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It is shown that the carrier-envelope phase �CEP� of few-cycle laser pulses has profound effects on the
bound-state atomic coherence even in the weak-field regime where both tunneling and multiphoton ionization
hardly take place. The atomic coherence thus produced is shown to be able to be mapped onto the CEP-
dependent signal of quantum beats �and other quantum-interference phenomena� and hence might be used to
extract information about and ultimately to measure the carrier-envelope phase.

DOI: 10.1103/PhysRevA.76.013832 PACS number�s�: 42.65.Re, 42.50.Md

I. INTRODUCTION

The carrier-envelope phase �CEP� of ultrashort laser
pulses of a few cycles �1,2� plays an important role in strong-
field ionizations �3–11�, strong-field dissociation �12�, high-
harmonic generation �13–15�, and attosecond electron dy-
namics �16–18�. The CEP may be determined by measuring
spatial asymmetry in ionization �11,16�, and extreme ultra-
violet �xuv� and soft-x-ray radiations �19�.

Nakajima and Watanabe �20� have recently studied the
CEP dependence in bound-state populations rather than ion-
ization or photoelectron yields in the multiphoton ionization
regime where tunneling ionization hardly takes place. It thus
enables one to observe the phase-dependent population in
some bound states via photoemission detection, which is
technically simpler than the energy and angle-resolved pho-
toelectron detection at considerably lower intensities than ex-
plored previously �20�.

In this paper, we investigate the atomic coherence prop-
erties produced by an ultrafast laser pulse with a few cycles.
It should not be confused with the optical coherence proper-
ties of high-harmonic generation studied previously �21,22�.
We show that the CEP of few-cycle laser pulses has profound
effects on the bound-state atomic coherence even in the
weak-field regime �the Rabi frequency is much less than the
transition frequencies involved� where both tunneling and
multiphoton ionizations hardly take place. This CEP-
dependent atomic coherence is then shown to be mapped
directly onto the signal of quantum beats �27–29� between
two channels of spontaneous emission, and hence it might be
used to extract information about the carrier-envelope phase
by measuring the quantum beats. It is well known that
quantum-mechanical interference due to the coherent super-
position of several states �atomic coherence� inevitably leads
to oscillations in the amplitude of the detected signal and has
been seen in a wide variety of optical experiments, including
fluorescence spectroscopy �23�, photon-echo techniques �24�,
transient grating experiments �25�, and Raman spectroscopy
�26�. Closely related phenomena are the quantum beats
�27–29� and versatile wave mixing in cold atomic media
�30–38�. It is thus anticipated that the sensitive dependence
of the bound-state atomic coherence on the CEP of few-cycle
laser pulses revealed in this paper opens entirely different

ways of exploring and utilizing the CEP-dependent coher-
ence effects of ultrafast pulses in both the weak-field regime
�quite unlike the previous strong-field ionization regimes�
and different spectral regions such as spectral regimes from
the infrared up to the ultraviolet spectral domains instead of
soft-x-ray radiation. In particular, the CEP-dependent atomic
coherence might be used, instead of the previous techniques
of photoemission detection and measurement of the ioniza-
tion yields, to extract information about and ultimately to
measure the carrier-envelope phase.

II. CARRIER-ENVELOPE PHASE-DEPENDENT
ATOMIC COHERENCE

In investigating the CEP-dependent atomic coherence in
the weak-field regime where both tunneling and multiphoton
ionization hardly take place, we only need to consider an
atomic model of a few levels. Here we consider a three-level
model interacting with a few-cycle optical pulse of the elec-
tric field �20� E�t�=−�A�t� /�t with the vector potential A�t�
=A0e−�t−2��2/�2

sin��t+�� as shown in Fig. 1. Here the atomic
state is ���=c0 �0�+c1 �1�+c2 �2�, A0 is the peak value of the
vector potential, � describes the pulse width, and � and � are
the carrier-envelope frequency and phase, respectively. The
quantum-mechanical interference due to the CEP-dependent
bound-state atomic coherence should be easier to detect at
low temperatures, where the deteriorating decoherence such
as that due to Doppler broadening is greatly diminished.
Consequently, the CEP-dependent atomic coherence should
have some impact on and could play a role in versatile phe-
nomena occurring in cold atomic media �30–38�. The three-
level model of closely adjacent hyperfine excited levels
�j� �j=1,2� can be chosen to be the hyperfine-split levels for
the D lines of cold alkali-metal atoms �39� confined in a
magneto-optical trap �MOT�, where there exist mature tech-
niques to handle the interactions between the lasers and
trapped alkali-metal atoms. For instance, in the case of a
cesium atom, the levels �0�, �1�, and �2� can stand for its
states 6 2S1/2, 6 2P1/2, and 6 2P3/2, respectively, and the tran-
sitions �0�↔ �1� and �0�↔ �2� correspond to the D1 and D2
lines with �02=3.8�10−29 C m, �01=2.7�10−29 C m, �
=�02/�01�1.41, and the transition frequencies �energies�
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�1�335.1 THz, and �2�351.7 THz, respectively �39�.
The Schrödinger equation for the probability amplitudes

cj has the form

ċ0�t� = i�	�t��e−i�1tc1�t� + �e−i�2tc2�t�� , �1a�

ċ1�t� = i	�t��ei�1tc0�t�, ċ2�t� = i	�t���ei�2tc0�t� ,

�1b�

where 	�t�=�−1� �e−�t−2��2/�2
sin��t+��� /�t, �=�02/�01,

2�=2�*=�01�A0 /
 and 2�� are the Rabi frequencies for
the transitions �0�↔ �j� �j=1,2�, respectively, � j �j=1,2� are
the atomic transition frequencies concerning the transition
�0�↔ �j� with the corresponding dipole moments �0j, and �0j
have been assumed to be real without loss of any generality.

Figure 2 plots the curves of the atomic coherence �12
=�21

* =c1c2
* versus the CEP � under the initial conditions

c1,2�0�=0 and c0�0�=1 at the time t= t0=4� elapsed since the
ultrafast laser pulse, and it demonstrates that the atomic co-
herence has a sensitive dependence on the CEP of few-cycle
laser pulses. The amplitude and the CEP dependences of the
atomic coherence in Fig. 2 can readily be explained physi-
cally by perturbation theory in the small parameter �
=� /��1. Under the initial conditions c1,2�0�=0 and
c0�0�=1, it is readily seen from Eq. �1� that c1,2�t�=O��� and
c0�t�=O��0�, and hence �12=O��2�, which clearly illustrates
the feature that low Rabi frequencies induce less atomic co-
herence and hence are obviously nonfavorable from the
viewpoint of the measurement. The lower limit for Rabi fre-

quencies depends on the precision of the technique�s� in
measuring the coherence. Cold alkali-metal atoms confined
in a MOT instead of a single or a few hot atoms could in-
crease the corresponding precision. Besides, noting that �
�E characterizes the electric field E�t� having the period 2
for the CEP �, the relation �12=O��2� implies that �12 should
approximately have the period  for the CEP �, just as
clearly shown in Fig. 2.

On the other hand, we readily show that the three-level
model is well justified in studying the atomic coherence
�12=�21

* =c1c2
* in the weak-field regime ��1. The ultrashort

pulse could couple more levels, say, levels �j� �j=3,4 , . . . �,
besides the three considered levels �j� �j=0,1 ,2�. However,
it can readily be shown that cj�0�t�=O��� and c0�t�=O��0�
under the initial conditions cj�0�0�=0 and c0�0�=1, and the
cj�3=O��� introduce at most O��3� contributions to �12, al-
ready of the order O��2� in the absence of the levels �j� �j
=3,4 , . . . �, and hence these levels �j�3� can be neglected so
long as ��1.

We would like to point out that, even for a periodically
driven two-level system, any weak-field theories, so long as
they are beyond the rotating-wave approximation, depend on
the phase of the driving field under any fixed initial condi-
tions for the amplitudes �41,42�.

III. CARRIER-ENVELOPE PHASE-DEPENDENT
QUANTUM BEATS

Let us now study the quantum beats due to the atomic
coherence �12�t0�=c1�t0�c2

*�t0� produced by a few-cycle ul-
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FIG. 1. Schematic diagram of a three-level
atom illuminated by a few-cycle laser pulse with
the carrier frequency � and the width �. The
pulse shapes for the two values of the carrier-
envelope phase �=0 �solid curve� and  /2
�dashed curve� have been plotted in the diagram
for illustration.
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FIG. 2. Re �12�t0� �dashed curves�, Im �12�t0�
�thin solid curves�, and ��12�t0�� �thick solid
curves� versus the scaled carrier-envelope phase
� /2 at the time t= t0=4�, i.e., after the illumi-
nation with the few-cycle pulse of shape
�−1� �e−�t−2��2/�2

sin��t+��� /�t with �=5/� and
�=�1 for several values of the ratio � /� desig-
nated on the diagrams, under the initial condi-
tions c1�0�=c2�0�=0, and c0�0�=1. Here � jk

=cjck
*, and the other parameters are �2 /�1

�1.05 and �=�02/�01�1.41.
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trafast pulse. Notice that the ultrafast pulse of width � is
applied to the three-level atom�s� in the time interval t
� �0, t0�, and we have taken t0�4� throughout this paper.
The phenomenon of quantum beats is investigated for the
time interval t� t0, i.e., its initial time is taken as t= t0. Fol-
lowing the same procedure as Ref. �27�, the quantum beat

note Iqbn= 	��t� � Ê1
�−��t�Ê2

�+��t� ���t��+c.c. can be calculated
by the formula

Iqbn = E1E2�b1�t�b2
*�t�ei�21�t−t0� + c.c.� , �2�

where �21=�2−�1, Ê1
�−��t�=E1â1e−i�1�t−t0�, Ê2

�+��t�
=E2â2

†ei�2�t−t0�, E j = �
� j /2�0V�1/2 is the electric field per pho-
ton for the mode j involving the transition �0�↔ �j� �j
=1,2�, and âj and âj

† are the corresponding annihilation and
creation operators, respectively. Here the system’s state is
taken as �27� ���t��=
k=0,1,2ck�t� �k ,0�+b1�t� �0,1�1

�
+b2�t� �0,1�2

�. Here �k ,0� denotes the atom in the atomic
level �k� with no photon, while �0,1�j

� describes the atom in
its ground state �0� with one photon in the field mode j.
Substituting the state ���t�� into the Schrödinger equation

and using the Hamiltonian in the interaction picture Ĥ
=

 j=1,2gj�âj � j�	0 � + âj

† �0�	j � � with the vacuum Rabi fre-
quency 2gj =�0jE j /
 for the modes j=1,2 respectively, we
readily obtain

i� d

dt
+ � j�cj�t� = gjbj�t� , �3a�

i
dbj�t�

dt
= gjcj�t�, j = 1,2, �3b�

where the decay rate 2� j of the excited level j has been
added phenomenologically �40�. The solution under the
initial conditions of b1�t0�=b2�t0�=0 is bj�t�=cj�t0�sj�t�
with sj�t�= �gj /� j

2− �2gj�2��e�j+�t−t0�−e�j−�t−t0�� and 2� j±

=−� j ±� j
2− �2gj�2 �j=1,2�. The conditions of � j�2gj �j

=1,2� are satisfied for the D lines of alkali-metal atoms �39�
and hence sj�t���gj /� j��1−e−�j�t−t0���gj /� j. Consequently,
the quantum beat note in this case is of the form

Iqbn = I0���cos��21�t − t0� + ��t0�� , �4�

with I0���= �2E1E2g1g2 /�1�2� ��12�t0��, and �12�t0�
=c1�t0�c2

*�t0�= ��12�t0� �ei��t0�. Here we have explicitly written
the dependence of the amplitude I0��� of the quantum beat
on the CEP � for convenience. I0��� depends on the CEP �
through the sensitive CEP dependence of the coherence
��12�t0�� as shown in Fig. 2.

The CEP dependence of the quantum beats revealed here
is considerably greater than the CEP dependence of bound-
state populations in the multiphoton ionization regime stud-
ied previously �20�. To see this point, let us define the depth
of modulation in the amplitude signal of the quantum beats
as M = ��I0����max− �I0����min� / ��I0����max+ �I0����min� /2 or
by using Eq. �4� M = ���12�t0��max− ��12�t0��min� / ���12�t0��max

+ ��12�t0��min� /2. It is seen from Fig. 2 that M �0.1–1 �M
�1/3 for �=0.05�� which is orders of magnitude larger
than the depth of modulation in the total ionization signal
�20�.

IV. CONCLUSION

In summary, we have investigated the generation of
bound-state atomic coherence by few-cycle laser pulses in
the weak-field regime where ionization hardly takes place,
and have mapped the atomic coherence thus produced onto
the sensitive CEP-dependent signal of quantum beats. We
believe that other quantum-interference phenomena besides
the quantum beats due to the CEP-dependent atomic coher-
ence would also show similar sensitive CEP dependence. It
is pointed out that a relatively strong ultrashort pulse can be
weakened, via passing through a strongly absorptive medium
or in some other way, say, the beam splitting, to satisfy the
weak-field condition, and hence its CEP information can also
be extracted by the method described here.
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