
Electromagnetically induced transparency line shapes for large probe fields and optically
thick media

M. V. Pack, R. M. Camacho, and J. C. Howell*
Department of Physics, University of Rochester, Rochester, New York 14627, USA

�Received 9 November 2006; published 2 July 2007�

We calculate the line shape and linewidths for electromagnetically induced transparency �EIT� in optically
thick, Doppler broadened media �buffer gasses are also considered�. In generalizing the definition of the EIT
linewidth to optically thick media, we find two different linewidth definitions apply depending on whether the
experiment is pulsed or continuous wave �cw�. Using the cw definition for the EIT line shape we derive
analytic expressions describing the linewidth as a function of optical depth. We also review the EIT line shapes
in optically thin media and provide physical arguments for how the line shapes change as a function of various
parameters.
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I. INTRODUCTION

Electromagnetically induced transparency �EIT� is an im-
portant component for numerous experiments spanning the
subjects of slow light �1–3�, stored light �4,5�, generation of
correlated photon pairs �6�, quantum information processing
�7� EIT-enhanced nonlinear optics such as frequency mixing
or generation �8–12�, magnetometry �13–15�, atomic fre-
quency standards �15–17�, phase conjugate optics �18�, and
Kerr nonlinearities �19–21�. Understanding the shape of the
transparency is important for many of these experiments. For
example, in slow-light experiments the EIT line shape deter-
mines the group velocity and pulse broadening �22�. Also,
the rise time of EIT Kerr nonlinearities is inversely propor-
tional to the EIT linewidth �23�.

Although EIT can be realized in many different circum-
stances �e.g., solid state systems �24� and hot or cold atomic
vapors�, we focus our discussion on EIT in �-type, hot
atomic vapors. However, our treatment is rather general and
may be generalized to other inhomogeneously broadened
systems.

There has already been a great deal of work towards un-
derstanding EIT line shapes �15,25–35�, and there are several
reviews of EIT and coherent population trapping �36–39�.
However, most of the work on EIT line shapes is limited to
EIT in optically thin media and most research assumes that
one of the EIT fields is much stronger than the other �the
weak field is called the probe and the strong field is called
the coupling field� �29–35,40�. For many applications of EIT
it is desirable to violate these assumptions and to use opti-
cally thick media and/or large probe fields. The definition of
“large” probe field varies depending on the situation, but in
general the probe field is large when the small probe assump-
tion used in perturbative calculations becomes inaccurate.
The probe Rabi frequency is always assumed to be smaller
than the coupling Rabi frequency.

Simple models for the EIT line shapes, which assume a
single homogeneous line and a three-level system, have been

well understood for many years �36,38,41�. Recently more
complete and experimentally realistic models for EIT line
shapes have been studied. These models include Doppler
broadened systems �29,31–33,40� and systems with buffer
gasses �30,34,35�. Other studies have looked at how the op-
tical density of the medium influences the EIT line shape via
effects such as radiation trapping �42–44� or nonlinear opti-
cal interactions �28�. �Note that optically dense does not im-
ply optically thick and vice versa.�

Some research already exists related to EIT in optically
thick media. For example, Rochester et al. have studied how
nonlinear magneto-optical rotation in optically thick media
differ from the optically thin media �45�. Also, Godone et al.
have reported narrowing of the EIT linewidth for optically
thick 87Rb vapor in a buffer gas �46–48�. The Godone et al.
experiments were directed towards improving frequency
standards and used a longitudinal magnetic field to resolve
only the dark-line associated with the clock states �i.e., mF
=0 ground states� �46–48�. There is still more to be under-
stood about the effects of optical thickness on EIT line
shapes and linewidths especially for Doppler broadened EIT
systems.

In this paper we study the effects of optical thickness on
EIT line shapes �by optically thick we mean �L�1, where �
is the absorption coefficient and L is the length of the me-
dium�. However, we do not discuss optical dense media in
which radiation trapping and coherent interactions between
atoms such as super-radiance or coherent Raman scattering
play a role. Many experiments such as slow-light and EIT
Kerr measurements require large optical thickness in order to
achieve measurable effects, and for optically thick media the
EIT line shape often differs significantly from the optically
thin EIT line shape. The differences between optically thick
and thin media arise because in optically thick media the
fields are attenuated as they transverse the medium, and EIT
line shapes are strongly dependent on the field intensities.

This paper is divided into two parts. First, Sec. II dis-
cusses the various optically thin EIT line shapes encountered
in common experimental circumstances. Then in Sec. III we
use the functional forms of the optically thin EIT line shapes
to calculate the optically thick EIT line shapes. Although
much of Sec. II is a review of well known results, we have*Electronic address: mvpack@pas.rochester.edu
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tried to present the results in novel, physically intuitive, and
mathematically simple ways. All of Sec. III is new.

II. OPTICALLY THIN EIT LINE SHAPES

To calculate the EIT line shapes in optically thick media
we must first understand EIT line shapes in optically thin
media. Different systems exhibit different EIT line shapes.
For example, EIT in homogeneously broadened systems,
such as a cold atomic gas with a single-velocity class, will
have an approximately Lorentzian line shape near single-
photon resonance. Whereas, the EIT line shape in a Doppler
broadened atomic vapor will be either V shaped or U shaped
depending on the relative strengths of the probe field �see
Fig. 5�. Also, the EIT line shapes can depend on other factors
such as whether or not the atoms experience velocity-
changing, coherence-preserving collisions �VCCPCs�.

In this section we discuss the line shapes and linewidths
for three-level EIT systems such as the one shown in Fig. 1
under different conditions, such as Doppler broadening and
VCCPC. Many of the optically thin results discussed here
can also be found elsewhere, but it is helpful to establish a
single uniform notation. Also, we try to emphasize the phys-
ics while minimizing the complexity of the mathematical
expressions. Readers already familiar with EIT line shapes in
optically thin media may want to skip to Sec. III.

A. Single velocity class line shapes

First, let us consider the line shape of a �-EIT system
with a single homogeneous line �see Fig. 1�. Although this
problem is well understood and its solution can be found in
numerous text books �38,41� it deserves some consideration
here as it will be the basis for understanding the EIT line
shapes of Doppler broadened systems.

Figure 1 shows a prototypical three-level EIT system with
a strong coupling field �Rabi frequency �C� and a weak

probe field �Rabi frequency �P�. The figure caption defines
the detunings and decoherence rates associated with this sys-
tem. The three-level system is assumed to be a closed system
with all decay out of any given state incoherently repopulat-
ing another state. When the two-photon detuning �R is zero
the system becomes trapped in the dark state �−�= ��P�3�
−�C�2�� /�, which is decoupled from the excited state mak-
ing the medium transparent. We also define the bright state
��� as the superposition of ground states orthonormal to the
dark state �i.e., �+�−�=0� and the coupling between the bright
state and excited state is given by the bright Rabi frequency
�=��P

2 +�C
2 .

The dynamics of this system are governed by the master
equation

�̇ =
1

i�
�H,�� − D , �1�

where the coherent evolution is determined by the Hamil-
tonian

H =	
	 −
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2
−
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The decoherence matrix is

D =	

�11 
��12 
��13


��21 ���22 − �33� −



2
�11 ���23


��31 ���32 ���33 − �22� −



2
�11

 ,

�3�

and the spontaneous emission at rate 
 repopulates both
ground states with equal probability �i.e., the dipole moments
are equal �P=�C�, 
�= �
+
�+�� /2 is the transverse deco-
herence rate for the excited state coherences, and ��= ���
+�� is the decoherence rate for the ground state coherence.
The primed decoherence rates 
� and �� are the dephasing
rates for the coherences, and are assumed to be zero unless
explicitly stated otherwise. Additionally, throughout this pa-
per we assume that the Rabi frequencies are real and that 

��, such that 
��
 /2, unless stated otherwise.

In its most general form the steady state analytic solution
of Eq. �1� is so complicated that it provides little insight,
which is why approximate solutions for the EIT line shape
are widely used �31,36–39,41�. We discuss two different ap-
proximation methods. First, in Appendix A we use perturba-
tion theory to solve Eq. �1� to first order in �P and to all
orders in all other parameters �this is probably the most com-
mon solution method for these types of problems, see Refs.
�31,38,41��. The simplicity of this solution makes it ideal for
gaining intuition, but the perturbative solution is only valid
in the limit that the probe field is weak. Also, when the
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FIG. 1. Diagram of a three-level �-type atom with a strong
coupling field and a weak probe field. The detunings are defined as
	= �	P+	C� /2 and �R=	P−	C, where 	P= �
1−
2�−
P and
	C= �
1−
3�−
C. Also, the Rabi frequencies are defined as �i

=�iEi /�, where i= �P ,C
 �signifying probe and coupling fields, re-
spectively�, the dipole moments �i are assumed to be real, and Ei is
the electric field. The spontaneous emission rate out of the excited
state is given by 
 and the ground state decoherence rate � is the
same for both ground states.
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single-photon detuning is large, as is the case for certain
velocity classes in Doppler broadened systems, the probe
Rabi frequency must be several orders of magnitude smaller
than the coupling Rabi frequency in order to use the pertur-
bative solution �see Appendix A for details�.

A more general derivation of EIT line shapes uses what
we call the Bloch-vector method, and this derivation makes
no assumptions about the relative strengths of the probe and
coupling fields �see Appendix B and Ref. �11��. This method
assumes only that the excited state coherences can be adia-
batically eliminated, an assumption that is strengthened
when the single-photon detuning is large. Thus, the Bloch-
vector method is ideal for calculating EIT line shapes in
Doppler broadened media.

For the case of zero decoherence ��=0� the perturbative
solution gives a probe susceptibility of

�P
�a���R� =

N�p
2

2��0
�12 � �0

2�R

�C
2 /
 + 4	P�R/
 − 2i�R

, �4�

where �0=N��p�2 /2��0
 is the incoherent probe absorption
coefficient, N is the atomic number density, 
�=0, and the
other constant have their typical meanings �see Appendix A
for the derivation�. Although Eq. �4� was derived assuming
�=0, this solution is also a good approximation for the case
��0 so long as the EIT condition �C

2 
 / �4	2+
2��� is
satisfied. For simplicity we assume 
��C.

Near single-photon resonance the transparency resonance
has a Lorentzian line shape with a full width at half maxi-
mum �FWHM� of �EIT=�C

2 /
+2�. Physically this can be
understood as the detailed balancing between pumping out of
the dark state and pumping into the dark state. For continu-
ous wave �cw� EIT, optical pumping is the primary mecha-
nism transferring atoms from the bright state to the dark
state, and the optical pumping ratio R from the bright state to
the dark state is calculated by taking the product of the prob-
ability that an atom has been excited from the bright state
P��+ �→ �1�� times the spontaneous emission rate from the
excited state into the dark state, which is 
 /2, i.e.,

R =



2
P�� + � → �1�� ,

where

P�� + � → �1�� =
Tr���1��1��

Tr���� + ��+ � + �1��1���

=
�2/2

�2 + 	2
/
� + 

�

.

Near resonance the optical pumping rate simplifies to R
��2 /4
�, if the fields are well below saturation intensities.

The transfer rate out of the dark state is due to the deco-
herence � and Raman detuning �R. Thus, the total pumping
rate out of the dark state is

R� � �� + �R
2/R . �5�

In Eq. �5� we have assumed the EIT condition R���, and
we have assumed �22��C

2 /�2 and �33��P
2 /�2, which are

both valid assumptions under normal EIT conditions. Apply-

ing detailed balancing subject to the constraints �22
=�C

2 /�2 and �33=�P
2 /�2, we see that the EIT absorption

line is approximately

�L �
R�

R + R�

. �6�

This is simply a Lorentzian transparency resonance with
linewidth �EIT=�C

2 /2
�+2��, and is in excellent agree-
ment with Eq. �4�. Also, we see that the EIT condition can be
stated as the pumping rate into the dark state R must be much
larger than the pumping rate out of the dark state on Raman
resonance R���R=0�.

The EIT line shape changes dramatically as the single-
photon detuning is moved far from single-photon resonance
	�
. In this case the dominant feature of the EIT line is not
the transparency near Raman resonance, but a virtual absorp-
tion line slightly to one side Raman resonance as shown in
Fig. 2. The physics of this process is best understood in the
dressed state picture in which the atom is dressed by the
coupling field. In the dressed state picture the excited state
energy level is split into two energy levels. The primary en-
ergy level which is the original excited state that has been
Stark shifted by �C

2 /4	C, and it has an absorption line shape
given by

L1��R� =
�0L
2�̃gg

2

��R + 	C + �C
2 /4	C�2 + 
2�̃gg

2 . �7�

The secondary or virtual energy level is near �R=0, and its
absorption shape is given by

L2��R� =
�0L
2�̃ee

2

��R − �C
2 /4	C�2 + 
2�̃ee

2 , �8�

where �̃ee=�C
2 /4	C

2 and �̃gg=1− �̃ee. Although the dressed
state picture does not specifically address the interference
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FIG. 2. EIT in the far detuned case. Grey solid line shows the
probe absorption for EIT when 
=2��6 MHz and 	C=5
. The
dashed gray curve shows the probe absorption in the absence of a
coupling field, and the black solid line shows the probe absorption
for a virtual transition as calculated in Eq. �8�.
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responsible for EIT, transparency can be mimicked near Ra-
man resonance by combining L1 and L2 to create

Ltotal = ��L1��R� − �L2��R��2, �9�

where the minus sign simulates the interference responsible
for EIT. Figure 2 shows the agreement between Eq. �8� and
the exact steady state solution of Eq. �1�.

When the single photon detuning is large, i.e., 	�
, the
transparency region near �R=0 will be broad and flat com-
pared to the sharp narrow absorption spike due to the virtual
transition �see Fig. 3, for example�. The virtual transition is
centered at

�R = �VC = �C
2 /4	C � 2	R/
 , �10�

and has a FWHM of 
�C
2 /2	2�4R, where we assume 	

�	C, and where the subscript “VC” stands for virtual tran-
sition center. The transparency region is much larger than the
virtual transition with a half width at half maximum
�HWHM� of approximately 2	R /
, which is a factor of 	 /

larger than the absorption HWHM. The asymmetric line
shape of the transparency region makes defining a transpar-
ency linewidth somewhat ambiguous, so we choose to define
the far-detuned EIT HWHM as the frequency difference be-
tween Raman resonance �R=0 and the Raman detuning at
the half-maximum of the virtual transition. When 	 /
�1
the virtual transition is sufficiently narrow that it can be ap-
proximated as Dirac delta function; a fact that we exploit in
Appendix B.

As mentioned earlier the perturbative solution does not
converge when both the single-photon detuning 	�
� and
the probe field are large �P��C. In this case the Bloch
vector method must be used and the virtual transition from
Eq. �8� is modified to become

L2��R� =
�0L
2�̃ee

2

��R − F�C
2 /4	C�2 + 
2�̃ee

2 F2 , �11�

where F=�1+�P
2 
�

2 /	2�C
2 �see Appendix B�. Finally, in

both Eq. �11� and Eq. �8� we have assumed �=0. This as-
sumption is justified so long as the EIT condition is satisfied.
However, when the EIT condition is not satisfied and the 	
�
 the virtual transition absorption is modified such that Eq.
�8� should become

L2�� � 0� �
2R2L2�� = 0�
��2R + ��2

. �12�

B. Doppler broadened atomic systems

In hot atomic vapors, atoms with different velocities will
experience different Doppler shifts resulting in an inhomo-
geneously broadened absorption line. Doppler broadening
also effects the EIT line shapes making the linewidth sub-
stantially narrower and the line shape typically deviates sig-
nificantly from the single-velocity Lorentzian line shape.

The EIT linewidths for Doppler broadened systems have
been derived for the cases of weak probe fields in Refs.
�31,33� and for large probe fields in Ref. �29�, but these
studies focused on the linewidth largely ignoring the line
shape. We discuss both the linewidths and line shapes here
because the line shapes are also important for determining
the linewidths in optically thick media. We restrict our dis-
cussion to � EIT systems with copropagating beams �these
results are similar to ladder EIT systems with counter propa-
gating beams�.

In Doppler averaged systems the total susceptibility is
found by integrating over the susceptibility of each velocity
class:

�P = �
−�

�

dv�P�v�
exp�− v2/2vp

2�

vp
�2�

, �13�

where vp=�2kBT /m is the most probable velocity in the
Maxwellian velocity distribution, and m is the atomic mass.
Also, the velocity dependence of �p�v� is implicitly con-
tained in the detunings 	p�v�=	p�0�+v
0 /c and ��v�
=��0�+v	23/c, where 	23 is the frequency difference be-
tween levels �2� and �3�. For the remainder of the paper we
assume that the ground state energies are degenerate, i.e.,
	23=0, unless explicitly stated otherwise. Note, an approxi-
mate analytic solution for the imaginary part of Eq. �13� is
derived in Eq. �B15� from Appendix B.

Figure 3 shows how Doppler averaging results in nar-
rower EIT linewidths, and how these narrower line shapes,
deviate from Lorentzian. The solid gray curve near the bot-
tom of Fig. 3 shows the absorption due to a the velocity class
v=0. This single-velocity line shape is so broad that it ex-
tends well beyond the bounds of the figure. In contrast, the
Doppler averaged absorption curve is much narrower. The
virtual transition associated with v= ±vp /6, v= ±vp /3, and
v= ±vp are also plotted to illustrate how the superposition of
virtual transitions for the far detuned velocity classes com-
bine to fill in the wings of the v=0 transparency resonances.
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The farthest detuned velocity classes have absorption peaks
nearest Raman resonance �e.g., the v= ±vp velocity classes
in Fig. 3�, and these velocity classes contribute most strongly
to the narrowest part of the Doppler broadened EIT line
shape. Thus, the Doppler broadened line shapes can be well
understood simply by studying the factors influencing the
virtual transitions of the off-resonant velocity classes �this is
not true for VCCPC systems which are discussed later�.

Figure 4 shows how the EIT linewidths and line shapes
change as a function of the ratio between probe and coupling
Rabi frequencies ��P� / ��C�. These curves were obtained by
numerically integrating Eq. �13� with �P�v� being the exact
steady state solution of Eq. �1�. The two solid gray curves are
associated with the gray vertical axis on the right, and show
the root mean square �rms� difference between the EIT line
shape and a Lorentzian line shape of the same height and
width. All black curves �solid, dashed, or dotted� are line-
widths �FWHM� and are associated with black vertical axis
on the left. All data is plotted versus the ratio between probe
and coupling Rabi frequencies �P /�C, with the bright Rabi
frequency �=��P

2 +�C
2 held constant. Also, for the plots in

Fig. 4 the ground state decoherence rates were �=0 and �
=�2 /100
=2��150 Hz as indicated in the figure legend.

In both the large- or weak-probe limits it is possible to
find asymptotic expressions for the linewidth and line shape.
The asymptotic values for the weak-probe linewidth are
shown by the dashed black lines in Fig. 4, and large-probe
asymptotic linewidth is the dotted curve. These asymptotic
solutions are easiest to understand by thinking about the far-
detuned velocity classes and Eq. �12�.

First, consider the weak-probe limit, in which case the
linewidth asymptotically approaches

�EIT
WP �

�2

	̃
, �14�

where the effective inhomogeneous linewidth 	̃ is given by

1

	̃
=� 1

	D
2 +

��2

�2

�15�

and 	D=�8 ln 2vp
0 /c is the inhomogeneous Doppler
broadened FWHM. In the weak-probe limit the functional
form for the line shape is

��WP���R� � exp�− ln 2�4/4�R
2	̃2� , �16�

which is a U shape, and is derived in Eq. �B16� of Appendix
B. On single-photon resonance, i.e., 	�v=0�=0, the farthest
detuned velocity class contributing to the EIT line shape has

a detuning of about 	̃ /2 �velocity classes with larger detun-
ings do not satisfy the EIT condition�. The EIT FWHM is
approximately

�EIT � �VC�	 = 	̃/2� − �VC�	 = − 	̃/2� � �2/	̃ , �17�

where �VC is given in Eq. �10�.
The effective inhomogeneous width accounts for the fact

that the farthest detuned velocity classes do not contribute to
the EIT line shape when 	D

2 �� /�2
 because the EIT con-
dition R�� is not satisfied for these velocity classes. Far
from resonance the EIT condition becomes �2
 /	2��,

which defines a cutoff detuning 	̃���2
 /� because the vir-
tual transition is negligible for velocity classes with larger
detunings as discussed at the end of Sec. II A �31�. If 	D

2

�� /�2
, then essentially all velocity classes in the Max-
wellian velocity distribution contribute to EIT and the line-

width and 	̃�	D.
In the large-probe limit the EIT linewidth is approxi-

mately

�EIT
LP �

�P�C

�3

, �18�

and the functional form of the EIT line shape is

��LP� � ��R�/��R
2 + ��P�C/4
��2, �19�

which is a V shape. This line shape is derived in Eq. �B17� of
Appendix B. To understand this linewidth we consider that in
the large-probe limit the absorption due to the virtual transi-
tion decreases for large detunings 	 as indicated by Eq. �11�.
This decrease in absorption can be quantified by defining the
absorption “area” as the integral of absorption as a function
of Raman detuning. The ratio between the absorption “areas”
in the large-and weak-probe limits is

ALP/AWP � 
�2/2�P�C�	� = 2
���VC�/�P�C, �20�

where the same detuning 	 and bright Rabi frequency �
were used in both large- and weak-probe calculations, but the
Rabi frequencies �P and �C in Eq. �20� are the large-probe
values. Equation �20� shows that relative to the weak probe
limit, absorption in the large-probe limit decreases linearly as
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a function of Raman detuning �VC. Whereas in the weak-
probe limit the superposition of absorption for different ve-
locity classes sums to a constant absorption over the range

�2 / 	̃� ��R���2 /
�, in the large-probe limit the absorption
becomes a linear function of the Raman detuning over this
range, i.e., ��2
��R� /�P�C as indicated by Eq. �20�. Fi-
nally, the large-probe EIT linewidth �HWHM� will be given
by the Raman detuning for which the ratio in Eq. �20� is
equal to a half, i.e., �EIT/2��P�C /4
.

Figure 5 compares the line shapes for the three cases we
have discussed so far: the single-velocity class Lorentzian
line shape, the weak-probe U line shape, and the large-probe
V line shape �the Raman detuning for each line shape has
been normalized by its own FWHM�. Figure 5 also shows a
line shape for Doppler broadened EIT with nondegenerate
ground states.

As many EIT systems have nondegenerate ground states
this case merits some discussion. There are actually two dif-
ferent cases to consider for nondegenerate ground states de-
pending on whether the ground state of the probe has a
higher or lower energy than the coupling ground state. When
	23�0 the EIT linewidth becomes larger than for the degen-
erate case 	23=0, and the absorption can have peaks similar
to those shown in Fig. 5. When 	23�0 the EIT linewidth is
narrower than the degenerate EIT linewidth, and in certain
cases the transparency resonance can disappear entirely.
These effects are most pronounced in the weak-probe case,
which is the case plotted in Fig. 5.

For nondegenerate systems the expression for the virtual-
transition center is

�VC�	� �
�C

2

	
+

		23


0
, �21�

where the second term on the right-hand side is due to the
Doppler shift of the ground state frequency difference and

we have assumed 	�v=0�=0 and 
0�	23. This second term
makes the Doppler broadened linewidth broader when 	23 is
positive, and narrower when 	23 is negative. When the Rabi

frequency is large, i.e., �c�	̃��	23� /
0, the change in line-
width due to nondegenerate ground states is small.

When the Rabi frequency is small, i.e., �c� 	̃��	23� /
0,
there are two different effects that occur depending on the
sign of 	23. First, if 	23 is positive then Eq. �21� has a mini-
mum at 	= ±�C

�
0 /	23, and the FWHM of the transpar-
ency becomes �EIT�4��C��	23/
0. Also, there will be ab-
sorption spikes near �R= ±2��C��	23/
0 as seen in Fig. 5.
Second, when 	23�0 Eq. �21� has no minima, and the peaks
of far-detuned virtual transitions can span the entire range of
Raman detunings including �R=0, effectively erasing the
transparency resonance.

Although these more exotic EIT line shapes for nonde-
generate ground states are interesting, they are not particu-
larly relevant to our discussion of EIT line shapes in opti-
cally thick media. This is because the nondegenerate ground
state line shapes we have discussed are only prominent in
non-VCCPC systems in the weak-probe limit, and in this
limit the optically thin and optically thick line shapes are
essentially identical as is discussed in Sec. III.

C. Velocity changing coherence preserving collisions

The EIT line shape of Doppler broadened systems can
change significantly when a buffer gas or wall coatings are
used �see Fig. 6�. Buffer gasses and wall coatings are used
primarily to reduce decoherence � due to transit-time broad-
ening. In addition to decreasing ground state decoherence,
collisions between EIT atoms and the buffer gas and/or
coated walls cause the atoms to change velocity classes with-
out losing their ground state coherence. These velocity-
changing coherence-preserving collisions �VCCPCs� enable
the diffusion of ground state coherence from the resonant
velocity classes, where the optical pumping rate is largest, to
the far detuned velocity classes where optical pumping is
slow. This diffusion results in two effects: there is no longer

a cutoff detuning 	̃ due to decoherence effects and the inho-
mogeneous Doppler broadened line becomes effectively one
homogeneous line with atoms freely wandering among the
previously distinct velocity classes.

Similar to non-VCCPC systems, in a VCCPC system each
velocity class has its own dark-state preparation rate which is
given by the optical pumping rate R�	�=�2
� /4�	2+
�

2 �
�we have assumed ��
�. However, in a VCCPC system a
single atom is likely to wander through all of the velocity
classes in a coherence time t=1/� �a condition for a system
to be a VCCPC system is that the collision rate RC must be
fast enough to create a relatively uniform ground state coher-
ence among all velocity classes, i.e., RC��Nv�. Thus, the
ground state coherence of each atom regardless of its current
velocity class will have been prepared by an average optical
pumping rate
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Rave =
2�ln 2

	D
��
�

−�

�

d	R�	�exp�− 	24 ln 2/	D
2 � � R�0�/Nv,

�22�

and the ground state coherence will be uniform across all
velocity classes.

To understand the implications of a uniform ground state
coherence on the EIT line shape we use the formalism of
Appendix B with the simplifying assumptions �=0 and �C
�10�P and 	�v=0�=0. Using Eq. �B8� the ground state
coherence can be expressed as

�23 =
�21

�−�

1 − i�R/Rave
. �23�

Plugging Eq. �23� into Eq. �B9� from Appendix B we find
that the probe susceptibility for each velocity class is

�p�	� � −
N�p

2

2�0�
� − i�R

�Rave − i�R��	 − i
���
*

, �24�

where we have assumed �R�
�. Finally, integrating over all
velocity classes the Doppler averaged probe susceptibility is

�p � − A �R

Rave + i�R

, �25�

where A is a constant

A =
N
��p

2�ln 2/�

2�0�	D
�

0

�

d	

exp�−
	24 ln 2

	D
2 �

	2 + 
�
2 �

N�p
2

4�0�

1


�Nv
.

�26�

Thus, the transparency line shape is a Lorentzian with a
FWHM of 2Rave, which is the exact line shape we would
expect from a single homogeneous line with linewidth
2Nv
�=	D. Although the above derivation is for the specific
case of �=0 and 	�v=0�=0, this result is much more gen-
eral, and it can be seen empirically that EIT line shapes for
VCCPC systems are very well approximated by treating the

Doppler broadened line as a single velocity class with homo-
geneous linewidth 2Nv
� even for ��0, 	�v=0��0, and
	23�0 �of course this assumption ignores the fact that
Doppler-broadened line shape is Gaussian and not Lorentz-
ian, but discrepancies resulting from this difference are typi-
cally small�.

Figure 6 shows how the linewidth and line shape change
as a function of the collision rate. Figure 6 also shows why
the condition RC��Nv must be satisfied for VCCPC systems
�an exact numerical integration of Eq. �13� is used to obtain
Fig. 6�. If the decoherence rate � is large compared to the
rate of diffusion among the velocity classes �RC��Nv�, then
the ground state coherence, which is created when the atoms
are in near resonant velocity classes, decays before the atoms
diffuse via VCCPC to the far detuned velocity classes, and
the system is considered to be non-VCCPC �in Fig. 6 this
corresponds to RC�1 kHz�. In order for a system to be con-
sidered VCCPC the diffusion rate must be fast compared to
the decoherence rate �i.e., RC��Nv�. Then the ground state
coherence is able to diffuse to the far detuned velocity
classes before it is dissipated by decoherence �in Fig. 6 this
corresponds to RC�100 kHz�. Also, it is interesting to note
that in Fig. 6 the non-VCCPC linewidth is determined by the
coherence cutoff �i.e., ��
 /��	D�, but in the VCCPC re-
gion because of the coherence diffusion there is no coher-
ence cutoff and the linewidth is �EIT=�2 /	D=�2 /Nv
. Fi-
nally, Fig. 6 shows that the line shape becomes essentially
Lorentzian in the VCCPC limit.

III. OPTICALLY THICK MEDIA

Once we know the optically-thin EIT line shapes, it is
possible to calculate the EIT line shapes in optically thick
media. In general the optically thick and optically thin EIT
line shapes will differ because the fields are absorbed as they
propagate through the medium and, as we have already seen,
the EIT line shapes depend strongly on both the absolute and
relative intensities of the fields. On the other hand, the dif-
ference between the thin-medium and thick-medium EIT line
shapes will be insignificant if the field or fields determining
the line shape are not significantly absorbed.

This second scenario is what happens in the weak-probe
limit. In the weak-probe limit the probe field is strongly ab-
sorbed for nonzero Raman detunings, but the coupling field
experiences little absorption. Also, the EIT linewidth is de-
termined primarily by the coupling Rabi frequency, not the
probe. Thus, in the weak-probe limit the EIT line shape ex-
periences almost no change as it propagates through an op-
tically thick media, and the optically thick and optically thin
line shapes are essentially the same. In contrast, in the large-
probe limit the EIT line shape typically changes significantly
as it propagates through an optically thick medium.

A. Optically thick line shape definitions

Before calculating the optically-thick EIT line shapes we
must be more clear about what we mean by the EIT line
shape. In optically thick media there are actually two defini-
tions for the line shape, a cw EIT line shape given by Eq.
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�27� and a pulsed EIT line shape given by Eq. �28�. We use
the cw EIT line shape as our primary definition of EIT line
shape because of its experimental relevance.

Experimentally, the EIT line shape is measured by slowly
scanning the frequency of a cw probe relative to the coupling
frequency and measuring the probe transmission as a func-
tion of the Raman detuning. Mathematically, this EIT ab-
sorption line shape is described by

�1��R�L = �
0

L

dz���C��R,z�,�P��R,z�,�R,z� , �27�

where ���R ,�C ,�P ,z�=
0 Im��p� /c is the probe absorption
coefficient at position z. Similarly, the refractive analog to
Eq. �27� is calculated using the same equation but with the
replacement Im��p�→Re��p�.

In spite of Eq. �27�’s experimental significance, it suffers
from a couple of drawbacks with respect to pulsed EIT. For
example, the refractive and absorptive parts of the suscepti-
bility as defined in Eq. �27� do not obey Kramers Kronig
relations. Figure 7 shows absorptive �dashed line� and refrac-
tive �gray line� line shapes that were calculated using Eq.
�27� and its refractive analog. The optical thickness of the
medium was �L=10. The black curve in Fig. 7 is the Hilbert
transform of the absorptive curve. The significant differences
between the black and gray curves shows that absorption and
refraction as defined by Eq. �27� do not obey Kramer’s Kro-
nig relation. This fact should not be surprising because for
z�0 the Rabi frequencies used to calculate the local absorp-
tion �refraction� at z changes for different Raman detunings
�i.e., �C��R ,z���C��R� ,z� and �P��R ,z���P��R� ,z� for �R

��R� and z�0�.
Thus, a second line shape definition is required for pulsed

EIT experiments such as slow-light experiments, and the
pulsed absorption line shape is

�2��R�L = �
0

L

dz�„�C�0,z�,�P�0,z�,�R,z… , �28�

where the frequency distribution of the probe pulse is cen-
tered on Raman resonance with a monochromatic cw cou-
pling field. The difference between Eqs. �27� and �28� is that
in the integrand of Eq. �28� the absorption is calculated as-
suming the field amplitudes for Raman resonance. Equation
�28� accounts for the fact that with pulses there is distribu-
tion of frequency components, and the strong near-resonant
frequencies create a large ground-state coherence which re-
duces the absorption of the weak wing frequencies. The
drawback of Eq. �28� is that it is difficult to measure experi-
mentally. However, Eq. �28� does obey Kramer’s Kronig re-
lation, which is important for slow light experiments. Both
Eqs. �27� and �28� reduce to the same definition in the limit
that the medium becomes optically thin. Because of Eq.
�27�’s experimental significance, and Eq. �28� lack of experi-
mental relevance, we will always mean Eq. �27� when refer-
ring to the EIT line shape.

B. Line shapes

In the large-probe limit the EIT line shape in optically
thick media changes appreciablly as a function of the propa-
gation distance through the media. This is especially true for
Doppler broadened non-VCCPC systems where the line-
width is proportional to both probe and coupling field ampli-
tudes. The evolution of the EIT line shape in optically thick
media is also significant for single-velocity class systems and
VCCPC systems when ��P����C�, in which case the line-
width is dependent on both the coupling and probe beams
and both beams experience significant absorption as they
propagate through the medium.

In steady state the amplitude of the field can be found by
solving the equation

���P��R,z��
�z

= − ���R,z���P��R,z�� , �29�

where

���,z� � �0
��P�2 + C

2��P�2 + C
S��R,z� , �30�

�0 is the incoherent absorption coefficient assuming �P
��C, S��R ,z� is a line shape function �e.g., S will be V-
shaped for Doppler broadened non-VCCPC systems�, and
C= ��C�2− ��P�2 is assumed to be constant with respect to z
and �R �this assumption is justified when the dipole moments
and frequencies of the probe and coupling transitions are
approximately equal�. In the large-probe limit there are two
shape functions of interest; the V shape function for Doppler
broadened non-VCCPC systems, and the Lorentzian shape
function for single-velocity systems and VCCPC systems.
Table I gives these two shape functions along with their re-
spective solutions for Eq. �29�. In Eq. �15� of Ref. �47� there
is a line shape solution similar to the solutions for the
Lorentzian shape function in Table I. The solutions to Eq.
�29� are transcendental equations making them somewhat
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difficult to interpret. Thus, we have also included asymptom-
atic solutions for the limits when the Raman detuning is
small compared with the EIT linewidth �i.e., �R��EIT�z��,
and when the Raman detuning is large compared to the EIT
linewidth �i.e., �R��EIT�0��.

The asymptotic solutions corresponding to small Raman
detuning provide a basis for calculating approximate EIT
linewidths as a function of position z. There are actually two
linewidths to be calculated; the coherence linewidth ��,
which is the FWHM of ��z�, and the field linewidth ��,
which is the integrated absorption encountered by the field
up to position z, i.e., �0

zdz���z��. For optically thin media
these two linewidths are the same. Because these linewidths
become narrower with increasing optical depth the coherence
linewidth will always be narrower than the field linewidth.
The narrowness of the coherence linewidth �� allows us to

accurately estimate it using the asymptotic solutions from
Table I. We cannot accurately estimate the field linewidth ��

using the small Raman detuning asymptotic solution, but we
can calculate a lower bound for the field linewidth. Both the
estimate of �� and the lower bound for �� are shown in
Table I.

In Fig. 8 we compare numerical simulations of fields
propagating through optically thick media with the approxi-
mate expressions for �� and the lower bound for �� in Table
I. There are two plots shown one for each line shape consid-
ered in Table I. The numerical linewidths are plotted using
solid lines, and the analytic solutions from Table I are plotted
using dashed lines. The gray curves show the coherence
FWHMs �� and the black curves show the field FWHMs ��.
The analytic solutions seem to slightly overestimate the nar-
rowing, and the coherence linewidths show better agreement
between numerical and analytic solutions than the field line-
widths, which is consistent with the field linewidth being a
lower bound rather than an estimate of the linewidth. Also
confirmed in Fig. 8 is the inequality �����. In the large
probe plot the linewidths should asymptotically approach the

weak-probe linewidth �EIT=C / 	̃, which is indicated by the
thin dashed line. The numerical simulation approaches this
limit. However, the analytic solutions asymptotically ap-
proaches zero because our approximations do not account for
the small-probe limit. The asymptotic limit for the single
velocity linewidth is ��=��=C /Nv
.

In actual experimental systems there are additional con-
siderations which have not been considered in this paper.
First, experiments will most likely use Gaussian beams, not
plane waves. The theory presented in this paper can be gen-
eralized to account for transverse variations in the field in-
tensity by applying the above results to each transverse point
�x ,y
 and integrating over the beam profile �special consid-

TABLE I. Solutions to the problem of EIT line shapes and line-
widths for optically thick media in the large probe limit. Two cases
are considered; Doppler broadened systems and single-velocity or
VCCPC systems. �EIT �0� is the optically thin EIT linewidth
FWHM. S�� ,z� is the functional form of the optically thin EIT
lineshape. These line shapes are used in Eq. �29� to find the opti-
cally thick line shapes, and asymptotic expressions for these solu-
tions are found for the limits �R����z� and �R��EIT�0�. Also
included are approximate expressions for the coherence linewidth
���z� and a lower bound for the field linewidth ���z� �both are
FWHM�. Some definitions used in the table are A= ��P�0��. c1 and
c2 are constants of integration and are calculated by applying the
boundary condition �P�z=0�=A. Without loss of generality we as-
sume that A is real.
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erations are required if the Raleigh length for the beam is not
much longer than the medium�. Second, when the EIT
ground states are not degenerate the probe and coupling
fields typically create a Stark shift which changes the fre-
quency of Raman resonance. As the fields are absorbed this
displacement of Raman resonance will decrease, and the EIT
linewidth and line shape will be affected. However, in almost
all cases this Stark shift has little affect on the line shape
because the Stark shift �2 /4	23 is typically small compared
to the EIT linewidth. This is because in order to obtain good
EIT the ground state frequency difference 	23 should be
much larger than the homogeneous and inhomogeneous line-
widths of the probe and coupling transitions. Thus, the effect
of the Stark shift will by minimal and can be ignored. Fi-
nally, the diffusion of atoms in and out of the beams in
VCCPC systems can have some interesting effects on the
EIT line shape when Gaussian beams are considered
�49–51�. However, our description of VCCPC systems is ad-
equate for most cases, and a more detailed model is beyond
the scope of this paper.

IV. CONCLUSION

The EIT linewidths and line shapes can change signifi-
cantly when going from an optically thin medium to an op-
tically thick medium. The difference is that in optically thick
medium the absorption of the fields as they propagate
through the medium leads to changes in the EIT linewidth
and line shape as a function of optical depth. This results
from the dependence of the EIT line shape on the field am-
plitudes. The differences between optically thick and opti-
cally thin line shapes are primarily encountered in the large-
probe limit. The linewidth will decrease as a function of
propagation distance until it reaches an asymptotic value as
discussed in Sec. III B. These results are limited to cw EIT
experiments, and we have discussed the differences between
the cw and pulsed EIT line shapes in optically thick media.

We have also discussed the factors influencing the EIT
line shapes in optically thin media. Although EIT linewidths
in different types of optically thin media have been well
characterized, the line shapes had received less attention.
Near single-photon resonance single velocity systems and
VCCPC systems have Lorentzian line shapes, whereas Dop-
pler broadened non-VCCPC systems have V shaped transpar-
ency resonances in the large-probe limit and U shaped reso-
nances in the weak-probe limit. Here we only consider EIT
line shapes near single-photon resonance, but off resonance
line shapes have been studied elsewhere �35�.

In the interest of simplicity we have not included all pos-
sible effects encountered in the lab. For example, we have
not looked at effects due to transverse inhomogeneities in the
field intensities.
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APPENDIX A: ANALYTIC EIT LINE SHAPES FOR THE
WEAK-PROBE LIMIT

In the weak-probe limit we can use perturbation theory to
solve Eq. �1� in the steady state. We solve the master equa-
tion, given in Eq. �1�, by rearranging the density matrix into
a vector

�� = ��11,�22,�33,Re��21�,Im��21�, . . . ,Re��32�,Im��32�,

Re��31�,Im��31��T,

such that the master equation becomes a simple matrix equa-
tion

��̇ = �M + �PP��� , �A1�

where P is a matrix accounting for all terms from Eq. �1�
proportional to the probe field �P, and all the remaining
terms in the master equation are included in the matrix M.
The steady-state solution is found by setting the time deriva-
tives to zero, replacing one of the rows corresponding to
either �̇11, �̇22, or �̇33 with the normalization condition �11
+�22+�33=1, and solving to obtain

�� �ss� = �M̃ + �PP̃�−1v� , �A2�

where the tildes denote that the matrices have been modified
to include the normalization condition and v�
= �1,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0�T arises from the 1 on the right-hand
side of the normalization condition.

The perturbative solution is found by defining the steady-
state solution as

�� �ss� = �
n=0

�

�n��n �A3�

and writing the steady state matrix equation as

�M̃ + ��PP̃��
n=0

�

�n��n = v� . �A4�

By collecting terms with the same power of � and setting �
=1 it is found that the perturbation solutions are

��0 = M̃−1v� , �A5a�

��n = �− �P�n�M̃−1P̃�n��0. �A5b�

Most perturbative treatments of EIT, including this paper, use
the first order perturbative solution, i.e., �� ���0+��1
�31,33,40,41�. This solution is valid to first order in the probe
and to all orders in all other parameters. The perturbation
solution suffers from the fact that for large single-photon
detunings the perturbation series in Eq. �A3� does not con-
verge unless the probe Rabi frequency is many orders of
magnitude smaller than coupling Rabi frequency.

APPENDIX B: ANALYTIC EIT LINE SHAPES FOR THE
LARGE-PROBE LIMIT

It is possible to derive an analytic expression for the probe
susceptibility without the assumption of a weak probe by
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using the Bloch-vector formalism of Benink �11�. The Bloch-
vector formalism assumes that the coherences from the
ground states to the excited state can be adiabatically elimi-
nated and makes no assumptions about the relative strengths
of the probe and coupling fields. The Bloch-vector formalism
is ideal for analyzing Doppler-broadened EIT line shapes in
the large-probe limit because the far-detuned velocity classes
which make the largest contributions to the Doppler-
broadened EIT line shapes strongly satisfy the criterion for
adiabatic elimination.

By adiabatically eliminating the excited state coherences
the density matrix can be rewritten as a Bloch-vector equa-
tion for the two ground states

d

dt
�� = �R + ���− �� + T� � �� + �1 − 3�11�F� � , �B1�

and a first-order differential equation for the excited state
population

d

dt
�11 = − 
�11 − �R + ���� · F� + �1 − 3�11�R . �B2�

In the above we have used the following definitions

�� = 	u

v

w

 = 	2 Re��23�

2 Im��23�
�22 − �33


 , �B3�

F� = −
R/�2

R + 2��	
2�P�C

0

�P
2 − �C

2 
 , �B4�

T� = �̄ŵ +
	


�

F� , �B5�

R =
�2��/4

	2 + ��
2 , �B6�

where ŵ= �0,0 ,1�T is the unit vector in the direction of w,

�̄=�R / �R+���, and it is assumed that both �P and �C are
real.

By assuming a large single-photon detuning 	 and assum-
ing the fields are well below saturation �i.e., 
���C��P�,
the population in the excited state will always be negligible
�11�0, which allows further simplification of the problem
by setting �11=0. In this case the steady state solution of Eq.
�B1� becomes

��ss = F� +
Fu�̄

1 + T2�− û��̄ +
Fw	



� + v̂ + ŵFu

	



� , �B7�

where T2= �T� �2. Also, the ground state coherence is

�23 =
Fu

2
�1 +

�̄

1 + T2�i − ��̄ +
Fw	



��� . �B8�

In adiabatically eliminating the excited state coherences
one finds that the coherence along the probe transition
��1�↔ �2�� is given by

�12 � −
�P�22

2

1 + �23
* �C/�22�P

	 − �/2 + i
�

� −
�P�22

2
� 1 − �23/�23

�−�

	 − �/2 − i
�

�*

, �B9�

where the assumption �22���C�2 /�2 and the identity �23=
−�P

* �C /�2 have been used in the last line. Finally, the probe
susceptibility is given by

�p =
N�p

2

�0�

�12

�P
� −

N�p
2�22

2�0�
��� +

�̄R

1 + T2 �− i + �̄ + Fw	/
�

�R + ����	 − �R/2 − i
��
�

*

,

�B10�

where the identity Fu=2R�23
�−� / �R+��� has been used in the

last line.
Our primary interest is the absorption line shape which is

given by the imaginary part of the susceptibility

Im��p� �
N�p

2�22

2�0�

2��
� +
�̄R

1 + T2 �	�Fw − 1� + 
��̄�

�R + ����	2 + 
�
2 �

.

�B11�

Although Eq. �B11� is not overly complicated, when analyz-
ing the absorption line shape it is helpful to simplify by
considering the limit in which ��=0 and Fw�1, such that
the imaginary part of the susceptibility can be written as

Im��p� �
32N�p�R

2
�
2 �	2


�
2 + 1�

�4��4�R�	2 + 
�
2 �

�2
�

−
	


�

�2

+ �Fu
2 	2


�
2 + 1�� ,

�B12�

where we have defined �p=�p
2 /4�0�
� and we have used

the definition of the optical pumping rate R=�2
� /4�	2

+
�
2 �. In the limit of large single-photon detunings Eq. �B12�

describes a “virtual” absorption peak centered at �2 /2	 with
a peak height of

h = 2N�p/�1 + Fu
2	2/
�

2 �

and the FWHM is

w = �2
�
�1 + Fu

2	2/
�
2 /4	2.

Also, on Raman resonance Eq. �B12� exhibits the
Lorentizian-like transparency resonance expected for EIT.

The Doppler averaged absorption line is obtained by in-
tegrating over the Maxwellian velocity distribution similar to
Eq. �13�

Im��p� =
2�ln 2
��	D

�
−�

�

d	 Im��p�	��exp�−
	24 ln 2

	D
2 � .

�B13�

Because the far-detuned virtual transitions are very narrow,
they can be reasonably approximated by delta functions cen-
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tered at �R=�2 /4	 with the same area as the approximately
Lorentzian virtual transitions

A�	� �
�

2
hw � �N�p�2
�/4	2�1 + Fu

2	2/
�
2 .

�B14�

With this approximation the Doppler averaged absorption
line becomes

Im��p� � �
−�

�

d	

A�	�exp�−
	24 ln 2

	D
2 ����R −

�2

4	
�

	D
��/ln 2/2

�
2N�p
�

�� ln 2exp�−
ln 2�4

4�R
2	D

2 �
	D

�1 + Fu
2�4/16�R

2
�
2

. �B15�

This expression for the Doppler averaged line shape is valid
for both the large-probe limit �Fu	D /
��1� and the weak-
probe limit �Fu	D /
��1� where we have assumed that the
Doppler width 	D is at least an order of magnitude larger
than the homogeneous linewidth 2
�. When the weak-probe
limit is well satisfied �i.e., Fu	D /
��1� the line shape sim-
plifies to

Im��p� �
2N�p
�

�� ln 2

	D
exp�−

ln 2�4

4�R
2	D

2 � , �B16�

and the FWHM of the transparency is �2 /	D, which is the
same result as given in Eq. �14�. In the extreme large-probe
limit the line shape becomes

Im��p� �
2N�p
�

�� ln 2

	D
�1 + Fu

2�4/16�R
2
�

2
. �B17�

with a FWHM given by �P�C /
�
�3, which is the same

result as given in Eq. �18�.
These derivation become substantially more complicated

for a nonzero ground state decoherence rate. However, we
have found empirically through numerical experimentation
that for moderate ground state decoherence rates 10��

��2 /
� the FWHM of the large-probe transparency is ap-
proximately given by

FWHM =
�P�C


�
�3

�1 + 2
���
�

�C
� .

The authors do not have a clear explanation for the physical
mechanism responsible for this particular functional form.
Discussion of the line shapes and linewidths in the weak-
probe limit with nonzero ground state decoherence is found
in Sec. II B of the text.
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