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The phase sensitivity of interferometers is limited by the so-called Heisenberg limit, which states that the
optimum phase sensitivity is inversely proportional to the number of interfering particles N, a 1 /�N improve-
ment over the standard quantum limit. We have used simulated annealing, a global optimization strategy, to
systematically search for quantum interferometer input states that approach the Heisenberg-limited uncertainty
in estimates of the interferometer phase shift. We compare the performance of these states to that of other
nonclassical states already known to yield Heisenberg-limited uncertainty.
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I. INTRODUCTION

An important aspect of quantum metrology is the engi-
neering of quantum states with which to achieve measure-
ments whose precision is Heisenberg limited. In this limit the
measurement uncertainty is inversely proportional to the
number of interfering particles N, representing a 1/�N im-
provement over the standard quantum limit. Squeezed light
has long been employed to beat the shot-noise limit �1,2� and
a growing body of theoretical literature indicates that the
Heisenberg limit is in principle achievable using more exotic
quantum states as interferometer inputs �3–8�. Several proof-
of-principle experimental realizations of such states have re-
cently been carried out �9–13�. Other proposals to beat the
standard quantum limit involve the use of feedback schemes
�14,15� or multimode interferometry �16�. The potential su-
periority of atomic fermions over bosons in some applica-
tions of atom interferometry with quantum-degenerate
atomic gases has also been pointed out �17,18�.

This paper summarizes the results of a systematic search
for input quantum states that lead to Heisenberg-limited in-
terferometric detection of phase shifts. Using the global op-
timization method of simulated annealing we demonstrate
the existence of numerous possibilities over-and-above those
already proposed in the literature, and we evaluate and com-
pare their performance.

Section II discusses our theoretical model of a Mach-
Zehnder interferometer used to measure the relative phase
shift � accumulated during the propagation of single-mode
optical or matter waves along its two arms. Section III intro-
duces a likelihood function used to estimate that phase and
discusses its asymptotic form in the limit of many measure-
ments. Section IV summarizes our main results obtained us-
ing simulated annealing and Sec. V focuses on the prospects
for the experimental realization of a quantum state of par-
ticular interest. Finally, Sec. VI is a summary and conclu-
sion.

II. MACH-ZEHNDER INTERFEROMETER

We consider a Mach-Zehnder interferometer with two in-
put ports A and B, see Fig. 1, characterized by bosonic an-

nihilation and creation operators â and â† and b̂ and b̂†,
respectively. We restrict our investigation to a system with

fixed particle number N, in which case its properties are con-
veniently described in terms of the angular momentum op-
erators �5�

Ĵx =
â†b̂ + b̂†â

2
, �1�

Ĵy =
â†b̂ − b̂†â

2i
, �2�

Ĵz =
â†â − b̂†b̂

2
, �3�

Ĵ2 = Ĵx
2 + Ĵy

2 + Ĵz
2, �4�

which obey the familiar commutation relations �Ĵi , Ĵj�
=�ijkiĴk, where �ijk is the Levi-Civita symbol, and �Ĵ2 , Ĵi�
=0. Choosing z as the quantization axis we work in the basis

of eigenstates common to Ĵ2 and Ĵz,

�j,m�z � �na��nb� . �5�

Here �ni� is a Fock state with ni particles in arm I=A ,B. For
brevity we drop the subscript z henceforth. The eigenvalues

corresponding to Ĵ2 and Ĵz are j�j+1� and m, respectively,
where
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FIG. 1. �Color online� Schematic of a Mach-Zehnder interfer-
ometer, with relative phase shift � resulting from propagation of an
input field through its arms.
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j = �na + nb�/2 = N/2 �6�

and

m = �na − nb�/2. �7�

In terms of these operators, the propagation of the input
fields through the interferometer—which consists of three
unitary transformations describing an input 50/50 beam
splitter, the relative phase shift �, and an output 50/50 beam
splitter—reads �5�

��out� = e−i��/2�Ĵxei�Ĵzei��/2�Ĵx��in� �8�

=e−i�Ĵy��in� . �9�

Our aim is to find input states

��in� = 	
m=−N/2

N/2

�m�j,m� �10�

such that the uncertainty in the estimate of the phase � is
minimized.

Our restriction in this paper to fixed total particle number
leads to considerable analytical and computational simplifi-
cation, but the more general problem in which the average
particle number is conserved is also of interest, and can in
principle be carried out with the same techniques.

III. LIKELIHOOD FUNCTION

A number of approaches have been used as measures of
the uncertainty in the estimate of the relative phase �. Com-
monly the standard error propagation formula is used to ex-
press this phase uncertainty in terms of the mean square error
of a measured observable such as the particle number differ-
ence �17�

�� = �Ĵz/�dĴz/d�� . �11�

Probability operator measures are also used �14�, as well as
information-theoretical measures such as the Shannon mu-
tual information �19�. In this paper we estimate the relative
phase following an operational approach based on Bayes’
theorem �4,20–22�. Consider an experiment in which the
probability amplitude of the ith basis state of an
�N+1�-dimensional Hilbert space depends on some phase �,

��� = 	
i=0

N

�i����i� . �12�

The probability to measure �i� conditioned on that phase is
P�i ���= ��i����2, with

	
i=0

N

P�i��� = 1. �13�

Bayes’ theorem states that the probability that the phase
shift has the value �, conditioned on the outcome i, is

P���i� =
P���P�i���

P�i�
, �14�

where P��� is the phase probability distribution prior to the
measurement and P�i� is the prior detection probability for
the outcome i. Following a measurement with outcome i1,
the phase probability distribution becomes P�� � i1�, which
may now be used as the prior phase probability distribution
for a second measurement �4�, so that

P���i1,i2� =
P���i1�P�i2���

P�i2�
=

P���P�i1���P�i2���
P�i1�P�i2�

.

�15�

Likewise, the phase probability distribution conditioned on
the outcome of a sequence of M measurements is

P���i1,i2, . . . ,iM� =
P���P�i1���P�i2��� ¯ P�iM���

P�i1�P�i2� ¯ P�iM�
.

�16�

For a large number of measurements, M 	1, and assuming
that the true phase shift is �=
, the number of times a factor
P�i ��� appears in the product �16� is approximately
P�i �
�M. This motivates the introduction of a likelihood
function for the phase shift to be �, conditioned on its true
value being 
, as �21,22�

PM���
� =
1

N

i=0

N

P�i���P�i�
�M , �17�

where

N = �
−�/2

�/2

d��

i=0

N

P�i����P�i�
�M �18�

is a normalization constant. The likelihood function PM�� �
�
has the desirable property that it possesses a maximum at the
true value, 
, of the phase shift. This is easily shown by
taking its derivative

dPM���
�
d�

= 	
i=0

N �MP�i�
�P�i����MP�i�
�−1�dP�i���
d�



k�i

N

P�k���MP�k�
� = M�

k=0

N

P�k���MP�k�
�	
i=0

N
P�i�
�
P�i���

dP�i���
d�

. �19�
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Evaluating Eq. �19� at 
, together with the normalization
condition �13� gives then

�dP���
�
d�

�



= M�

k=0

N

P�k�
�MP�k�
�	
i=0

N �dP�i���
d�

�



= 0,

�20�

implying an extremum at 
. Taking the second derivative and
again using normalization shows this extremum to be a
maximum.

In order to estimate the phase uncertainty in the limit of
large M we introduce the function

K���
� = ln P���
� . �21�

Expanding then K�� �
� around �=
 and accounting for the
normalization condition �13� we find that P�� �
� is approxi-
mately given by

P���
� � eK�
�
�−��� − 
�2/2�2�, �22�

where

�2 =
1

M	
i=0

N ��dP�i���
d�

�


2� P�i�
�

=
1

MF
, �23�

and

F = 	
i=0

N ��dP�i���
d�

�


2� P�i�
� �24�

is the so-called Fisher information, as shown in Appendix A
�23�. For large M the exponential suppresses strongly those
contributions to P�� �
� for which ��� so that P�� �
� be-
comes Gaussian in that limit �20�. Asymptotically, the like-
lihood function is therefore completely characterized by its
variance, or equivalently by its Fisher information. Equation
�23� also shows that the phase uncertainty decreases as the
inverse square root of the number of measurements.

The Fisher information plays an important role in infor-
mation theory as it gives a lower limit to the variance of any
estimator via the Cramer-Rao inequality �23�

var�x� 
1

F
, �25�

where var�x� is the mean square error of the random variable
x being estimated and Eq. �25� is the defining relation for the
Fisher information. �Note also that the Fisher information of
M� independent and identically distributed samples is M�
times the individual Fisher information.� Thus Eq. �22� indi-
cates that the likelihood function PM�� �
� achieves the
Cramer-Rao limit. It permits us to find input states of the
interferometer of the form of Eq. �10� that result in an esti-
mate of the phase shift with minimum uncertainty.

To illustrate how the likelihood function may be used to
estimate a phase shift experimentally, consider a thought ex-
periment using the Mach-Zehnder interferometer in Fig. 1.
Each measurement counts the number of particles na exiting
the interferometer in arm “A.” Due to particle conservation,

this is a direct measure of the quantum number m. Expanding
the exit state of the field as

��out���� = 	
m

�m����j,m� , �26�

each measurement yields a specific particle number na
�i�

=N /2+m�i� with an associated phase probability distribution

P�m�i���� = ��m
�i�����2. �27�

After M such measurements the conditional phase probabil-
ity distribution takes the form of Eq. �16�, which for suffi-
ciently large M is a good approximation to the likelihood
function Eq. �17�—up to the normalization constant as in Eq.
�18�. The maximum of this conditional phase probability dis-
tribution is an estimate of the phase shift and its variance
gives the uncertainty.

An important consideration is the number of measure-
ments needed for the conditional phase probability distribu-
tion, Eq. �16�, to be an accurate representation of the likeli-
hood function. This matter is not addressed in this paper
where we use throughout the asymptotic form of the likeli-
hood function, but has been investigated by Braunstein �24�.

IV. RESULTS

This section summarizes results of a numerical search for
optimum input states of the interferometer. This search em-
ployed the global optimization protocol of simulated anneal-
ing �25,26�, whose main features are summarized in Appen-
dix B.

To set the stage for this discussion, we first recall that
several states have previously been proposed as good candi-
dates for Heisenberg-limited interferometry. One such state
is the balanced twin-Fock input state �6,8�

��tw� = �j,0� � �N/2�a�N/2�b, �28�

a state that we use as a benchmark in the following discus-
sion. It was suggested in Refs. �3,8� that improvements over
that state can be achieved by using instead the state

��di�q�� = �1/�2���j,q� + �j,− q�� , �29�

with q=1. This state, which we refer to as a di-Fock state in
the following, presents the advantage of suppressing second-
ary peaks in the likelihood function, thus concentrating more
probability density around the true value of the phase shift.

It has also been proposed that Heisenberg-limited phase
sensitivity can be achieved with the so-called N00N state
�27�

��N00N� � ��di�q = j�� = �1/�2���j, j� + �j,− j��

= �1/�2���N�a�0�b + �0�a�N�b� . �30�

Some disagreement exists in the current literature regarding
the phase sensitivity of N00N states, with some authors
claiming that it in fact obeys shot-noise-limited sensitivity
�8�. Mitchell et al. �13� as well as Walther et al. �12� have
pointed out that N00N states may be used to produce super-
resolving phase oscillations, with a period of 2� /N, in inter-
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ferometric measurements. In agreement with this we will
show that similar oscillations occur in the likelihood func-
tion, if Eq. �30� describes the state of the system after the
first beam splitter. To be explicit we distinguish between
external N00N states for which Eq. �30� is the state before
the first beam splitter, and internal N00N states for which Eq.
�30� is the state after the first beam splitter. A N00N internal
state is equivalent to using an input state

e−iĴx�/2��N00N� . �31�

It can also be achieved by using as an input the state �N�a�0�b
and replacing the first beam splitter with a nonlinear beam
splitter with appropriate interaction time, as shown in �9�.

Figure 2�a� shows the probability amplitudes �m of the
basis states �j ,m� for the input states of Eqs. �28� and �29�, as
well as internal and external N00N states, for a system with
N=20 particles, and a relative phase 
=0 between the two
arms of the interferometer. The solid black line corresponds
to the twin-Fock input, the dotted red line to the input state
��di�q=1��, the green dotted-dashed line to the N00N exter-
nal state, and the gray solid line to the N00N internal state.
The corresponding likelihood functions for M =1 are plotted
in Fig. 2�b�. Apart from the N00N internal state the probabil-
ity density is concentrated close to �=0 in all cases, but the
di-Fock state seems more favorable as it results in a narrow
distribution with no significant secondary peaks. However,
this apparent advantage rapidly disappears for larger M, in
which case the secondary peaks associated with the twin-
Fock state are suppressed, leading to a slightly narrower dis-
tribution. Note the distribution corresponding to the N00N
external state remains considerably wider than the other can-
didates, indicating a larger uncertainty in the phase estimate.
The likelihood function of the N00N internal state rapidly
oscillates with a period of 2� /N radians. This is consistent
with the N-fold increase in phase oscillations observed in
�12,13�.

Figure 3 illustrates some of the large numbers of possible
input states numerically obtained from the simulated anneal-
ing algorithm for a system of N=100 particles. Column A
plots the probability amplitudes �m of the input states; col-
umn B shows the corresponding likelihood functions with
M =1 �broken red broken lines� and compares them to the
likelihood function of the benchmark twin-Fock input �solid
black lines�; column C plots the situation for M =10 mea-
surements. A remarkable feature of these results is that while

these input states are very markedly different, their likeli-
hood functions become almost indistinguishable for large M.
Surprisingly perhaps the optimization procedure clearly
shows the existence of a large number of local minima re-
sulting in almost identical likelihood functions.

To demonstrate that all states identified by the simulated
annealing algorithm indeed result in approximate
Heisenberg-limited phase sensitivity, Fig. 4 shows a log-log
plot of the inverse square root Fisher information, 1 /�F, as a
function of particle number over a range of 50�N�2500.
The solid red line is for twin-Fock states, the green dotted-
dashed line for external N00N states, the dotted blue line for
the uppermost state in Fig. 3, and the dashed black line for
the state in row 2 of Fig. 3. For clarity we refer to the latter
state as a “Gaussian state” in the following. All lines are least
square fits of the equation

� =
C

N� , �32�

where C and � are fit parameters.
Table I summarizes the results of this fit for the states of

Fig. 3, the number referring to the row number in the figure.
Up to differences of a few percent in the overall proportion-
ality constant C, all of these states clearly satisfy the 1/N
scaling characteristic of Heisenberg-limited sensitivity, the
only notable exception being the external N00N state, which
�in agreement with Pezzé and Smerzi �8�� is shot-noise lim-
ited. On the other hand, the inverse square root Fisher infor-
mation of the internal N00N state does scale with the Heisen-
berg limit. Despite this, the rapid oscillations in the
likelihood function seen in Figs. 2�b� and 2�c� allow a phase
estimate only modulo 2� /N. The consequent ambiguities
imply that the internal N00N state may not be useful for
phase estimation when using the current Bayesian analysis
unless one has a priori knowledge that the phase shift lies
within a particular phase bin of width 2� /N. We now discuss
the candidates obtained by search algorithms in turn.

The state with the highest Fisher information that we
found, an apparent global optimum, is shown in row 1 of
Fig. 3. The envelope of its probability amplitudes �i is a
Gaussian with width w=�N. Despite the high Fisher infor-
mation of that state, though, it produces a significant ambi-
guity in the determination of the phase estimate as secondary
peaks persist even for M =10, as seen in column C. A feature
not apparent on the scale in this figure is that the central peak
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FIG. 2. �Color online� �a� Probability amplitudes �m for the twin-Fock state �solid black line�, the external N00N state �green dotted-
dashed line�, the internal N00N state Eq. �31� �solid gray line�, and the di-Fock state ��di�q=1�� �red dotted line�. Corresponding likelihood
functions for �b� �M =1� and �c� �M =10�. In the di-Fock state secondary peaks are already almost completely absent for M =1, thus
concentrating more probability density around �=0. Secondary features are however suppressed for larger values of M in all cases,
indicating that the twin-Fock state results in a slightly smaller phase uncertainty.
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is the absolute maximum and becomes increasingly domi-
nant for increased M. Yet, as in the case of the internal N00N
state, the persistence of secondary peaks for relatively large
sequences of measurements indicates that it may not be the
most useful state in practice.

In the case of the “Gaussian state,” second row of Fig. 3,
the probability amplitudes �m have a Gaussian distribution
around the state �j ,m=0�,

�m = exp�− m2/��2�/N�,

where N� is a normalization constant, and the standard de-
viation is ��=1.7 for the example at hand. That state results
in Heisenberg-limited sensitivity for 0���� j, with

1
�F

�
��

N
. �33�

The limit ��→0 corresponding to the twin-Fock state.
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FIG. 3. �Color online� Column
A: probability amplitudes for sev-
eral possible input states with N
=100 particles. Column B: Corre-
sponding likelihood functions for
M =1 �dotted red line�, compared
to the result for the benchmark
twin-Fock input �solid black line�.
Column C: Likelihood functions
for �M =10�.
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FIG. 4. �Color online� Scaling of the inverse square root Fisher
information, �=1/�F with particle number for the state in row 1 of
Fig. 3 �blue dotted line�, twin-Fock state �solid red line�, the
“Gaussian state” �black dashed line�, and the external N00N state
�green dotted-dashed line�. The points are calculated using Eq. �24�
while the lines correspond to least square fits, with the following
values: external N00N state, �=1.0/N1/2; Gaussian state, �
=1.9/N; twin-Fock state, �=1.4/N; and the state in row 1 of Fig. 3,
�=1.0/N. Note the log-log scale.
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The state described in the third row of Fig. 3 is an ex-
ample of a state we refer to as a tri-Fock state, and it has the
form

��tri�q�� = ��−�j,− q� + �0�j,0� + �+�j,q��/N�, �34�

where N� is a normalization constant. We find numerically
that it results in Heisenberg-limited sensitivity for any value
of q.

The fourth row in Fig. 3 describes a state that is a super-
position of four Fock states. For the N=100 particles consid-
ered in our simulations, and the state in row one of Fig. 3
aside, we have found states with superpositions containing
up to approximately eight Fock states that result in
Heisenberg-limited sensitivity.

We also found that di-Fock states, Eq. �29�, with arbitrary
q generally result in Heisenberg-limited or near Heisenberg-
limited scaling for q as large as q�0.98j. For larger q the
state approaches the shot-noise limited external N00N state.

Several general trends can be noted in the results of our
search. First, we find that the scaling of Eq. �32� depends
only weakly on the relative probability amplitudes �M of the
Fock states involved. Changing the relative amplitudes of
these coefficients by factors as large as 3 typically results in
changes in the coefficient C by a few percent only. The
Gaussian state is a notable exception to this trend, and obeys
instead the scaling equation �33�.

Second, we found no inherent symmetry in the input
states that result in the Heisenberg limit. This is illustrated by
the states of rows 5–6 in Fig. 3. For example, the state of row
5 is an unbalanced twin-Fock state of the form

��tw� = �j,�j� , �35�

where � is some fraction. We found numerically that the
state resulted in Heisenberg-limited sensitivity for 0.02��
�0.98.

All states shown in Fig. 3 have real amplitudes. Allowing
for complex amplitudes of the same magnitudes retains
Heisenberg-limited or near Heisenberg-limited scaling, with
��0.95 in Eq. �32� and the coefficient C changed by only a
few percent. Again the effect is more pronounced in the

Gaussian state, where the change in C can be up to a factor
of �2. This is because that state has neighboring states oc-
cupied, and the number statistics of these states influence
each other even for small phase shifts.

Due to the existence of numerous input states resulting in
nearly identical uncertainties within the measurement
scheme presented here, a more relevant criterion for the se-
lection of an appropriate input state is likely to be its ease of
experimental realization. We address this point in some more
detail in the next section for the case of the “Gaussian state.”

V. THE GAUSSIAN STATE

The “Gaussian” input state is a promising candidate for
Heisenberg-limited interferometry for two reasons: �1� there
is a simple experimental scheme available to generate it; �2�
as we show below, the expectation value of Ĵz is phase de-
pendent in that case �as opposed to the situation for twin-
Fock input states� providing an alternative phase estimate to
the direct measurement of the likelihood function, while still
allowing Heisenberg-limited sensitivity.

A. Number statistics

As mentioned in Sec. III, the likelihood function can be
experimentally reconstructed by multiplying the phase prob-
ability distributions P�i ��� associated with a sequence of
measurement outcomes. This is the approach that was
adopted in the simulations carried out in Refs. �4,6� for twin-
Fock input states. In that case however the average particle
number difference remains zero for all relative phase shifts
between the interferometer arms, and is therefore not a useful
observable. The same is true for the majority of the states
that we identified in our numerical optimization search. One
way to circumvent this difficulty is to measure instead the

variance of Ĵz, an approach that still results in Heisenberg-
limited estimates. However, as was pointed out in Ref. �6�
for the case of the twin-Fock state, the signal-to-noise ratio is

then small, �Ĵz
2� /��Ĵz

4�− �Ĵz
2�2=�2.

One advantage of using a Gaussian input state instead is

that �Ĵz� now depends on the relative phase �. This is illus-
trated in Figs. 5�a�–5�c�, which shows the probability distri-
bution P�m ��� at the exit of the interferometer for twin-Fock
and Gaussian input states, and for phase shifts �=0, �

=� /100, and �=� /10. The expectation value of Ĵz for the
Gaussian state is clearly not equal to zero for nonzero phase
shifts, and may therefore be used directly to estimate that

shift. The uncertainty in Ĵz, evaluated via the standard error
propagation formula Eq. �11�, is shown in Fig. 6 as a func-
tion of the number of interfering particles. Least square fits
indicate that the uncertainties are Heisenberg limited, with
��=2.0/N for the Gaussian state and similarly ��=2.4/N
in the case of a tri-Fock state with q=1.

B. Input state engineering

We have seen that the constraints on the relative phases of
the complex probability amplitudes �i of the input states are

TABLE I. Scaling of the phase uncertainty as a function of the
particle number N for the twin state, the external N00N and internal
N00N states, the di-Fock state, and the input states of Fig. 3.

State 1 /�F=C /N�

�j ,0� 1.4/N

External N00N state 1.0/N1/2

Internal N00N state 1.0/N

��di�q=1�� 2.0/N

1 1.0/N

2 1.9/N

3 1.5/N

4 1.5/N

5 1.7/N

6 1.6/N
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surprisingly weak when estimating phase shifts � via a re-
construction of the likelihood function. However, the number
statistics of the field after passage through the interferometer
depend critically on these relative phases. For example, if in
the Gaussian state of Fig. 3 the components �j ,−1� and
�j , +1� are � /2 radians out of phase with �j ,0�, the output
state ��out� will be populated symmetrically around �j ,0� in-

dependently of �, so that �Ĵz�=0 for all �. Hence, some care
must be taken in preparing the input states ��in�.

It is possible to generate a Gaussian input state from an
initial twin-Fock state, Eq. �28�, by subjecting it to the
Hamiltonian

Hx = �gĴx, �36�

where g is a coupling constant, for a time �=3� /4Ng. The
resulting state is precisely the state shown in row 2 of Fig. 3,
but with the probability amplitudes of the components
�j ,−1� and �j , +1� � /2 radians out of phase with the compo-
nent �j ,0�. These three components can be brought into
phase via an additional evolution under the Hamiltonian

Hz = ��Ĵz
2 �37�

for a time �=3� /2�. The resulting state allows Heisenberg-

limited phase estimation by measuring �Ĵz�, with the scaling
law ��=3.2/N as a function of the particle number N. We
remark that while the time evolution �37� of the input state

brings the three main components of ��in� in phase with each
other, that is not so for the other, weakly populated number
states that comprise it. This results in a somewhat reduced
performance compared to the Gaussian state with all compo-
nents in phase.

Hamiltonians in the form of Eq. �37� have long been
known to act as squeezing operators in interferometers �28�.
In the case of photons, they can be implemented by inserting
an optical Kerr medium into each arm of the interferometer
�29�. In the case of charged particles they arise due to mutual
phase modulation from Coulomb interaction between par-
ticles in each arm �30�. Atomic spins coupled to the polar-
ization of an optical field �31,32� can lead to similar Hamil-
tonians for neutral atoms.

VI. CONCLUSION

We have used a global optimization scheme to systemati-
cally search for input states of a quantum-mechanical Mach-
Zehnder interferometer that yield phase estimates with accu-
racy scaling like the inverse number of particles, the
Heisenberg limit. Surprisingly perhaps, we find that a large
number of states can achieve that limit. They typically con-
sist of superpositions of a small number of Fock states, with
few restrictions on the relative phase of their complex am-
plitudes on their symmetry. An input state of particular rel-
evance consists of a Gaussian distribution of amplitudes
around the state �N /2�a�N /2�b, due principally to its relative
ease of realization with simple Hamiltonian dynamics.
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APPENDIX A: FISHER INFORMATION

Consider the deviation ��A
� of an observable from its
mean value �A�
�� at a fixed phase 
, as a function of the
phase shift �,
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FIG. 5. �Color online� Number
statistics for phase shifts of �=0,
�=� /100, and �=� /10 in a sys-
tem with N=100 particles for �a�–
�c� a twin-Fock input state and
�d�–�f� a Gaussian input state. The
twin-Fock state populates number
states symmetrically around m=0,
leading to an expectation value of

�Ĵz�=0 for all values of �. This is
not the case for a Gaussian state.
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FIG. 6. �Color online� Scaling of the uncertainty in the estimate
of the relative phase from a measurement of average particle num-
ber difference. The dashed black line is for a Gaussian state and the
red solid line of a tri-Fock state, Eq. �34�, with q=1, and the green
dotted-dashed line represents the state engineered as described in
Sec. V B. The points are numerically determined while the lines
correspond to least square fits. Note the log-log scale.
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��A
� = 	
j

�aj − �A�
���P�j��� . �A1�

Then

d��A
�
d�

= 	
j

�aj − �A�
���
dP�j���

d�
�A2�

=	
j

�aj − �A�
���P�j���
ln P�j���

d�
. �A3�

Regrouping the factors in Eq. �A3� and squaring gives

�d��A
�
d�

2

= �	
j

��aj − �A�
����P�j����

���P�j���
ln P�j���

d�
�2

�A4�

��	
j

P�j���� ln P�j���
d�

2�
��	

j

�aj − �A�
���2P�j��� , �A5�

where we have used the Schwarz inequality in the last step.
Noting that the second term in Eq. �A2� vanishes due to
normalization we have d��A
� /d�=d�A� /d�. We can then
rewrite inequality �A5� and evaluate it at 
 to give the de-
sired result,

��2 =
�A2

�d�A�/d��2 
1

	
j

P�j�
��� ln P�j���
d�

�


2 .

�A6�

This is the Cramer-Roa inequality, Eq. �25�, in the current
context. The denominator on the right-hand side of Eq. �A6�
defines the Fisher information.

APPENDIX B: SIMULATED ANNEALING

Simulated annealing �25,26� is a mathematical approach
to global optimization simulating the metallurgical process
whereby an amorphous compound is successively heated and
cooled while gradually lowering the average temperature in
an attempt to enlarge the grain size of single crystals in the
compound. The protocol is as follows:

�1� Initial conditions for the optimization parameters, x
= �x1 ,x2 , . . . ,xr� are chosen, usually at random.

�2� With each allowed value of x is associated a pseu-
doenergy, E�x�, which is the quantity to be minimized.

�3� A new value, x�=x+�x, is then generated for the
optimization parameters, and the change in energy �E
=E�x��−E�x� calculated.

�4� The new value of x always replaces the old if p
=e−�E/kT�1, or with probability p if p�1. Here k is a con-
stant of proportionality analogous to Boltzmann’s constant in

statistical mechanics, and T is a pseudotemperature.
�5� The process is repeated.

Accepting new parameter sets for which p�1, i.e., uphill
steps on the energy manifold, allows the algorithm to explore
the whole parameter space instead of converging directly to
the closest local minimum.

Two important considerations in this procedure are the
method of choosing the next set of parameters x� and the
annealing schedule, i.e., the protocol for gradually lowering
the temperature with intermittent heating cycles until the sys-
tem has frozen into, hopefully, a global minimum. Various
approaches to these considerations have been discussed in
the literature �25,33�.

In our implementation the optimization parameters are the
set of amplitudes �m of the input state vector Eq. �10� and
the energy the inverse square root of the Fisher information.
We execute the simulated annealing algorithm not on a
single vector �̄, but a population of vectors chosen at ran-
dom. The pseudotemperature of the system is set by the av-
erage energy of the population,

T =
1

P
	
i=1

P

1/�Fi, �B1�

where P is the number of state vectors in the population and
Fi is the Fisher information of the ith state vector. Defining
the temperature in this way self-regulates the cooling cycle.
If a single global minimum exists, the algorithm will con-
tinue sampling until the majority of state vectors have fallen
into the global minimum. On the other hand, if many local
minima of comparable depth exist the algorithm will also
continue to sample the parameter space until the majority of
state vectors have found such local minima. As more local
minima are found the system “cools down” by itself.

When the state vectors �̄ have converged near the minima
and the step size ���̄�= ��̄�− �̄� is fixed, all new steps �̄� will
be uphill, thus halting further convergence. To enable further
convergence we therefore half the step size when the number
of downhill steps found over several iterations drops below a
threshold.

It may also happen in our approach that the system
reaches an equilibrium condition in which the average num-
ber of uphill steps accepted become equal to the average
number of downhill steps found. To ensure that the system
continues to converge towards minima, we lower Boltz-
mann’s constant by k→0.9k if this point is reached. We take
as an indicator that the system is near this point whenever the
number of accepted uphill steps is larger than the number of
downhill steps in a given iteration cycle.

To summarize the algorithm:

�1� Choose initial population at random and calculate
pseudotemperature.

�2� Find new state vectors �̄�= �̄+��̄ and replaces the
old if p=e−�E/kT�1, or with probability p if p�1.

�3� If the number of uphill steps accepted is greater than
the number of downhill steps decrease k→0.9k.
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�4� If the number of downhill steps found is less than the
specified threshold reduce ��̄→0.5��̄.

�5� Repeat the algorithm

We have implemented searches that assume either real or
complex amplitudes. In addition, in some searches we im-
posed no restrictions on the symmetry of input states, while
in others we forced the input states to be either symmetric or
antisymmetric around �N /2�a�N /2�b.

In the case of real amplitudes, the initial population was
chosen by generating a random number between �−1,1� for
each �m and then normalizing the state vector. For complex
amplitudes the magnitudes ��m� were chosen at random be-
tween 0 and 1 and a complex phase between 0 and 2�.

We have used two different approaches to specifying the
new state vectors �̄� during each iteration. In the first one
new state vectors were selected by changing each amplitude
at random within an interval ��m��m� � �1+���m, with �
�1 and then renormalizing the state vector. In the case of

complex amplitudes a new phase was also chosen as �m�
=�m+�� where −������, while in the case of real am-
plitudes sign changes were allowed if ��m��0.02 by choos-
ing −�1+����m���m� � �1+����m�. In this approach, step �4�
in the algorithm described above was rather insensitive to the
values chosen for � and �. They were therefore taken to have
fixed values �=0.5 and �=0.05.

In the second approach each vector �̄ is specified by a set
of angles such that the vector moves on a hyperspherical
surface of radius 1 to ensure normalization. The next vector
is chosen in a random direction on the hypersphere with the

initial step size �
̄=0.1. It is decreased in successive itera-
tions according to step �5� in the algorithm above.

In the first approach the state vectors in the population
settle in many local minima of comparable depths, while in
the second approach all state vectors converge to an apparent
global minimum which is the state shown in row 1 of column
A in Fig. 3.
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