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We investigate the possibility that linear arrays of atoms can guide matter waves, much as fiber optics guide
light. We model the atomic line as a quasi-one-dimensional array of s-wave point scatterers embedded in
two-dimensions. Our theoretical study reveals how matter-wave guiding arises from the interplay of scattering
phenomena with bands and conduction along the array. We discuss the conditions under which a straight or
curved array of atoms can guide a beam focused at one end of the array.
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I. INTRODUCTION

In this paper, we discuss the possibility of using a line of
atoms to guide matter waves, such as electrons or other at-
oms. Periodic arrays often behave as waveguides; perhaps
the most familiar example is electrons propagating in a
metal. Such waveguides can be engineered as well, such as
the guiding of electromagnetic waves in a photonic crystal
comprised of aluminum rods �see, e.g., �1��. Although the
problem of scattering from periodic arrays is an old one, it
arises now in a completely new context, as recent technology
allows structures to be engineered from individual atoms.
Single chains of Au atoms, for example, have recently been
deposited on NiAl�110� �2,3� as well as on Si�553� �4�. Al-
though our formalism does not treat this situation specifi-
cally, artificial arrays of atoms also arise when atoms are
confined to individual sites in an optical lattices. One might
also imagine the individual scatterers being an array of quan-
tum dots, which could be used to guide electrons.

We model the atomic array as a set of s-wave scatterers.
The question of relevance from an experimental point of
view is whether we can use such an atomic array to guide
waves. Theoretically, this question translates into whether
eigenstates of the system exist which are propagating along
but are evanescent transversely to the array. In order to
search for these states, we employ scattering theory. Along
the array, the system’s periodicity gives rise to Bloch waves,
band structure, diffraction, and other features familiar from
solid-state systems. However, as the array is finite in the
transverse direction, it acts like a partially transparent wall in
an unusual interplay between Bloch waves and scattering
theory: transmission and reflection coefficients, along with
resonant phenomena for propagation through the wall, coex-
ist with conduction along the quasi-one-dimensional �quasi-
1D� array. Although the same coexistence exists for any real
finite sample of periodic material, it is especially evident and
exposed in the quasi-1D periodic array.

In order for quasi-1D guiding to exist, the individual scat-
terers making up the wall must be attractive. However, as-
suming elastic scattering, a freely propagating incident mode

can be captured and guided along the array only if the array
supports conducting states at E�0. It is easy to motivate the
fact that an array of atoms �with each atom supporting an
E�0 bound state� can give rise to an overall E�0 conduct-
ing state.

Consider a double-well potential, such that each indi-
vidual well, when taken alone, admits a single bound state.
At large separation, the wells will give rise to a degenerate
doublet of symmetric and antisymmetric bound states. As the
wells come closer together, the antisymmetric state rises in
energy until it is pushed to E�0 and becomes a p-wave
resonance, as described in Ref. �5�, which is closely related
to the concept of proximity resonances �6�. In Fig. 1, the
bound-state energies for two and four scatterers are shown;
as the scatterers come close together, the highest-energy
bound state is pushed above threshold.

For the infinite wall, one way to understand the presence
of E�0 guided states for the wall is to consider the limit
where the scatterers are infinitely close together, thereby ef-
fectively forming a potential trough of some width w:

V�x,y� = �− V0, �x� � w ,

0, �x� � w .
�

Since the above potential is separable, if the effective 1D
well �about the x̂ direction� admits an E�0 bound state, the
trough admits a continuum of E�0 states which are bound
along the x̂ direction, because any wave number can be taken
in the free ŷ direction. Thus by analogy to other, more famil-
iar systems, it seems reasonable that a wall of attractive scat-
terers could behave as a waveguide.

We further note that at low energies, a curved chain of
discrete, attractive atoms approximates a continuous, curved
waveguide, suggesting an efficient numerical method for
modeling continuous waveguides via multiple-scattering
methods. A related method is the boundary wall method in
�7�.

The remainder of this paper is divided into five parts. We
begin, in Sec. II, with a brief review of Foldy’s method of
multiple scattering. In Sec. III, we apply Foldy’s method to
solve the Lippmann-Schwinger equation for a general peri-
odic array of scatterers. In Sec. IV, we investigate diffraction
and threshold resonances, uncovering a type of quasibound*Electronic address: vaishnav@physics.harvard.edu
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states which are related to guiding. In Sec. V we search for
true guided states, and we calculate the band structure for a
single infinite wall of attractive scatterers. We demonstrate
that when individual scatterers have E�0 bound states, an
array can support conducting states at positive energies E
�0. Finally, in Sec. VI, we numerically demonstrate that if
the array’s symmetry is somehow broken, these conducting
states can be used to guide a beam; i.e., the array can capture
an incident wave focused on one end of the array, forcing it
to propagate along the array and emerge on the other end.

II. BACKGROUND: FOLDY’S METHOD

The physical underpinning of all the resonance and inter-
ference phenomena which we discuss in this paper is mul-
tiple scattering, both within each unit cell and between dif-
ferent unit cells. To model multiple scattering, we make
extensive use of Foldy’s method �8�, which we briefly review
here. Consider a wave ��r�� incident on a collection of N
identical point scatterers at positions �r�1 , . . . ,r�N	, where r�n

= �xn ,yn�. Applying the t-matrix formalism �9�, we character-
ize a single scatterer at r�i by its t matrix,

t = s�k��r�i
�r�i� ,

where s�k� is a function of the wave number, k=�2mE /�.
The functional form of s�k� is chosen to simulate the scat-
terer of interest under the constraint that s�k� must satisfy the
optical theorem

−
2�2

m
Im s�k� = �s�k��2. �1�

In the t-matrix formalism, the Lippmann-Schwinger equation
for multiple scattering is

��r�� = ��r�� + s�k�
i=1

N

�i�r�i�G0�r�,r�i� , �2�

where

G0�r�,r�0� =
2m

�2 �−
i

4
H0

�1��k�r� − r�0��� �3�

is the 2D free-space retarded Green’s function satisfying

��� 2 + k2�G0�r�,r�0� =
2m

�2 ��2��r�,r�0�

and the various �i�r�i� in Eq. �2� are defined recursively as

�i�r�i� = ��r�i� + s�k�
j=1

j�i

N

� j�r� j�G0�r�i,r� j� . �4�

�i�r�i� is the effective incoming wave function evaluated at
the ith scatterer after scattering from each of the other scat-
terers, excluding the singular self-interaction of the ith scat-
terer. In the remainder of this paper, we set �=m=1 and
denote s�k� as s.

Defining two N�1 column vectors �� and �� , whose ith

elements are given by �� i���r�i� and �� i���r�i�, the
Lippmann-Schwinger equation can be written as a simple
matrix equation by inverting Eqs. �2�–�4� to yield

�� = M−1�� , �5�

where

M � 1 − sG

and the matrix G is defined by

Gij �� 0, i = j ,

G0�r�i,r� j� , i � j .
� �6�

G excludes the singular self-interactions of each scatterer
with itself.

Substituting the values of �� i from Eq. �5� into Eq. �2�
yields an expression for the scattered wave function:

��r�� = ��r�� + s
i=1

N

G0�r�,r�i��M−1�� �i. �7�

III. MULTIPLE SCATTERING FROM GENERAL
PERIODIC STRUCTURES: CONNECTION

TO BLOCH WAVES

The problem of guiding is related to finding conducting
eigenstates for an array of scatterers. We discussed in Sec. I

FIG. 1. Bound-state energies for two scatterers �left� and four scatterers �right� separated by distances d. The dashed line is the
bound-state energy of an individual scatterer. For large d, the ground state is the completely symmetric eigenstate, while the highest-energy
state is the completely antisymmetric eigenstate. As the scatterers come closer together, the antisymmetric eigenstate is pushed to positive
energy. The scatterers are point scatterers modeling the s-wave scattering from a cylindrical well of depth V0=−0.8 and radius a=0.2.
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how Bloch waves and scattering phenomena coexist in such
systems. The usual 3D approach of reciprocal lattices could
be adapted to 2D. We instead apply multiple-scattering
theory, considering all of the multiple-scattering events
within each unit cell as well as between different unit cells.
The multiple-scattering approach, although more involved,
yields detailed information about interference processes and
also generalizes more easily to the introduction of disorder
into the lattice.

In this section, we apply Foldy’s method to solve the
Lippmann-Schwinger equation for a plane-wave scattering
from a general, infinite periodic array of clusters of point
scatterers with a Bravais lattice spanned by dŷ �Fig. 2�. The
multiple-scattering solution in Eq. �5� would seem to require
inversion of a bi-infinite matrix. In this section, however, we
reduce the solution to inversion of an N�N matrix, where N
is the number of scatterers per unit cell, and demonstrate
how Bloch waves arise naturally from multiple-scattering
theory. The resulting Lippmann-Schwinger equation re-
sembles Eqs. �5� and �6� but with an effective scattering

strength s̃ and an effective Green’s matrix G̃ which account
for multiple scattering between unit cells.

Our approach turns out to be related to the Korringa-
Kohn-Rostoker �KKR� method �10,11�, with the variation
that we have represented our scatterers by t matrices and
have begun with an s-wave approximation. A related ap-
proach has been applied to study scattering from two-
dimensional periodic slabs of scatterers embedded in three
dimensions �12�.

A. Multiple scattering from a periodic grating

Denote by r�n
�q� the position of the nth of N scatterers in

unit cell q. Further suppose that all N scatterers in a unit cell
are identical with t matrix given by s �the arguments in this
section can easily be generalized to the case of nonidentical
scatterers�. Applying Foldy’s method, we can write the
Lippmann-Schwinger equation as

��r�� = ��r�� + s 
q=−	

	


n=1

N

G0�r�,r�n
�q���n

�q��r�n
�q�� , �8�

�n
�q��r�n

�q�� = ��r�n
�q�� + s 

p=−	

	


m=1

�m,p���n,q�

N

G0�r�m
�p�,r�n

�q���m
�p��r�m

�p�� ,

�9�

where G0�r�m ,r�n� is the free-space Green’s function ��=m
=1� from Eq. �3�. Once again, if the effective incident wave-
function amplitudes at the scatterers, �n

�q� �r�n
�q�� in Eq. �9�, are

known, the full wave function is determined using Eq. �8�.
It is straightforward to recursively sum and reindex Eq.

�9� to show that for an incident wave �normalized to unit flux
along the x̂ direction�,

��r�� =
1

�kx
�0�e

ik�·r�,

the solutions to Eq. �9� are reduced to finding the wave func-
tion amplitudes for a single unit cell, since

�n
�q��r�n

�q�� = eikyqd�n
�0��r�n

�0�� . �10�

Let us focus on the N scatterers in the unit cell indexed by
q=0. Using Eq. �10� on the right-hand side of Eq. �9�, evalu-
ated for q=0, we obtain

�n
�0��r�n

�0�� = ��r�n
�0�� + s 

p=−	

	


m=1

�m,p���n,0�

N

G0�r�m
�p�,r�n

�0��

�eikypd�m
�0��r�m

�0�� . �11�

We wish to separate off the m=n term, which corresponds to
multiple scattering between each scatterer and its periodic
counterparts in other unit cells. It is in this term that we must
exclude the self-interaction, which corresponds to m=n and
p=0. Breaking up the sum, we find

�n
�0��r�n

�0�� = ��r�n
�0�� + s 

p=−	

p�0

	

G0�k�p�d�eikypd�n
�0��r�n

�0��

+ s 
m=1

m�n

N � 
p=−	

	

G0�r�m
�0� + pdŷ,r�n

�0��eikypd��m
�0��r�m

�0��

= ��r�n
�0�� + sGr�n

�0��r�n
�0�� + s

m=1

N

G̃mn�m
�0��r�m

�0�� . �12�

In Eq. �12�, Gr is a scalar quantity independent of the con-
figuration of the unit cell and is given by

Gr � s 
p�0

G0�k�p�d�eikypd �13�

and G̃ is an N�N matrix defined as

FIG. 2. Plane wave incident on array with Bravais vector dŷ.
The unit cell is indexed by q, and each individual scatterer is in-
dexed by n.
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G̃mn = � 0, m = n ,

G�r�n
�0� − r�m

�0�� , m � n ,
� �14�

where in Eq. �14� we used the lattice sum

G�r�� = 
p=−	

	

G0�r�,pdŷ�eikypd. �15�

A rapidly converging expression for G�r�� can be found in Eq.
�A3� of Appendix A.

Defining vectors of wavelets

�� �0� =�
�1

�0��r�1
�0��

�2
�0��r�2

�0��
]

�N
�0��r�N

�0��
� ,

�� �0� =�
�1

�0��r�1
�0��

�2
�0��r�2

�0��
]

�N
�0��r�N

�0��
� , �16�

we can solve for the wavelets in the q=0 unit cell:

�� �0� =
1

1 − sGr
M̃−1�� �0�, �17�

where we have defined

M̃ = I − s̃G̃ �18�

and

s̃ =
s

1 − sGr
. �19�

The remaining wavelets in other unit cells are then simply
determined by Eq. �10�:

�� �q� = eikyqd�� �0�. �20�

The full wave function is finally given by substituting Eqs.
�17� and �20� into Eq. �8�:

��r�� = ��r�� + s̃ 
p=−	

	


n=1

N

G0�r�,r�n
�p��eikypd�M̃−1�� �0��n �21�

=��r�� + s̃
n=1

N

�M̃−1�� �0��n 
p=−	

	

G0�r� − r�n
�0�,pdŷ�eikypd �22�

=��r�� + s̃
n=1

N

G�r� − r�n
�0���M̃−1�� �0��n. �23�

Note the similarity between Eqs. �23� and �7�: one can go
from a single unit cell to a repeating array simply by replac-
ing the t matrix s�k� with its renormalized version s̃�k�� and
the free-space Green’s function G0�r�� with the effective
Green’s function G�r��. The wave function in Eq. �21� is a
Bloch wave since

��r� + dŷ� = eikyd��r�� .

We note that the renormalization and interference effects in a
periodic grating are very similar to the effects encountered
when a scatterer or a cluster of scatterers is placed in an
external confining potential �see, e.g., �13,14��. The similar-
ity arises because scattering in a confined geometry is also
effectively a multiple-scattering problem: A particle can scat-
ter once from the target, reflect from the confining potential,
and scatter again. In the case of a cluster of scatterers con-
fined to a hard-walled or periodic waveguide, the mapping to
an array is in fact explicit; applying the method of images,
the cluster becomes an infinite array where the effective
“unit cells” are images of the confined cluster of scatterers.

IV. DIFFRACTION AND QUASIBOUND STATES

The result in Eq. �23� is in terms of superpositions of
spherical waves. Alternatively, Eq. �23� could be written in a
basis of plane and evanescent waves. Substituting Eq. �A3�
into Eq. �23� yields a plane plus evanescent-wave expansion
for the scattered wave:

��r�� =
eik�0·r�

�kx
�0� −

is̃

d


q=−	

	


n=1

N

�M̃−1�� �0��n
1

kx
�q�e

ikx
�q��x−xn

�0��eiky
�q��y−yn

�0��,

�24�

where the wave numbers of the diffracted beams are quan-
tized by the Bragg condition:

ky
�q� = ky

�0� +
2q


d
, �25�

kx
�q� = �k2 − �ky

�q��2. �26�

The values of q for which kx
�q� is real correspond to diffracted

plane waves, while the remaining values of q correspond to
evanescent waves. The set Q of open channels, correspond-
ing to diffracted plane waves, is defined by Q= �Qmin ,Qmax�
where

Qmin = �− �k + ky�d
2


� , �27�

Qmax = � �k − ky�d
2
 � . �28�

Equation �24� is in essence Bragg diffraction: the scattered
wave consists of a finite number of diffracted plane waves
propagating at the Bragg angles given by Eqs. �25� and �26�
and an infinite number of evanescent waves.

In the far field, defined by �x�� �xn� for all n, only the
diffracted beams survive, and the transmitted and reflected
wave functions are

�R�r�� = 
q�Q

Rq
1

�kx
�q�e

−ikx
�q�x+iky

�q�y , �29�
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�T�r�� = 
q�Q

Tq
1

�kx
�q�e

ikx
�q�x+iky

�q�y , �30�

where the reflection and transmission coefficients Rq and Tq
are given by �using Eq. �24��

Rq = −
is̃

d

1

�kx
�q� 

n=1

N

�M̃−1�� �0��neikx
�q��xn

�0��e−iky
�q�yn

�0�
, �31�

Tq = �q −
is̃

d

1

�kx
�q� 

n=1

N

�M̃−1�� �0��ne−ikx
�q��xn

�0��e−iky
�q�yn

�0�
. �32�

The quantities �Rq�2 and �Tq�2 correspond to the probability of
reflection or transmission into the qth mode; the q=0 mode
is the specular component. The total reflection and transmis-
sion probabilities for the wall of scatterers are given by

R = 
q�Q

�Rq�2, �33�

T = 
q�Q

�Tq�2. �34�

The value of the renormalized t matrix, s̃, is constrained by
combining Eqs. �33� and �34� with the unitarity requirement
R+T=1. This constraint is an analog of an optical theorem
for the grating. The optical theorem for the single wall of
scatterers is derived in Appendix B.

Threshold resonances and quasibound states

Since the signature of a bound or quasibound state is often
a transmission resonance, we begin by examining the trans-
mission coefficient of the array, Eq. �34�. As illustrated in
Fig. 3 for the single chain of atoms, resonances occur at
energies such that kx

�q�→0. Such resonances, called threshold
resonances, correspond to energies at which one of the eva-
nescent waves becomes a propagating diffracted beam.
These threshold resonances are purely due to the periodicity

of the array, and the resonance energies are independent of
the type or configuration of the scatterers within an indi-
vidual unit cell. Threshold resonances occur in atom-surface
scattering as selective adsorption resonances �15�, in x-ray
diffraction as emergent beam resonances, and in acoustics as
Parker resonances �16�.

Near a threshold resonance—i.e., as k→ky
�q�±�—the lat-

tice sum in Eq. �A7� yields

lim
k→ky

�q�±�

Gr = −
i

d

1

�±2ky
�q��

. �35�

From Eqs. �19� and �35�,

lim
k→ky

�q�±�

s̃ =
1

Gr
= id�±2ky

�q�� . �36�

From Eq. �36�, the dependence of s̃ on the bare t matrix s�k�
cancels entirely near the threshold resonance. Exactly on
threshold, s̃=0, which from Eqs. �31� and �32� yields T=1;
the array becomes entirely transparent, and the incident beam
is entirely transmitted �although with a phase�. This transpar-
ency, which is a form of the Ramsauer-Townsend effect, is
consistent with flux conservation, as the guided beam carries
no flux away from the array.

Inserting Eq. �36� into Eq. �24�, the scattered wave near
threshold consists entirely of the emergent beam traveling
along the ŷ axis:

lim
k=ky

�q�−�

��r�� = eik�·r� + 
n=1

N

�M̃−1�� �0��ne−�2ky
�q���x−xn

�0��eiky
�q��y−yn

�0��

+ O��1/2� , �37�

lim
k=ky

�q�+�

��r�� = eik�·r� + 
n=1

N

�M̃−1�� �0��nei�2ky
�q���x−xn

�0��eiky
�q��y−yn

�0��

+ O��1/2� . �38�

Figure 4 illustrates the probability density above �Fig. 4�b��

FIG. 3. �a� Transmission coefficient for scattering of an incident beam with wave number k from a wall of hard disks with radius a. The
incident beam is at normal incidence �ky

�0�=0�. At low energies, the beam is fully reflected; at high energies the beam is almost entirely
transmitted. Note the transmission resonances at k=ky

�n�. �b� Structure of the resonances at a=0.1 �dashed line in �a��. This figure also
illustrates the breakdown of the s-wave approximation at high energies; classically, the limit of the transmission should not be exactly 1.
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and below �Fig. 4�a�� a threshold resonance for a wall of hard
disks. For clarity, the incident wave function eik�·r� is omitted
from ��r�� in Eqs. �37� and �38� when plotting ���r���2 in Fig.
4. Approaching the threshold from below, the evanescent
beam, which is about to emerge, dominates the scattering.
The scattered state consists almost entirely of a state which is
evanescent along the x̂ direction �Fig. 4�a�� but becomes pro-
gressively more weakly bound as we approach threshold. At
threshold, the scattered state merges with the continuum, and
for wave numbers just above threshold, the scattered state is
weakly unbound in the x̂ direction �Fig. 4�b��. The threshold
resonance thus corresponds to quasibound states which con-
duct along the wire. Although these quasibound states con-
stitute, in some sense, a form of guiding, they are not truly
conducting states. The O��1/2� term in Eqs. �37� and �38� is
due to coupling to other unbound states. The ��r�� states in
Eqs. �37� and �38� are thus quasibound rather than being
truly bound, and they have finite lifetimes. Similar states,
known as Rayleigh-Bloch waves, exist in many other physi-
cal systems ranging from ocean coastlines �17� to acoustics
�16�.

V. CONDUCTING STATES

Motivated by the presence of quasibound states, we now
refine our search to find genuine conducting eigenstates. An
array of attractive scatterers, in the limit where the scatterers
are closely spaced, should resemble a quasi-1D potential
trough embedded in 2D and give rise to a set of states which
are purely bound along the array. Such conducting states
would be evanescent in the x̂ direction but free in the ŷ
direction and thus correspond to states with wave vectors

k� = ixx̂ + kyŷ . �39�

In contrast to the quasibound states in Sec. IV, the truly con-
ducting states would contain only such wave vectors; in a
time-dependent sense, a wave packet injected into such a
state would conduct forever. Unlike the quasibound states,
bound states depend strongly on the properties of the grating
and do not necessarily exist for an arbitrary periodic grating.
For example, a periodic array of repulsive scatterers, while
possessing infinitely many quasibound states, would not
have any truly conducting states.

For a single point scatterer in free space, two criteria char-
acterize a bound state: the state is �i� localized �has negative
energy� and �ii� is a pole of the t matrix �the interpretation of
this criterion is that the bound state is a scattering state which
exists even in the absence of an incoming wave function�.
For an array of scatterers, Foldy’s method transforms the
Lippmann-Schwinger equation into the matrix equation �17�,
which can be rewritten as

��1 − sGr�M̃�−1�� �0� = �� �0�. �40�

The existence of a scattered wave function for a zero incom-
ing wave function implies the existence of a homogeneous
solution to Eq. �40�. States which exist in the absence of an
incoming wave must exist at values of k� which are roots of
the secular equation

�1 − sGr�N det M̃ = 0. �41�

This secular equation is strongly dependent on the configu-
ration of the unit cell and must be solved for a particular
grating. We shall here focus on the single wall of atoms,
which is the most common experimental setup �2–4�. For the

single wall, M̃=I, and Eq. �41� simplifies to

1 − sGr = 0, �42�

implying, from Eq. �19�, that a bound state corresponds to a
pole of the renormalized t matrix, s̃.

In order to find conducting states, we evaluate s̃ on a grid
of values of �x ,ky� and numerically search for poles of the
form given in Eq. �39� with corresponding energy

E =
1

2
�− x

2 + ky
2.

Bound states with E�0 correspond to those poles of the
renormalized t matrix for which �ky�� �x�. We used the t
matrix in Eq. �C3� to simulate an infinite wall of attractive
cylindrical wells with depth V0=−8.0 and radius a=0.2, so
that an individual well allowed a single bound state just
barely below threshold �at E=−0.05, or =−�2E=0.32i�.
Figure 1 depicts how arrays of two or four such wells sup-
port bound states above E=0 as the wells are placed close
together. Figures 5�a�, 5�c�, and 5�e� show the manifold of
poles in k� space for an infinite wall of scatterers for three
different lattice constants. In each figure, the solid curves
correspond to the manifolds of conducting states for the ar-
ray and the dashed curves correspond to the bound-state en-
ergies of a single scatterer, given by

FIG. 4. Threshold resonance for a unit cell with five randomly
placed scatterers �hard disks with a=0.1� depicted by the dots in the
figure�. The full wave function just above and below threshold is
given by Eqs. �37� and �38�. For clarity, we plot only the scattered
wave function; the incident wave is a plane wave and would be
added to the scattered wave function to obtain the full wave func-
tion. �a� The quasibound state just below resonance, at wave num-
ber kd=2
−0.3, becomes unbound �b� just above resonance, at
kd=2
+0.3.
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− x
2 + ky

2 = − 2.

A more traditional view of the band structure for each poten-
tial is presented in Figs. 5�b�, 5�d�, and 5�f�, where the ener-
gies of the conducting states versus ky have been plotted.
Figures 5�a� and 5�b� correspond to a large well separation
�d=3.0�, Figs. 5�c� and 5�d� to an intermediate well separa-
tion �d=1.0�, and Figs. 5�e� and 5�f� to a small well separa-
tion �d=0.202�. When the wells are far apart, the collective
bound-state is near the bound state energy of a single scat-
terer, but as the wells approach each other, bound states oc-
curring at E�0 start to appear. These states are particularly
interesting since they could, in principle, be accessed by a
propagating incident wave. As a demonstration, Fig. 6 illus-
trates that an incident propagating plane wave can couple
into a state which is bound along the waveguide. Note that
the periodicity of the guided portion of the wave is not the
periodicity of the lattice.

VI. ARRAYS OF ATOMS AS WAVEGUIDES

We now apply the arguments of the previous sections to
demonstrate that a wall of atoms might be used to guide
waves. By guiding, we mean that if an incident beam is
focused on some part of the grating, the scattered wave
propagates along the grating for a long distance. In Secs. IV
and V, we discussed the existence of states that are either

quasibound or bound along the infinite array. These states, as
such, are not an example of transport; being translationally
invariant along the array, they can only be accessed by initial
conditions that are already translationally invariant, such as
plane waves. Transport along the array requires that the array
have a symmetry breaking point where an incident wave can
be injected. In particular, in order for a localized beam aimed
at the array to conduct, the array must have a defect or an
end. The asymmetry will of course affect the properties of
the grating—e.g., diffraction, impedance, etc. While we can
use our results on the infinite array as a basis for studies of
guiding in related systems, the infinite array itself is not a
waveguide.

A. Guiding by a semi-infinite array

Consider an incident beam

��r�� =
1

2

�

−
/2+�


/2+�

g��k − ��eik���k�·r�d�k, �43�

where g��k�=e−��k / w�2
. Equation �43� represents a beam inci-

dent from the right, focused on the scatterer at r�=0 and ro-
tated by an angle � from the positive x axis. An incident
beam �Eq. �43� with �=0 �normal incidence�� is shown in
Fig. 7�a�. As w→0, ��r�� approaches a plane wave, and for
w→	, ��r�� becomes a spherical wave with its form related
to the Fourier transform of the spherical wave J0�kr�. In the
following, we are interested in intermediate values of w, for
which Eq. �43� represents a focused beam.

FIG. 5. �a�,�c�,�e� show the curves along which s̃�ix ,ky� has
poles �the symmetry across ky =0 is due to reflection symmetry of
the array along y=0�. These curves correspond to manifolds of
conducting states bound in the x direction and propagating along
the array. The dashed curves, for comparison, are contours of wave
vectors corresponding to the bound-state energy of a single scat-
terer. �b�,�d�, �f� show the band structure �E vs ky� for the conduct-
ing states. �a�,�b� correspond to a lattice constant d=3.0; �c�,�d� to
d=1.0; and �e�,�f� to d=0.202. As the wells approach each other, the
bands are increasingly perturbed from the single-scatterer limit. In
all cases, conducting states are present at E�0.

FIG. 6. Plane waves at normal incidence �k=0.7� scattering into
a conducting state; scatterers �depicted by dots in the figure� are soft
disks with V0=−8.0, a=0.2, and d=0.8 �the same scatterers as in
Figs. 1 and 5�. This figure is a numerical demonstration that a
propagating incident wave can couple into an E�0 conducting
state of the array if the translational invariance of the array is bro-
ken. Coupling into the conducting state with a plane wave does not
constitute guiding, as the incident wave already has amplitude
everywhere.
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Using our results for the infinite array as a guide, we take
a purely numerical approach to the study of guiding in finite
and semiinfinite arrays, as these systems are difficult to treat
analytically. Analytical studies �e.g., Refs. �18,19�� typically
conclude that scattering from a semiinfinite array reproduces
certain major features of an infinite array: resonances, dif-
fraction, etc. The main difference is that in the semi-infinite
case, a spherical wave emanates from the end of the array.
Most studies of semi-infinite arrays begin with the infinite
solution and derive this spherical edge wave as a correction
term.

We demonstrate guiding numerically in Fig. 7. The scat-
terers are closely spaced, and the focused beam is aimed at
the end of the array. In Fig. 7�c�, a guided state clearly propa-
gates along the array. The guiding occurs at low energies,
near bound states of the infinite array. Guiding does not oc-
cur for repulsive scatterers, confirming that the coupling is to
the true bound states of the array rather than the quasibound
states.

The guiding is robust and extends to gently curved and
finite walls as demonstrated in Fig. 8, where a beam focused
on one end of a curved wall emerges at the other end. The
scatterers are effectively behaving like a light pipe for a mat-
ter wave. If the wall is curved sharply relative to the wave-
length of the incident beam, amplitude leaks out as adiaba-
ticity breaks down.

In this section, we have demonstrated via numerical simu-
lations that the E�0 conducting states of the array can be

exploited to guide waves along a semi-infinite wall of attrac-
tive, closely spaced scatterers. The physical explanation is
that a semi-infinite wall of attractive potentials behaves like a
trough and furthermore that, because the trough has an end,
it is possible to couple into conducting states via injecting a
beam into the end.

B. Effective cross section for conduction along the wire

From Figs. 7 and 8, it appears that an incident beam of
particles focused on one end of a wall of scatterers can be
efficiently guided to the other end. In this section, we pro-
vide a quantitative estimate of this guiding efficiency. Con-
sider a focused beam ��r�� �Eq. �43�� of energy E= 1

2k2 with
normal incidence ��=0� to the wall of scatterers. Such an
initial incident beam has nonzero flux jinc along the x direc-
tion, where

jinc = �
0




d��k cos����exp�− 2��/w�2� .

The scattered flux can be calculated by evaluating the flux of
the scattered wave function �s�r�� over any contour which
completely surrounds the scatterers. Finally, the total cross
section can be simply evaluated by integrating the scattered
flux over the desired contour and dividing by jinc. For the
wall of scatterers, the total cross section � can be calculated
over the contour shown in Fig. 9, giving

FIG. 7. Guiding of a focused
beam with k=0.7. The scatterers
are indicated by dots. These plots
show the probability densities of
�a� the incident beam, focused on
the end of the array. �b� The scat-
tered wave, which is guided along
the array, and �c� the full scattered
wave function �incident plus scat-
tered�. The individual scatterers
are attractive wells with the same
form and lattice constant as in
Figs. 5�e� and 5�f�.

FIG. 8. Guiding of a focused
beam along a finite wall; k=3
.
The scatterers �depicted by dots in
the figure� are attractive disks
with V0=−10, a=0.2. These plots
show the probability densities of
�a� the incident beam, �b� the scat-
tered wave, and �c� the full scat-
tered wave function �incident plus
scattered�. In �b�, amplitude vis-
ibly leaks away near the sharp
bend near y=0, as a consequence
of nonadiabaticity.
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� =
1

jinc
�

C

da� Im��s
*�a���� �s�a��� = �CU

+ �CD
+ �CS1

+ �CS2
,

�44�

where �CU�D�
is the contribution to the total cross section

from particles scattered through the upper �lower� semi-
circles.

As long as the contour encloses all the scatterers, the
value of � is independent of the choice of contour. However,
�CU�D�

and �CS1�2�
will depend on the value of rw for the

contour shown in Fig. 9. We are interested in estimating the
fraction of scattered particles transported along the wire for
an incident beam which is focused on the bottom of the wall
of scatterers; i.e., we are interested in the ratio of �CU

/�
�assuming each incident particle is scattered�. We should
therefore choose rw such that rw /L�1, where L=Nd is the
length of the wall of N scatterers with spacing

Figure 10�a� gives � �in units of 104d� as a function of
kd=�2E for a system of N=150 square well scatterers char-
acterized by V0=−8, d=0.8, and a=0.2 �in addition, w=1
was chosen for ��r�� in Eq. �43��. As can be seen from Fig.
10�a�, � increases with decreasing kd, although for the range
of kd plotted in Fig. 10�a�, � is still much larger than the
spatial spread of the incident wave function so that essen-
tially all of the incident particles are scattered. In order to
estimate the amount of transport along the scatterer wall, the
ratio of the scattered flux through the other end of the wall is
taken with the total scattered flux, which is simply equal to
�CU

/�; this ratio is shown in Fig. 10�b�. Here, the fraction of
scattered particles which are transported along the wire can
reach up to 30% and oscillate with k. Note that the oscilla-
tions are related to the actual length of the wall; if the num-

ber of scatterers �and hence the array’s length� is doubled,
the period of the oscillations would roughly be doubled too.
For 0.38
�k�0.53
, �CU

/� oscillates slightly about
�CU

/��12%. This means that even for a beam of particles
with a distribution of incident energies �possibly due to ther-
mal effects�, at least 12% of the incident particles will still be
transported along the wire. Also note that in these calcula-
tions, rw=10d so that rw /L=1/40�1. It is interesting to ob-
serve that for a beam incident only on the lowermost scat-
terer and for the case of isotropic scattering �i.e., neglecting
multiple scattering�, the amount of scattered particles trans-
ported through the same region relative to the total scattered
flux would be given by 2r0 / �2
L��0.8%. Thus the wall of
scatterers can enhance the scattering along a given direction
by a factor of almost 40.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have examined scattering from and guid-
ing by quasi-1D periodic gratings of scatterers embedded in

FIG. 9. The “stadium”-like contour used to evaluate the total
cross section � for the wall of scatterers. The shortest distance from
any point on the contour to the wall is rw. For an incident beam
focused on the bottom of the wall of scatterers �indicated by the
arrow�, the fraction of particles “transported” along the wall is
given roughly by �CU

/�.

FIG. 10. �a� The total cross section � in units of 104d �where d
is the lattice spacing� for N=150 square well scatterers �V0=−8, a
=0.2, d=0.8� as a function of kd. The incident beam is focused
upon the bottom scatterer, with w=1. Since � is much greater than
the spread of the incident beam, it can be safely assumed that each
incident particle is scattered. Therefore in order to obtain the num-
ber of particles which are transported along the scatterer wall, one
must simply calculate �CU

/�, shown in �b�. As can be seen, up to
30% of all scattered particles can be transported along the wire
�compared with only 0.8% if the scattering was assumed to be
isotropic�.
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2D. This system is a good laboratory for highlighting the
coexistence of scattering phenomena, such as transmission,
reflection, and resonance, with features typical of periodic
systems, such as band structure, diffraction, and conduction
along the array. Arranging individual atoms on substrates,
often in patterns far more intricate than gratings, has become
an established experimental technique �2–4,20�. The motiva-
tion for our study is thus that atomic arrays can be built, have
been successfully modeled by multiple scattering theories,
�21–23�, and can potentially serve as a waveguide for other
particles.

In order to investigate the use of atomic arrays for guid-
ing, we have developed a multiple-scattering theory �related
to the KKR method� for quasi-1D gratings of s wave scatter-
ers, embedded in 2D. The central physics is related to
Bloch’s theorem; we can obtain the full scattered wave func-
tion from the solution for a single unit cell by replacing the t
matrix of an individual scatterer with its renormalized ver-
sion and the free-space Green’s function with an effective
Green’s function. We have used this result to discuss and to
examine some general features of scattering from a single
chain of atoms, such as resonances, quasibound states, and
conducting states. Finally, we have demonstrated numeri-
cally that conducting states of the semiinfinite or finite array
can be used to guide waves along straight or curved walls
with up to 30% guiding efficiency.

The properties of the scattering and guiding studied here
have strong analogs in optical systems, such as planar
waveguides, optical fibers, and glass tabletops. For the latter,
light incident on a sheet of glass at an angle and far from any
edge is partially reflected and transmitted directly. Some of
the light is transmitted and reflected indirectly, propagating
inside the waveguide with attenuation by incomplete internal
reflection. On the other hand, light incident on a �symmetry
breaking� edge can be partially reflected, but mostly enters
the sheet of glass and is trapped inside by total internal re-
flection. Due to its resonant modes, our system has shown
analogs to each of these optical phenomena and others.

This work can be extended in a number of directions. We
have chosen to embed our system in 2D because 2D is the
relevant dimensionality for electrons in surface states scatter-
ing from atoms adsorbed on a metallic surface. With a
change in the free-space Green’s function, one could, how-
ever, revise the entire theory to treat a quasi-1D array em-
bedded in 3D, such as might be relevant if the scatterers were
atoms confined to an optical lattice. The physics of renormal-
ization and interference in a 3D system would be very simi-
lar, and presumably identical guiding effects would arise.

Among the reasons that we have taken a multiple-
scattering approach to the system is that it can be generalized
to the introduction of impurities or defects into the array. We
have discussed how symmetry breaking is required for guid-
ing to occur. Introducing an impurity or defect into an infi-
nite array is one way of breaking symmetry, with the impu-
rity behaving as an antenna capable of drawing the incident
wave into the conducting state. The problem of impurities in
the array is also interesting in the sense that the array with an
impurity becomes a scattering system in the conducting
mode, yielding, in essence, a scattering theory within a scat-
tering theory. The question of guiding in a system with dis-

order may also be of interest from the perspective of Ander-
son localization. Interesting questions arise as to how to
maximize the guiding efficiency, for example, by impedance
matching the array’s end to free space. Finally, Foldy’s
method has recently been extended to include Rashba spin-
orbit coupling �24�, and it may be possible to modify the
results of this paper to examine spintronic versions of guid-
ing.
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APPENDIX A: RELEVANT LATTICE SUMS

Equations �13� and �15� are in the form of spherical
waves. We would like to find a more useful expression for
Eq. �15� and also a more rapidly convergent expression for
Eq. �13�. Sums involving Hankel functions converge to the
plane-wave limit very slowly. The physical implication of
this slow convergence is that edge effects are more important
than one might expect; many scatterers are required to build
an “infinite” wall.

1. Plane-wave form of effective Green’s function

The Green’s function for an infinite array of scatterers, as
expressed in spherical waves, is

G�r�� = 
n=−	

	

G0�r�,r�n�eikynd. �A1�

Substituting the two-dimensional free-space Green’s function
�Eq. �3��, we find that

G�r�� = −
i

2 
n=−	

	

H0
�1��k�r� − r�n��eikynd

= −
i

2

�

−	

	 dky�

kx�
ei�kx�,ky���x,y� 

n=−	

	

�e−i�ky�−ky�d�n, �A2�

where we have used the integral form of the Hankel function
in the right half plane �x�0�. Using


n=−	

	

�ei�ky�−ky�d�n =
2


d


n=−	

	

��ky� − ky +
2n


d
� ,

we can do the integration, yielding the sum of plane waves at
real and imaginary Bragg angles,

G�r�� = −
i

d


n=−	

	
1

kx
�n�e

ikx
�n��x�eiky

�n�y

= −
i

d
eikyy 

n=−	

	
1

kx
�n�e

ikx
�n��x�e�−2in
/d�y , �A3�

where we have taken the absolute value to ensure conver-
gence and
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ky
�n� � ky −

2n


d
,

kx
�n� = �k2 − �ky

�n��2

define wave vectors oriented at the Bragg angles. Imaginary
values of kx

�n� correspond to evanescent modes and are
present only in the near field.

This idea connects to the phenomenon of a “healing
length” when examining reflections from a corrugated wall.
We note that G�r�� is singular as we approach the origin;
while the singularity is not evident in Eq. �A3�, it is readily
apparent in Eq. �A2�. Reindexing, we find

G�r�� = −
i

kxd
eikx�x�eikyy −

i

d
eikyy

n=1

	 � 1

kx
�−n�e

ikx
�−n��x�e�2in
/d�y

+
1

kx
�n�e

ikx
�n��x�e−�2in
/d�y� . �A4�

The wave function is a Bloch wave:

��r� + dŷ� = eikyd��r�� ,

with E= 1
2k2= 1

2
��kx

�n��2+ �ky
�n��2.

2. Kummer’s method: Extracting the singularity

As in Refs. �13� and �25�, we want to apply Kummer’s
method to extract the singularity from Eq. �A3� and also to
obtain a rapidly convergent expression for the renormalized
scattering strength s̃ �Eq. �13��. We begin rewriting Eq. �13�
as

Gr = lim
r�→0�

�G�r�� − G0�r��� = lim
r�→0�

��G�r�� − S�r��� + �S�r�� − G0�r���	 ,

�A5�

where S�r�� is a sum chosen to cancel the log singularity of
the Hankel function. Looking at Eq. �A3�, we choose the
following form for S�r��:

S�r�� = −
1




n=1

	
1

n
e�2n
/d��x� cos�2n
y

d
� .

With this choice of S�r��, we are extracting the zero-energy
limit from the singular sum in Eq. �A4�, evaluated �for sim-
plicity� for a normally incident wave. The choice of S�r�� is
not unique; our motivation for choosing this particular form
of S�r�� is that we know that it will contain the logarithmic
singularity. From Eq. �A1� we see that the zero-energy limit
of the Green’s function corresponds to the limit of a Hankel
function as we approach the origin, and thus the zero-energy
limit of the sum will be singular.

We shall proceed to show that although both S�r�� and
G�r�� separately diverge logarithmically at the origin,

lim
r�→0�

�S�r�� − G0�r���

is finite. We first find a closed form of S�r��:

S�r�� = −
1



Re 

n=1

	
1

n
�e�2
/d��x�e2i
y/d�n.

We can now use

Re 
n=1

	
Zn

n
= −

1

2
ln �1 − Z�2

to rewrite

S�r�� =
1

2

ln�e�2
/d��x��e�−2
/d��x� − e�
/d��x�e2i
y/d�

��e�−2
/d��x� − e�
/d��x�e−2i
y/d��

=
1

2

ln�2e�2
/d��x��cosh�2


d
x� − cos�2


d
y��� .

Using this form, it is simple to take the limit

lim
r�→0�

S�r�� = −
1



ln� kd

2

� +

1



ln kr . �A6�

Subtracting the limiting form of the Hankel function,

lim
r�→0�

G0�kr� = −
i

2
+

� − ln 2



+

1



ln kr ,

from Eq. �A6�, we find

lim
r�→0�

�S�r�� − G0�r��� = −
1



ln� kd

4

� +

i

2
−

�



,

which is finite. Returning to Eq. �A5�, we find that another
form of G�r�� is

G�r�� = −
i

d

1

kx
eikx�x� −

i

d

n=1

	 � 1

kx
�−n�e

ikx
�−n��x�ei�ky+2in
/d�y

+
1

kx
�n�e

ikx
�n��x�ei�ky−2in
/d�y −

d

in

e�2n
/d��x� cos�2n
y

d
��

−
1



ln� kd

4

� +

i

2
−

�



,

and from this expression, we can calculate Gr:

Gr = lim
r�→r�0

�G�r�� − G0�r���

=
− i

kxd
−

i

d

n�0

� 1

kx
�n� −

d

2i�n�
� −
1



ln� kd

4

� +

i

2
−

�



.

�A7�

In the special case where the incident plane wave is normal
to the array, this expression is identical to Gr for a scatterer at
any location in a periodic wire. In the general case, the value
of Gr differs in the values of kx

�n�, which now depend on the
incoming wave function.

MATTER-WAVE SCATTERING AND GUIDING BY ATOMIC … PHYSICAL REVIEW A 76, 013620 �2007�

013620-11



APPENDIX B: UNITARITY AND THE SINGLE WALL

Simplifying Eqs. �31� and �32� to the case of a single
chain of atoms, the reflection and transmission probabilities
are

Rq = −
is̃

d

1

�kx
�0�kx

�q� ,

Tq = �q0 + Rq. �B1�

The unitarity requirement T+R=1 can be shown to yield the
following constraint on s̃, which resembles the ordinary op-
tical theorem, Eq. �1�:

− Im s̃ = �s̃�2 
q�Q

1

kx
�q�d

. �B2�

Using Eqs. �19� and �A7�, it is straightforward to verify that
s̃ satisfies the unitarity condition, Eq. �B2�, as long as the
single-scatterer t matrix s�k� satisfies the free-space unitarity
condition, Eq. �1�. In the limit kd→0, our results approach
those for a continuous wall of scatterers. An alternate method
for treating a continuous wall is the boundary wall method
�7� where the wall is discretized into a set of pseudoscatter-
ers. The boundary wall method has been shown to be equiva-
lent to building a wall out of point scatterers-with the excep-
tion that the self-interaction, which was omitted in Eq. �4�,
has been left in the calculation, rendering the individual
pseudoscatterer unphysical since its t matrix no longer satis-
fies the optical theorem in Eq. �1�. Our formalism, though
significantly more complicated, has the advantage of corre-
sponding physically to building a wall out of individual at-
oms.

APPENDIX C: SIMULATING POTENTIALS
WITH A t MATRIX

1. Hard disk

The 2D hard disk is simulated by requiring that the wave
function go to zero at a radius a from the scatterer. It is

shown �see, e.g., �26�� that this corresponds to a t matrix

s�k� = − 2i
J0�ka�

H0
�1��ka�

.

2. Soft disk

Another example of a potential for which we can analyti-
cally calculate the s-wave scattering properties is a soft disk
of radius a,

V�r� = V0��R − a� . �C1�

We are particularly interested in the case V0�0, correspond-
ing to an attractive disk.

The s-wave phase shift �0 for the soft disk potential is
determined by continuity of the logarithmic derivative of the
wave function at r=a:

tan �0 =
qJ0�ka�J1�qa� − kJ1�ka�J0�qa�
qY0�ka�J1�qa� − kY1�ka�J0�qa�

, �C2�

where

q � �2�E − V0�

is the wave number inside the disk.
Having calculated the s-wave phase shift, it is straightfor-

ward to confirm that we can simulate the s-wave scattering
from a soft attractive disk with a t matrix:

s�k� =
− 2 tan �0

1 − i tan �0
. �C3�

The negative energy poles of the t matrix in Eq. �C3� occur
at

qK0�a�J1�qa� = K1�a�J0�qa� , �C4�

where ��−2E. Equation �C4� can easily be shown to be
the characteristic equation for bound states of the 2D cylin-
drical well.
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