitive to the relevant geometrical
parameters, such as the ratio a /b.

We see in Fig. 2 that for the case of a NIM core, there are
also solutions that reside outside of the q1=0 boundary.
These slow-wave solutions are noticeably absent when �1
and �1 are strictly positive �see bottom panel�. The presence
of NIM sets up a nonoscillatory field profile that rapidly
decays outside the guide, allowing for the possibility of
guided modes that are more localized to the surface, akin to
surface plasmon waves on metal surfaces studied long ago.
Note that as kz increases, q2 typically increases, in which

FIG. 5. �Color online� The
normalized electric field distribu-
tions for even wave modes near
the cutoff in an elliptical wave-
guide as a function of �a� angular
coordinate � and �b� normalized
radial coordinate ���� /�0. The
frequency is set at 3.25 GHz, and
the ellipticity e has the value
e=0.14, corresponding to �0

=2.65. The vertical dashed line at
��=1 identifies the waveguide
boundary.
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case the radial Mathieu functions decay sharply, confining
the field more to the waveguide. The slow-wave solutions
seen in the inset of Fig. 2 have dispersion characteristics that
depend strongly on frequency. Near the cutoff, these modes
demonstrate that the direction of the group velocity, d
 /dkz,
evaluated at a particular kz, can differ among the even- and
odd-wave solutions. This is related to the �time-averaged�
local energy-density flow along z, Szi= �1/2�Re�E�iH�i

*

−E�iH�i
* �. An excited wave with the appropriate frequency

can reverse direction between layers, a hallmark of the pecu-
liar wave propagation that can arise in NIM guiding struc-
tures. To address the relationship between net energy flow in
the system and group velocity, we show in Fig. 3�a�, the total
power P as a function of the calculated mode frequency,
found by summing the power flow in the waveguide�P1� and
air �P2� regions. The power through a given cross-sectional
area A was calculated by integrating the z component of the
Poynting vector over A,

Pi =� �
A

Szih
2d�d�, i = 1,2, �7�

where h is the usual coordinate scale factor. The frequencies
used in determining P are governed by the dispersion curve,
shown in the inset of Fig. 3�a�. The arrows label points

where d
 /dkz is zero in the dispersion diagram and correlate
with zero net power flow in the system—i.e., P1=−P2. In
general, we see from the figure that the direction of net
power flow coincides with the sign of d
 /dkz. A sign change
in this slope causes the dispersion curves to bend back in the
kz−
 plane, related to the P1 and P2 sign difference, which
can yield a sum ranging from positive to negative, depending
on their relative values. The bottom panel �b� shows the spa-
tial dependence of the energy-density flow and its associated
reversal in going from NIM to air.

We now characterize mode localization with an effective
mode area Aeff, defined as the ratio of the electromagnetic
energy to the maximum value of the energy density,

Aeff �
� �AU��,��h2d�d�

Umax��,��
, �8�

where the energy density U for frequency-dispersive materi-
als is defined as �16�

U��,�� =
1

8	
d�
��

d

�E�2 +

d�
��
d


�H�2� . �9�

The normalized effective mode area for slow waves near the
cutoff �kz /k0=1.01� is shown in Fig. 4 as a function of the
eccentricity e. The mode frequencies calculated from Eq. �5�

FIG. 6. �Color online� The
spatial and angular variation of
the electric field, with the same
parameters as in Fig. 5, except at
the higher frequency, f
=5.28 GHz. These localized slow
waves decay away from the outer
side of the interface rapidly, con-
sistent with dispersion curves of
Fig. 2.
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are a weak function of e over the range shown. We see that
Aeff in the air region tends to decrease as the guide becomes
more circular, while within the guide, the effective area is
nearly constant. Thus, as a circular guide is slightly distorted
into an ellipse, the exhibited mode localization properties
within the NIM structure remain rather robust.

To gain insight into the transmission properties of an el-
liptical NIM waveguide excited by a particular source, the
spatial and angular features of the EM field components are
essential. We therefore show in Fig. 5 the three components
of the E field near the cutoff and at a frequency correspond-
ing to �1=−5.04 and �1=−3.63. The cross-sectional area
	ab of the waveguide is held fixed with e=0.14. The left
panel, Fig. 5�a�, illustrates the normalized E field as a func-
tion of � for five different values of the normalized coordi-
nate, ���� /�0. The right set of figures, Fig. 5�b�, exhibits the
normalized electric field as a function of �� for five different
�. Parenthetically, in comparing field distributions with a
circular waveguide, one can scale the coordinates �e.g., for
�=	 /2�: �→p sinh �. From panel �a�, we see that the longi-
tudinal Ez and “radial” E� components have the expected
behavior along the semimajor axis, since the � dependence
to those fields involves sem�� ;qi� and cem� �� ;qi� terms,
which vanish at �=0. Likewise, E� is comprised of products
involving cem�� ;qi� and sem� �� ;qi� functions, and hence
tends toward zero for positions along the semiminor axis
��=	 /2�. Turning to the � dependence in panel �b�, it is

evident that within the waveguide region, for �=0 �along the
line x�= p cos ��, the z and � components to the field vanish,
while E� has its maximum there. It is apparent that, on aver-
age, each of the components is similar in magnitude, with E�

dominating slightly over the others in some instances. An-
other distinguishing feature among the components is the
shifting of the peak intensity of the field patterns: Ez reaches
its peak value inside of the waveguide, and E� has its largest
value just outside the core boundary, while E� peaks out
along the waveguide walls ���=1�, after which it undergoes a
discontinuous transition. This behavior is consistent with the
boundary condition �E���0�= �1−�1 /�2�E�1��0�.

To explore the possibility of field localization in the slow-
wave regime, Fig. 6 illustrates the localized slow-wave solu-
tions as a function of � and �. The frequency chosen,
5.28 GHz, lies just outside the q1=0 curve at kz /k0�1.01
and approximate frequency �in GHz�,

f �

p
m

2	�
m
2 + 
p

2�1 −
��kz/k0�2 − 1�
m

2 
p
2

2�
m
2 + 
p

2�2 � = 5.26.

�10�

Examining the interior of the waveguide, Fig. 6�b� is consis-
tent with Fig. 5�b� at �=0, where only E� survives before
declining towards the interface. As �→	 /2, E� becomes
more weakly dependent upon the coordinate �, while if �
→0, E� and Ez vanish and E� approaches a constant value
within the guide. The E field components transverse to the
direction of energy flow, E� and E�, clearly dominate here,
and thus the behavior of these particular modes is quite rel-
evant in the determination of waveguide transmission capa-
bilities. It is further evident from Fig. 6�b� that the length
scale of field decay in the air region is at times shorter, dem-
onstrating that the possibility exists to tailor the guide or feed
line in a way that transmits ultralocalized waves.

The dominant transverse electric field profiles mapped
onto a Cartesian coordinate system are shown in Fig. 7. The
2D contour plots are consistent with the field patterns exhib-
ited in Fig. 6.

In conclusion we have shown that elliptical waveguides
with NIM can support both fast- and slow-wave modes. The
power flow in the system was shown to have direct correla-
tions with the group velocity: points on the dispersion curves
where the group velocity is zero corresponded to zero net
power flow through the entire structure. The Poynting vector
was shown to reverse when crossing the boundary between
air and NIM. The dispersion relation was shown to admit
localized solutions that retain their characteristics under
moderate variations of the eccentricity.

This project is funded in part by the Office of Naval Re-
search �ONR� In-House Laboratory Independent Research
�ILIR� Program and by a grant of HPC resources from the
Arctic Region Supercomputing Center at the University of
Alaska Fairbanks as part of the Department of Defense High
Performance Computing Modernization Program.

APPENDIX: OVERLAP INTEGRALS OF ANGULAR
MATHIEU FUNCTIONS

When matching the tangential fields at the boundary, the
orthogonality properties of the angular Mathieu functions

FIG. 7. �Color online� Contour plots of the even transverse elec-
tric field amplitudes for e=0.59 and f =5.3 GHz. The top and bot-
tom panels correspond to E� and E�, respectively. Bright areas in-
dicate larger field intensities. Each component is normalized to its
respective maximum for clarity.
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give rise to several overlap integrals, given as

�mn =
1

	
�

0

2	

d�cem��;− q2�cen��;q1� , �A1a�

�mn =
1

	
�

0

2	

d�sem��;− q2�sen��;q1� , �A1b�

�mn =
1

	
�

0

2	

d�sem� ��;q1�cen��;− q2� , �A1c�

�mn =
1

	
�

0

2	

d�cem� ��;q1�sen��;− q2� , �A1d�

�mn =
1

	
�

0

2	

d�cem� ��;− q2�sen��;− q2� . �A1e�

When q1=q2, �mn=�mn, and �mn=�mn. In the limiting case of
the ellipse reducing to a circle, then we also have �mn
→m�mn and �mn→−m�mn, and �mn→−m�mn. In all cases,
the integrals are zero if the m is even and n is odd or vice
versa, due to the symmetry properties of the products of
periodic Mathieu functions.
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