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A unified theory is advanced to describe both the lateral Goos-Hänchen �GH� effect and the transverse
Imbert-Fedorov �IF� effect, through representing the vector angular spectrum of a three-dimensional light beam
in terms of a two-form angular spectrum consisting of its two orthogonal polarized components. From this
theory, the quantization characteristics of the GH and IF displacements are obtained, and the Artmann formula
for the GH displacement is derived. It is found that the eigenstates of the GH displacement are the two
orthogonal linear polarizations in this two-form representation, and the eigenstates of the IF displacement are
the two orthogonal circular polarizations. The theoretical predictions are found to be in agreement with recent
experimental results.
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I. INTRODUCTION

In 1947, Goos and Hänchen �1� experimentally demon-
strated that a totally reflected light beam at a plane dielectric
interface is laterally displaced in the incidence plane from
the position predicted by geometrical reflection. Artmann �2�
in the next year advanced a formula for this displacement on
the basis of a stationary-phase argument. This phenomenon
is now referred to as the Goos-Hänchen �GH� effect. In 1955,
Fedorov �3� expected a transverse displacement of a totally
reflected beam from the fact that an elliptical polarization of
the incident beam entails a nonvanishing transverse energy
flux inside the evanescent wave. Imbert �4� calculated this
displacement using an energy flux argument developed by
Renard �5� for the GH effect and experimentally measured it.
This phenomenon is usually called the Imbert-Fedorov �IF�
effect. The investigation of the GH effect has been extended
to the cases of partial reflection and transmission in transmit-
ting configurations �6,7� and to other areas of physics, such
as acoustics �8�, nonlinear optics �9�, plasma physics �10�,
and quantum mechanics �5,11�, and the IF effect has been
connected with the angular momentum conservation and the
Hall effect of light �12,13�. But the comment of Beauregard
and Imbert �14� is still valid up to now that there are, strictly
speaking, no completely rigorous calculations of the GH or
IF displacement. Though the argument of the stationary
phase was used to explain �2� the GH displacement and to
calculate the IF displacement �15�, it was on the basis of the
formal properties of the Poynting vector inside the evanes-
cent wave �14� that the quantization characteristics were ac-
quired for both the GH and IF displacements in total reflec-
tion. On the other hand, it has been found that the GH
displacement in transmitting configurations has nothing to do
with the evanescent wave �7�.

The purpose of this paper is to advance a unified theory
for the GH and IF effects through representing the vector
angular spectrum of a three-dimensional �3D� light beam in
terms of a two-form angular spectrum, consisting of its two
orthogonal polarizations. From this theory, the quantization
characteristics of the GH and IF displacements are obtained,
and the Artmann formula �2� for the GH displacement is

derived. The amplitude of the two-form angular spectrum
describes the polarization state of a beam in such a way that
the eigenstates of the GH displacement are the two orthogo-
nal linear polarizations and the eigenstates of the IF displace-
ment are the two orthogonal circular polarizations.

II. GENERAL THEORY

Consider a monochromatic 3D light beam in a homog-
enous and isotropic medium of refractive index n that inter-
sects the plane x=0. In order to have a beam representation
that can describe the propagation parallel to the x axis, the
vector electric field of the beam is expressed in terms of its
vector angular spectrum as follows �16�:

E�r� =
1

2�
�

−�

� �
−�

�

A�ky,kz�exp�ik · r�dkydkz, �1�

where time dependence exp�−i�t� is assumed and sup-
pressed, A= �Ax Ay Az�T is the vector amplitude of the
angular spectrum, k= �kx ky kz�T is the wave vector satis-
fying kx

2+ky
2+kz

2=k2, k=2n� /�0, �0 is the vacuum wave-
length, the superscript T means transpose, and the beam is
supposed to be well collimated so that its angular distribution
function is sharply peaked around the principal axis �ky0 ,kz0�
and that the integration limits have been extended to ±� for
both variables ky and kz �17�. When this beam intersects the
plane x=0, the electric-field distribution on this plane is thus

��y,z� � �E�r��x=0 =
1

2�
� � Aei�kyy+kzz�dkydkz,

hereafter the integration limits will be omitted as such. The
position coordinates of the centroid of the beam �1� on the
plane x=0 are defined by

�y	 =
� � �†y�dydz

� � �†�dydz

=
� � A†i

�A

�ky
dkydkz

� � A†Adkydkz

�2�

and
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�z	 =
� � �†z�dydz

� � �†�dydz

=
� � A†i

�A

�kz
dkydkz

� � A†Adkydkz

, �3�

where �
�ky

means partial derivative with respect to ky with kz

fixed, �
�kz

means partial derivative with respect to kz with ky

fixed, and superscript † stands for transpose conjugate.
Since the Fresnel formula for the amplitude reflection co-

efficient at a dielectric interface depends on whether the in-
cident plane wave is in s or p polarization, it is profitable to
represent the vector amplitude of the angular spectrum in
terms of its s and p polarized components. To this end, let us
first consider one plane-wave element of the angular spec-
trum whose wave vector is k0= �k cos � k sin � 0�T,
where � is its incidence angle. Its vector amplitude is given
by A0=As

0+Ap
0 �Ass

0+App0, where As and Ap are the com-
plex amplitudes of As

0 and Ap
0, respectively, s0= �0 0 1�T

is the unit vector of As
0 and is perpendicular to the plane xoy,

and p0= �−sin � cos � 0�T is the unit vector of Ap
0 and is

parallel to the plane xoy. This means that A0 can be repre-
sented as

A0 = 
0 − sin �

0 cos �

1 0
�Ã ,

where

Ã = �As

Ap
 � Ass̃ + App̃ �4�

is what we introduce in this paper and is referred to as the
two-form amplitude of the angular spectrum,

s̃ = �1

0


represents the normalized state of s polarization, and

p̃ = �0

1


represents the normalized state of p polarization. s̃ and p̃
form the orthogonal complete set of linear polarizations.

After this element is rotated by angle � around the x axis
as is displayed in Fig. 1, its wave vector becomes

k = M���k0 = 
 k cos �

k sin � cos �

k sin � sin �
� ,

and its vector amplitude becomes

A = M���A0 = Ass + App , �5�

where

M��� = 
1 0 0

0 cos � − sin �

0 sin � cos �
�

is the rotation matrix,

s = M���s0 = �0 − sin � cos ��T

is the unit vector of As=M���As
0, and

p = M���p0 = 
 − sin �

cos � cos �

cos � sin �
�

is the unit vector of Ap=M���Ap
0. This shows that the vector

amplitude �5� can be represented as

A = 
 0 px

sy py

sz pz
�Ã � PÃ , �6�

where the matrix P represents the projection of two-form

amplitude Ã onto vector amplitude A and is thus referred to
as the projection matrix, and

sy = − sin � = −
kz

�ky
2 + kz

2�1/2 ,

sz = cos � =
ky

�ky
2 + kz

2�1/2 ,

px = − sin � = −
�ky

2 + kz
2�1/2

k
,

py = cos � cos � =
kxky

k�ky
2 + kz

2�1/2 ,

pz = cos � sin � =
kxkz

k�ky
2 + kz

2�1/2 .

Now we have successfully represented, through the pro-
jection matrix, the vector amplitude A in terms of the two-

form amplitude Ã, that is to say, in terms of the two orthogo-
nal linear polarizations As and Ap. It should be pointed out
that in this representation, s is not necessarily perpendicular
to the plane xoy, and p is not necessarily parallel to this
plane. Denoting kr=krer=kyey +kzez, where ky =kr cos �, kz
=kr sin �, ey and ez are the unit vectors in the y and z direc-
tions, respectively, and er is the unit vector in the radial

FIG. 1. Schematic diagram for the rotation of the vector ampli-
tude A of an arbitrarily polarized light beam.
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direction, we find that s is in fact the unit vector in the
azimuthal direction, s=e�. Furthermore, letting pr= pyey

+ pzez, it is apparent that pr=
kx

k er. In other words, pr is in the
radial direction. The directions of s and pr are schematically
shown in Fig. 2.

Unit vectors s and p and the wave vector k are orthogonal
to each other and thus satisfy the following relations:

sy
2 + sz

2 = 1,

px
2 + py

2 + pz
2 = 1,

sypy + szpz = 0,

kysy + kzsz = 0,

kxpx + kypy + kzpz = 0. �7�

The first three equations guarantee

A†A = Ã†Ã . �8�

From expression �6� for the vector amplitude and with the
help of Eq. �7�, we obtain

A† �A

�ky
= Ã† �Ã

�ky
−

kxkz

k�ky
2 + kz

2�
�As

*Ap − Ap
*As� , �9�

A†�A

�kz
= Ã† �Ã

�kz
+

kxky

k�ky
2 + kz

2�
�As

*Ap − Ap
*As� . �10�

Equations �2�, �3�, and �8�–�10� are the central results of this
paper, from which the GH and IF displacements are derived
below.

III. DESCRIPTION OF INCIDENT
AND REFLECTED BEAMS

Without loss of generality, we consider an arbitrarily po-
larized incident beam of the following two-form amplitude:

Ãi = �li1s̃ + li2p̃�A � L̃iA , �11�

where L̃i= li1s̃+ li2p̃ describes the polarization state of the
beam and is assumed to satisfy the normalization condition

L̃i
†L̃i = 1, �12�

the angular distribution function A�ky ,kz� is assumed to be a
positively definite sharply peaked symmetric function around
the principal axis �ky0 ,kz0�= �k sin �0 ,0� and satisfy the nor-
malization condition

� � A2�ky,kz�dkydkz = 1, �13�

and �0 stands for the incidence angle of the beam. Equations
�12� and �13� guarantee the following normalization condi-
tion for the two-form amplitude �11�:

� � Ãi
†Ãidkydkz = 1. �14�

One example of such a distribution function that satisfies
normalization condition �13� is the following Gaussian func-
tion �16,18�:

AG = �wywz

�
1/2

exp�−
wy

2

2
�ky − ky0�2�exp�−

wz
2

2
kz

2 ,

�15�

where wy =w0 /cos �0, wz=w0, w0 is half the width of the
beam at waist. ��= 1

kw0
is half the divergence angle of the

beam.
According to Eq. �6�, the vector amplitude of the incident

beam is given by Ai= PÃi. For a uniformly polarized beam
that was obtained from a linearly polarized beam in experi-
ments �19–21�, the s components of all its plane-wave ele-
ments are in the same direction, and the same to the p com-
ponents. But in our representation advanced here, the s
polarizations of different plane-wave elements are generally
in different directions; so are the p polarizations. Considering
Eqs. �6�, �11�, and �15� together, one concludes that in order
to describe a uniformly polarized beam mentioned above, it
is essential that the incidence angle �0 be much larger than
��. So we will only consider the case of large �0 below.
Fortunately, this is just what we have in the case of total
reflection.

It will be convenient to express L̃i on the orthogonal com-
plete set of circular polarizations as follows:

L̃i = ci1r̃ + ci2l̃ = UC̃i, �16�

where ci1 represents the complex amplitude of right circular
polarization, ci2 represents the complex amplitude of left cir-
cular polarization,

r̃ = Us̃ =
1
�2

� 1

− i


is the normalized state of right circular polarization,

FIG. 2. s and pr are in the azimuthal and radial directions,
respectively.

UNIFIED THEORY FOR GOOS-HÄNCHEN AND IMBERT-… PHYSICAL REVIEW A 76, 013811 �2007�

013811-3



l̃ = Up̃ =
1
�2

�1

i


is the normalized state of left circular polarization, U is the
unitary transformation matrix

U =
1
�2

� 1 1

− i i
 ,

and

C̃i = �ci1

ci2
 .

r̃ and l̃ form the orthogonal complete set of circular polar-

izations. Unitary transformation guarantees L̃i
†L̃i= C̃i

†C̃i.
When the beam is reflected at plane x=0, the reflected

beam has the following two-form amplitude:

Ãr = RlÃi = L̃rA , �17�

where

Rl = �Rs 0

0 Rp


is the reflection coefficient matrix,

L̃r = RlL̃i � �lr1

lr2


describes the polarization state of the reflected beam, and
Rs��Rs �exp�i�s� and Rp��Rp �exp�i�p� are the reflection
coefficients for s and p polarizations, respectively. It will be

convenient to express L̃r on the orthogonal complete set of
circular polarizations as follows:

L̃r = cr1r̃ + cr2l̃ = UC̃r, �18�

where cr1 represents the complex amplitude of right circular
polarization for reflected beam, cr2 represents the complex
amplitude of left circular polarization,

C̃r = �cr1

cr2
 = RcC̃i,

and Rc=U†RlU. Unitary transformation guarantees L̃r
†L̃r

= C̃r
†C̃r.

IV. GH EFFECT AND ITS QUANTIZATION

Applying Eqs. �2�, �8�, and �9� to Ãi produces the y coor-
dinate of the centroid of the incident beam on the plane x
=0,

�y	i = 0.

Since Rs and Rp are all even functions of kz, we have for the
y coordinate of the centroid of the reflected beam on the

plane x=0, on applying Eqs. �2�, �8�, and �9� to Ãr,

�y	r = −
1

R
� � ��lr1�2

��s

�ky
+ �lr2�2

��p

�ky
A2dkydkz, �19�

where

R =� � ��lr1�2 + �lr2�2�A2dkydkz �20�

describes the reflectivity of a 3D beam. The above equation
can also be written as

R = �li1�2Rs + �li2�2Rp,

with

Rs =� � �Rs�2A2dkydkz

and

Rp =� � �Rp�2A2dkydkz.

The displacement of �y	r from �y	i is the GH effect as is
schematically shown in Fig. 3 and is thus given by

DGH = −
�li1�2

R
� � �Rs�2A2��s

�ky
dkydkz

−
�li2�2

R
� � �Rp�2A2��p

�ky
dkydkz. �21�

It is obviously quantized with eigenstates being the s and p
polarization states. The eigenvalues are

DGHj = −
1

R j
� � �Rj�2A2�� j

�ky
dkydkz,

with j=s , p. When the angular distribution function A�ky ,kz�
is so sharp that

��s

�ky
and

��p

�ky
are approximately constant in the

area in which A is appreciable, we arrive at the Artmann
formula �2�,

FIG. 3. Schematic diagram for the GH and IF effects, where
plane x=0 represents the interface between two different dielectric
media, and plane z=0 represents the incidence plane.

CHUN-FANG LI PHYSICAL REVIEW A 76, 013811 �2007�

013811-4



DGHj = −
�� j

�ky
. �22�

It is now clear that the quantization description of GH dis-
placement depends closely on the two-form representation of
the angular spectrum.

A. Total reflection

When the beam is totally reflected, the reflection coeffi-
cients take the form of

Rs = exp�i�s�, Rp = exp�i�p� , �23�

and R=1. Substituting Eq. �23� into Eq. �21�, we obtain

DGH = −� � ��li1�2
��s

�ky
+ �li2�2

��p

�ky
A2dkydkz.

If
��s

�ky
and

��p

�ky
are approximately constant in the area in

which A is appreciable, the reflected beam maintains the
shape of the incident beam �22� and the GH displacement
takes the form of

DGH = − �li1�2
��s

�ky
− �li2�2

��p

�ky
,

which leads naturally to the Artmann formula �22� for s or p
polarization and agrees well with the recent experimental
results �19,20�.

B. Partial reflection and generalized GH displacement

When the beam is partially reflected, the reflected beam is
also displaced from �y	i to �y	r in the y direction. This is the
so-called generalized GH displacement �7� and is given by
Eq. �21�. Such generalized GH displacements may also occur
in attenuated total reflection �10�, amplified total reflection
�23�, and in reflections from absorptive �24� and active �25�
media. If

��s

�ky
and

��p

�ky
are approximately constant in the area

in which A�ky ,kz� is appreciable, Eq. �21� reduces to

DGH = −
�li1�2Rs

R

��s

�ky
−

�li2�2Rp

R

��p

�ky
,

which also leads to the Artmann formula �22� for s or p
polarized beams.

V. IF EFFECT AND ITS QUANTIZATION

Now let us pay our attention to the problem of the IF
effect. As before, we first want to find out the z coordinate of
the centroid of the incident beam on the plane x=0. On ap-

plying Eqs. �3�, �8�, and �10� to Ãi and with the help of Eq.
�16�, we have

�z	i = ��ci1�2 − �ci2�2��z	i
c, �24�

where

�z	i
c =

1

k
� � kxky

ky
2 + kz

2A2dkydkz.

Equation �24� shows that �z	i does not vanish and is quan-
tized with eigenstates being the two circular polarizations.

The eigenvalues are the same in magnitude and opposite in
direction. For the Gaussian distribution function �15�, we
have �26�

�z	i
c �

1

k tan �0

at large incidence angle, �0	��.
The nonvanishing transverse displacement of the incident

beam from the plane z=0 is in fact an evidence of the so-
called translational inertial spin effect of light that was once
discussed by Beauregard �27�. Beauregard found that al-
though the transverse wave vector of a two-dimensional
beam is identically zero, the two circular polarizations have
nonvanishing transverse Poynting vector, and called this phe-
nomenon the translational inertial spin effect. The problem is
that the electromagnetic field of so defined two-dimensional
beam is uniform in the transverse direction, �

�z =0. In order to
observe this effect, it is necessary to have a bound beam that
is not transversely uniform, provided that the expectation of
transverse wave vector is zero. The 3D beam that we con-
sider here is such a beam satisfying

�kz	 =� � A†kzAdkydkz =� � Ã†kzÃdkydkz = 0.

For example, when �0=10°, we have �z	i
c�0.9�. This dis-

placement has been confirmed by the numerical calculation
of the field intensity distribution, ���0,z��2, on the z axis as
is shown in Fig. 4, where the Gaussian distribution function
�15� is considered with ��=10−3 rad
�0, and ���2 is nor-
malized to unity. The right circularly polarized beam �solid
curve� is displaced 0.9� to the positive direction, and the left
circularly polarized beam �dashed curve� is displaced 0.9� to
the negative direction.

When the beam is totally reflected, the two-form ampli-
tude of the reflected beam is represented by Eq. �17�, with Rs
and Rp given by Eq. �23�. Applying Eqs. �3�, �8�, and �10� to
this amplitude and with the help of Eq. �18� gives the trans-

−10 −5 0 5 10
0.996

0.998

1

z (λ)

|Ψ
|2

FIG. 4. Normalized intensity distributions of right circularly po-
larized beam �solid curve� and left circularly polarized beam
�dashed curve� on the z axis, where �0=10°, ��=10−3 rad, and z is
in units of �.
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verse displacement of the reflected beam from the plane z
=0. So defined displacement is the IF effect �4,14,19,20� and
is given by

DIF � �z	r =
1

k
� � ��cr1�2 − �cr2�2�

kxky

ky
2 + kz

2A2dkydkz.

�25�

This shows that the IF displacement of the reflected beam is
quantized with eigenstates being the two circular polariza-
tions. The eigenvalues are the same in magnitude and are
opposite in direction. Equations �24� and �25� indicate that
the quantization description of IF displacement depends
closely on the two-form representation of the angular spec-
trum.

In order to compare with the recent experimental results
�19–21�, we consider such an incident beam that has the
following elliptical polarization and Gaussian distribution
function:

Ãi = � cos �

e−i� sin �
AG, �26�

where − �
2 �

�
2 . In this case, the IF displacement of totally

reflected beam is

DIF =
wywz sin�2��

k�
� � kxky

ky
2 + kz

2e−wy
2�ky − ky0�2

e−wz
2kz

2

�sin�� + �s − �p�dkydkz. �27�

Since Eq. �27� holds whether the beam is totally reflected by
a single dielectric interface �19� or by a thin dielectric film in
a resonance configuration �20�, it is no wonder that the ob-
served IF displacement in the resonance configuration �20� is
not enhanced in the way that the lateral GH displacement is
enhanced.

If the total reflection takes place at a single dielectric in-
terface and the incidence angle is far away from the critical
angle for total reflection and the angle of grazing incidence
in comparison with ��, the first and the last factors of the
integrand in Eq. �27� can be regarded as constants for a well-
collimated beam �22� and thus can be taken out of the inte-
gral with ky, kz, �s, and �p evaluated at ky =ky0 and kz=kz0,
producing

DIF =
sin�2��sin�� + �s0 − �p0�

k tan �0
. �28�

This shows that for given �0, the magnitude of DIF is maxi-
mum for circularly polarized reflected beams ��= ±� /4 and
�+�s0−�p0= �m+1/2���. It also shows that the nonvanish-
ing IF displacement for the case of oblique linear polariza-
tion of the incident beam ��=m�� �4� results from the dif-
ferent phase shifts between s and p polarizations in total
reflection.

With the angular spectrum �26� and the above-mentioned
incidence condition, one easily finds in the same way for the

transverse displacement of the incident beam,

�z	i =
sin�2��sin �

k tan �0
. �29�

Comparison of Eq. �28� with Eq. �29� clearly shows that DIF
appears as �z	i modified by total reflection. The modification
is represented by the replacement of factor sin � in Eq. �29�
with factor sin��+�s0−�p0� in Eq. �28�. In the experiment
performed by Girard �21�, a quarter wave plate is used to
produce �=� /2. When � is changed continuously from − �

4
to �

4 by rotating the quarter wave plate, the incident beam is
changed from left circular polarization to right circular po-

larization, and DIF is changed from −
cos��s0−�p0�

k tan �0
to

cos��s0−�p0�

k tan �0
. Thus what the experiment measures is nothing

but DIF= �z	r. The incidence angle dependence �1/ tan �0 of
DIF in Eq. �28� is in consistency with the experimental result.
Since �0 is larger than the critical angle for total reflection, it
is no wonder that the IF displacement is of the order of
�0 /2� �4,19,20�.

VI. CONCLUDING REMARKS

We have advanced a unified theory for the GH and IF
effects by representing the vector angular spectrum of a 3D
light beam in terms of a two-form angular spectrum consist-
ing of the s and p polarized components. The two-form am-
plitude of the angular spectrum describes the polarization
state of a beam in such a way that the GH displacement is
quantized with eigenstates being the orthogonal linear polar-
izations and the IF displacement is quantized with eigen-
states being the two orthogonal circular polarizations. We
have also derived the Artmann formula for the GH displace-
ment and found an observable evidence of the so-called
translational inertial spin effect that was discussed more than
40 years ago �27�. It was shown that the IF displacement is
in fact the translational inertial spin effect happening to the
totally reflected beam.

In the two-form representation of a bound beam presented
here, only large incidence angle �0 in the angular distribution
function A�ky ,kz� corresponds to the uniformly polarized
beams �19–21�. When �0 is very small, especially when �0
=0, this representation gives quite different beams with pe-
culiar polarization distributions, which needs further investi-
gations.
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