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Four-wave mixing in three-level systems: Interference and entanglement
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The interference of degenerate four-wave mixing (FWM) in three-level systems is examined in both the
classical and quantum regimes with a backward configuration. In classical FWM, we find that the phase
difference between two indistinguishable FWM transition paths can be varied by different driving laser pa-
rameters, and leads to interference in the amplitude and polarization of the generated conjugate field. In the
paired-photon generation case, the interference in the nonlinearity disappears because of the time ordering in
biphoton generation. However, because of the slow group velocity at the degenerate frequency and polariza-
tion, the biphoton-amplitude interference between two Feynman paths can erase the time-ordering information
at the detectors. For small group delay, the biphoton correlation, determined by the third-order nonlinearity,
shows antibunching and damped Rabi oscillations. For large group delay, where the biphoton bandwidth is
determined by phase matching, we show that the biphoton interference leads to a bunching effect. The feasi-
bility of generating polarization entanglement is also discussed.
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Optical four-wave mixing (FWM) has many applications
such as phase conjugation [1], real-time holographic imaging
[2], and nonlinear frequency conversion [3]. With electro-
magnetically induced transparency (EIT) [4], FWM has even
been demonstrated at low light level [5]. More recently, four-
wave spontaneous parametric interactions in cold atomic sys-
tems have been used to generate narrowband time-energy
entangled photon pairs [6-8].

Earlier work encompassed phase conjugation with degen-
erate FWM in two-level systems. Du ef al. [8,9] showed that
in a two-level system there is a destructive interference of the
third-order nonlinear susceptibility between two FWM pro-
cesses. Motivated by this work, we study FWM in three-
level systems and find that interference, constructive and de-
structive, of the third-order nonlinear susceptibility of the
conjugate field can be realized with different driving laser
parameters. In particular, we show that the polarization of the
generated conjugate field can also be manipulated. Moreover,
the interference of the nonlinearity disappears in the conju-
gate used to produce entangled photon pairs. However, be-
cause the ElT-induced slow-light propagation erases infor-
mation about time ordering, interference between different
two-photon Feynman paths occurs and can modify the cor-
relation from antibunching to bunching. We also discuss gen-
eration of paired photons with entangled polarization which
has many potential applications, such as tests of Bell’s in-
equalities [10] and quantum-information processing [11].
The paired photons created in such a case are analogous to
degenerate type-II spontaneous parametric down-conversion
(SPDC) [12,13].

The schematic of FWM in a three-level system is shown
in Fig. 1, where pump (w,) and coupling (w,) lasers coun-
terpropagate through an atomic cloud. A weak probe field
(w,) is applied to generate its backward phase-matched con-
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jugate field (w;,). The atomic cloud is in a cigar shape with
length L in the probe direction and atomic density N. Two
possible FWM transition paths are depicted in Fig. 1(b). The
pump and coupling fields have angular frequencies of ,
=w3;+4, and 0= w3, +A,, respectively. w;; and ws, are the
transition frequencies for |3)«|1) and |3) < |2). A, is the
energy difference between two ground levels. The probe fre-
quency is centered at @w,=w3,+A,, and the conjugate field is
centered at @w,=w;;+A,. If we set A,=A,+A,, the probe
and its conjugate field share the same central frequency, i.e.,
w,=w,=w). We assume that A,>A_ and all the atoms are
initially populated in their ground level |1). The third-order
nonlinear susceptibilities for two processes can be obtained
from perturbation theory [7]:

() = Npgipanl*/(8oh?)
! (A + A)[Q P = 4(5- A, +iy)(S+iyy)]
(1)
(8 = Nps1pzl*/(8h)
" Ay + AD[QL - 4(5+ A +iys)(S+iva)]
(2)

where 6=w,—w, is the probe detuning, (). is the coupling
Rabi frequency, y;; are the dephasing rates between levels |i)

FIG. 1. (Color online) Four-wave mixing in a three-level sys-
tem. (a) Experimental setup of the right-angle geometry. (b) Two
transition paths that produce the w), field.
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FIG. 2. (Color online) Phases of X§3) and XS) vs the normalized
coupling detuning A./A,;: Ay =27X3.036 GHz, y;3,=7y;3=2m
X3 MHZ, '}/21227TX 0.03 MHZ, QC=3')/31, and A[,=A21+AC.

and |j), and w;; are the dipole matrix elements. One may
verify that XES)( o)= XS)*(_ ). The total third-order nonlinear
susceptibility is given by ¥*(8)= XE3)(6)+ Xif)(ﬁ). As seen
from Egs. (1) and (2), at zero coupling detuning (A.=0) the
maximum constructive interference occurs, i.e., X?): ;3).
For large coupling detuning (A, >{Q., y3,,5}), X?) and X%f)
have a m phase difference, which indicates a destructive in-
terference with . Figure 2 shows the phase of )(?1)1(5:0)
as a function of coupling detuning. The physics behind this is
clear: around A_=0, the nonlinearity is enhanced by the EIT-
induced coherence; otherwise, the medium can be approxi-
mated as a two-level system [8,9]. To implement the scheme
discussed above, the probe field must simultaneously cover
both transitions so that interference can occur between the
two FWM events and degenerate polarizations.

To study interference between two orthogonal polariza-
tions, we consider the ideal nondegenerate three-state system
shown in Fig. 3, where [1), |2), and |3) represent three Zee-
man states with M=-1, 1, and 0, respectively. The circularly
polarized pump and coupling fields are denoted as o* and o™
A linearly polarized probe beam, nearly collinear with the
pump-coupling direction, can be decomposed into |P)pr0be
=(|o*y+|07))/\2. Then the polarization of the w, field is
[PYeoni= (|07 +e¥2)|0*)) /2 where $(A,) is the phase dif-
ference between two FWM events which is determined from
X?) and X;f)- It is obvious that the polarization of the conju-
gate field depends on A.: (1) for coupling on resonance
(A,=0), the conjugate field remains the same linear polariza-
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FIG. 3. (Color online) Polarization interference of FWM in an
ideal three-state system. (a) Small-angle collinear experimental ge-
ometry. (b) Two FWM paths to generate the conjugate field.
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FIG. 4. (Color online) Polarization of the conjugate field gener-
ated via the scheme shown in Fig. 3. (a) A.=0, ¢=0; (b) A./A,,
=0.18, ¢p=m/4; (c) A./A»=045, ¢p=7/2; (d) AJAy=1.08, ¢
=3m/4; (e) A/ Ay =14.18, $p=0.987; (f) A /Ay — o, p=r.

tion as the probe because ¢=0; (2) for large coupling detun-
ing, ¢p— i, the conjugate field switches from the horizontal
polarization to the orthogonal. Figure 4 shows how the po-
larization of the conjugate field changes as a function of the
coupling detuning with the same parameters used in Fig. 2.

Now we turn to the major part of the two-photon interfer-
ence when the three-level system is used to generate en-
tangled photon pairs with the same central frequency. As
shown in Fig. 5, in the presence of pump and coupling
beams, photon pairs are spontaneously emitted into the back-
ward geometry. Here the paired photons are denoted as
Stokes (w,) and anti-Stokes (w,,). In the following we con-
sider only the case with A;=0 and A,=A,, such that the
Stokes and anti-Stokes photons have degenerate spectra. The
EIT linear susceptibility is described by

- 4N|,U~31|2(5+ iy (ggh)
Q= 4(5+iv)(6+iys)

x(6) = (3)

Both Stokes and anti-Stokes photons experience this EIT
profile because of their degenerate frequency and polariza-

L2 Stokes

Anti-Stokes

FIG. 5. (Color online) Biphoton generation in a three-level sys-
tem: (a) Experimental setup; (b) level configuration; (c) Feynman
diagram of biphoton interference.
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tion. The EIT effect not only prevents the generated photons
from being absorbed, but also enhances the nonlinear inter-
action. As shown in Fig. 5(b), because the Stokes photon is
always radiated before the anti-Stokes, there is no interfer-
ence in the third-order nonlinearity. However, because both
Stokes and anti-Stokes photons experience slow group veloc-
ity, their time-ordering information is washed out when the
group delay is larger than the generation time, i.e., L/V,
= At,, .. This may be understood with the help of the Feyn-
man diagram in Fig. 5(c). We are interested in the case that
two detectors tend to fire simultaneously by postselection.
Since the anti-Stokes photon is emitted after the Stokes, by
adjusting the coincidence window paired Stokes—anti-Stokes
photons are considered if they are registered almost at the
same time by the two detectors. Two possible Feynman paths
for such a measurement are shown in Fig. 5(c). Regardless of
where the pair is generated, z; or z,, they are not distin-
guished by the detectors. Hence the interference occurs be-
tween two different Feynman paths.

The two-photon amplitude in the time domain on the out-
put surfaces is

q,(tL’tR) = \I,x—as(tL»tR) + qls—a.v(tR’ tL) s (4)

where R and L refer to right- and left-propagating modes.
The paired Stokes—anti-Stokes amplitude can be obtained us-
ing perturbation theory [13,14]:

L ) A
\Ps—as(T) = 2 f dé K(5)el(ks+kas)L/2(I)(AkL)e—zﬁr (5)
o

where 7=1,,—1, is the time delay between the two detectors,
k(8)=(iwy/2c) )(%3)(6)EPEC is the nonlinear coupling coeffi-
cient, and Ak=k,—k,, is the phase mismatching inside the
medium and is approximated as Ak=26/V,. The term
e/ kstkad)l’2 can be removed because k,+k, =2k, 1s a constant.
The longitudinal detuning function is defined as

L2 SL

dz ek ~ sinc(—), (6)
Ve

D(AKL) = %f

L2
which allows Eq. (5) to be expressed as a convolution:

\I,s—us('r) = \I,O(T) * H(T)’ (7)
with

\PO(T):ifd5K(5)€_i§T=Be'”’%in(%)ﬁ(ﬂ, (8)

where y,=(yy+73)/2 and Q,=\Q=(y,—v3)>. B is
a constant. The rectangular function Il(7)=V,/(2L) for 7
e[-L/V,,LIV,], and otherwise zero, is a Fourier transform
of the longitudinal function. The Heaviside function 6(7) de-
fines W (7) as valid for 7=0. Now the biphoton amplitude
[Eq. (4)] becomes

W(r=ig—1) =[Wo(7) + Wo(= 7] * (7). )

As shown, even though there is no temporal overlapping
between W (7) and W (—7), their convolution with I1(7) will
mix them together. Two characteristic times of the system are
the group delay 7,=L/V, and the Rabi oscillation period 7,
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FIG. 6. (Color online) Two-photon correlation |W(7)|? as a func-
tion of time delay 7. The blue dashed line represents the results
from the perturbation theory and the red solid line stands for those
from the Maxwell coupled operator equations. (a) Small-group-
delay regime: OD=1.5, 2.=10vy3;, 7,=1.6 ns, and #,=33.5 ns; (b)
large-group-delay regime: OD=30, {.=2v;, 7,=788 ns, and ¢,
=193 ns.

=27/(),. When 7,<7,, we can treat [1(7) as a delta function
&(7) and approximate W(7) as Wy(7)+Wy(—7). For this case,
interference is not present between W((7) and Wy(—7) and
photon antibunching at 7=0 is observed where the two-
photon correlation exhibits a damped Rabi oscillation. If 7,
> 1, however, the two-photon temporal correlation ap-
proaches a rectangularlike function [i.e., ¥(7) —1II(7)] and
exhibits photon bunching around 7=0.

The numerical simulations (blue dashed line) are given
in Fig. 6, where a comparison is made with the methodology
by solving the coupled operator equations [6-8] which
include both the linear loss and Raman gain profiles (red
solid line). We have chosen the Rb D2 line for a suitable
level configuration: [1)=|5S,,,F=2), [2)=|55,,,F=3),
13)=|5P5,, F=3), A,;=27X%3.036 GHz, 7y3=7v3;=27
X3 MHz, v,;=2mX0.03 MHz, and (2,=10073;. The cold
atomic cloud, prepared in a two-dimensional magneto-
optical trap, has a typical longitudinal length of 1.5 cm and
an optical depth (OD) of 30 at the pump transition [15]. For
small group delay with low OD (~1.5) and large coupling
Rabi frequency (,.=10v3;), two methods yield the same
result. As seen in Fig. 6(a), the two-photon correlation shows
a damped Rabi oscillation and photon antibunching. For
large group delay with high OD (~30) and small coupling
Rabi frequency (2,=273;), as shown in Fig. 6(b), perturba-
tion theory [Eq. (9)] shows that the correlation becomes a
rectangularlike shape and the coincidences at 7=0 are not
zero. The coupled operator equations predict similar behav-
ior except that the loss and gain modify the pattern.
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We note that the three-state scheme (Fig. 3) can also be
used to generate polarization-entangled paired photons. The
polarization-entangled state takes the form [16]

W)=V, (D]|o*,07)+ V(- D|o™,0"). (10)

Maximum polarization entanglement can be achieved if the
generation time difference is compensated. Again, there is no
interference between two orthogonal circular polarizations in
a single-photon counting experiment because the reduced
density operator for a single photon is always p=(|o"){o"|
+|07)(o7|)/2. The reason is that when twin photons are gen-
erated in a single event following a time ordering of atomic
transitions, each photon can occupy only one transition due
to the polarization and time-energy entanglement. There is
no interference between different events because of the ran-
dom nature of spontaneous emission. For application pur-
poses, the polarization-entangled Stokes and anti-Stokes
photons have long coherence length and coherence time,
which is ideal for long-distance quantum communication.
In summary, we have studied interference of classical
FWM and biphoton generation in three-level systems with a
back-to-back configuration. In classical FWM, we find that
the phase difference between two FWM transition paths can
be varied by adjusting the input laser parameters. In a three-
state scheme, we show that the polarization of the conjugate
field can be manipulated. In the paired-photon generation
scheme, the interference in the nonlinearity disappears be-
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cause of the time ordering in the generation mechanism.
However, the EIT-induced slow-light propagation is experi-
enced by both Stokes and anti-Stokes photons because of
their degenerate frequency and polarization, and acts as a
quantum eraser of the time ordering. An interference appears
as a sum of indistinguishable biphoton amplitudes from dif-
ferent Feynman paths. For small group delay, the biphoton
temporal correlation is mainly determined by the third-order
nonlinearity and exhibits photon antibunching and damped
Rabi oscillations. For large group delay, the biphoton band-
width is determined by phase matching and the two-photon
interference yields photon bunching. Generating polarization
entanglement is also suggested in the three-state case, which
is similar to type-II SPDC. We also emphasize that the non-
linear coupling coefficients for the classical FWM coupled
field equations are different from those used in coupled op-
erator equations. In general, considering biphoton generation
in the schemes proposed in this paper, it is not valid to di-
rectly change the classical FWM coupled field equations into
operator equations (e.g., [5-7]) without changing the nonlin-
ear coupling coefficients.
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