
Bose-Einstein condensate in a harmonic trap decorated with Dirac � functions

Haydar Uncu,1 Devrim Tarhan,2 Ersan Demiralp,1,3 and Özgür E. Müstecaplıoğlu4

1Department of Physics, Boğaziçi University, Bebek, 34342, İstanbul, Turkey
2Department of Physics, Harran University, Osmanbey Yerleşkesi, Şanlıurfa, Turkey

3Boğaziçi University-TÜBİTAK Feza Gürsey Institute Kandilli, 34684, İstanbul, Turkey
4Department of Physics, Koç University, Rumelifeneri yolu, Sarıyer, 34450, İstanbul, Turkey

�Received 26 January 2007; revised manuscript received 10 May 2007; published 18 July 2007�

We study Bose-Einstein condensation in a harmonic trap with a dimple potential. We specifically consider
the case of a tight and deep dimple potential which is modeled by a Dirac � function. This allows for simpler,
explicit numerical and analytical investigations of noninteracting gases. Thus, the Schrödinger equation is used
instead of the Gross-Pitaevski equation. Calculating the atomic density, chemical potential, critical tempera-
ture, and condensate fraction, the role of the relative depth of the dimple potential with respect to the harmonic
trap in large condensate formation at enhanced temperatures is clearly revealed.
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I. INTRODUCTION

Bose-Einstein condensation was the last major discovery
of Einstein �1,2�. By applying Bose-Einstein statistics to an
ideal gas, Einstein showed that “from a certain temperature
on, the molecules condense without attractive forces…” �3�
and discovered Bose-Einstein condensation in 1925. This
theoretical prediction motivated experimental studies for re-
alizations of Bose-Einstein condensates of gases. Seventy
years after the prediction of Einstein, Bose-Einstein conden-
sates �BECs� of dilute gases have been observed at very low
temperatures by using ingenious experimental designs �4–6�.

Experimentally available condensates are systems with a
finite number of atoms N, confined in spatially inhomoge-
neous trapping potentials. Their understanding requires theo-
ries that go beyond the usual treatments based upon Lon-
don’s continuous spectrum approximation �7� or the
thermodynamic limit N→�. Such studies �8,9� reveal that
BECs can occur in harmonically trapped lower-dimensional
systems for finite N despite the enhanced importance of
phase fluctuations �10�. Quasicondensates with large phase
fluctuations may still occur �11�. This is in contrast to stan-
dard results �12�, in agreement with the Mermin-Wagner-
Hohenberg theorem �13,14� in the thermodynamic limit.
Bose-Einstein condensation in one dimension �1D� with a
harmonic trap is attractive due to enhanced critical tempera-
ture and condensate fraction �8,9�. Recently, one- and two-
dimensional BECs have been created in experiments �15�.
One-dimensional condensates were also generated on a mi-
crochip �16,17� and in lithium mixtures �18�.

Modification of the shape of the trapping potential can be
used to increase the phase space density �19�. “Dimple”-type
potentials are the most favorable potentials for this purpose
�20–22�. The phase-space density can be enhanced by an
arbitrary factor by using a small dimple potential at the equi-
librium point of the harmonic trapping potential �20�. A re-
cent demonstration of caesium BEC exploits a tight dimple
potential �21�. Quite recently, such potentials were proposed
for efficient loading and fast evaporative cooling to produce
large BECs �23�. Tight dimple potentials for one-dimensional
�or strictly speaking quasi-one-dimensional� BECs offer at-

tractive applications, such as controlling the interaction be-
tween dark solitons and sound �24�, introducing defects such
as atomic quantum dots in optical lattices �25�, or quantum
tweezers for atoms �26�. Such systems can also be used for
spatially selective loading of optical lattices �27�. In combi-
nation with the condensates on atom chips, tight and deep
dimple potentials can lead to rich novel dynamics for poten-
tial applications in atom lasers, atom interferometers, and
quantum computations �see Ref. �28� and references therein�.

In this paper, we investigate Bose-Einstein condensation
in a 1D harmonic trap decorated by a tight and deep dimple
potential. The quantum kinetics of a similar system but for a
3D single-mode trap, modeled by a deep but narrow spheri-
cal square potential well, was studied in Ref. �29�, where a
master equation, to describe condensate growth, was devel-
oped. We model the dimple potential using a Dirac � func-
tion. The � function can be defined via a Gaussian function
�30� g�x ,a�= �1/��a�exp�−x2 /a2� of infinitely narrow width
a so that g�x ,a�→��x� for a→0. This allows for analytical
calculations in some limiting cases as well as a simpler nu-
merical treatment for arbitrary parameters. We calculate the
transition temperature as well as the chemical potential and
condensate fraction for various numbers of atoms and for
various relative depths of the dimple potential. For describ-
ing a system with interacting particles, the Gross-Pitaevski
equation is usually utilized. We note that we neglect the in-
teractions between atoms in our model, and thus the
Schrödinger equation for the harmonic trap with the dimple
potential is solved.

The paper is organized as follows. In Sec. II, we present
analytical solutions of the Schrödinger equation for a Dirac
�-decorated harmonic potential and the corresponding eigen-
value equation. In Sec. III, determining the eigenvalues nu-
merically, we show the effect of the dimple potential on the
condensate fraction and the transition temperature. In Sec.
IV, we present a semiclassical method to calculate the con-
densate fraction when a dimple potential is added to the har-
monic trap adiabatically. Analytical results in the limit of
strong dimple potential are presented in the Sec. V. Finally,
we present our conclusions in Sec. VI.
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II. HARMONIC POTENTIAL DECORATED
WITH DIRAC � FUNCTIONS

We begin our discussion with the one-dimensional har-
monic potential decorated with the Dirac � functions
�31–33�. This potential is given as

V�x� =
1

2
m�2x2 −

�2

2m
�

i

P

�i��x − xi� , �1�

where � is the frequency of the harmonic trap, P is a finite
integer, and �i’s are the strengths �depths� of the dimple
potentials located at xi’s with x1�x2� ¯ �xP with xi
� �−� ,��. The factor �2 /2m is used for calculational con-
venience. A negative �i value represents the repulsive inter-
action while positive �i value represents the attractive inter-
action. We can write the time-independent Schrödinger
equation as

−
�2

2m

d2��x�
dx2 + V�x���x� = E��x� . �2�

By inserting E= �	+ 1
2

���, with 	 a real number, and intro-
ducing dimensionless quantities z=x /x0 and zi=xi /x0 with
x0=�� /2m�, the natural length scale of the harmonic trap,
we can reexpress Eq. �2� as

d2��z�
dz2 + �	 +

1

2
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z2

4
+ �

i

P


i��z − zi����z� = 0, �3�

where 
i=x0�i. For z�zi, Eq. �2� has two linearly indepen-
dent solutions. For 	�0,1 ,2 , . . .. these linearly independent
solutions are parabolic cylinder functions D	�z� and D	�−z�,
defined as
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where ��−	 /2 ,1 /2 ;z2 /2� and �(�1−	� /2 ,3 /2 ;z2 /2) are the
confluent hypergeometric functions ��a ,b ;z2 /2� defined in
Ref. �34� for a=	 /2, b=1/2 and a= �1−	� /2, b=3/2, re-

spectively. Thus, the general solution of Eq. �3� between the
locations of two Dirac � functions is

��z� = aiD	�z� + biD	�− z� , �6�

with ai and bi written in terms of b1 via the transfer matrix
method and b1 is determined by normalization �a1=bP+1=0
due to square integrability� �33,35�. D	�−z� is regular as z
→−�, but D	�−z�→ +� as z→�, and D	�z� is regular as
z→�, but D	�z�→ +� as z→−� �34�. By using the trans-
fer matrix method explained in Refs. �31,35�, one finds the
eigenvalue equation for the potential given in Eq. �1�. For the
special case of the potential given in Eq. �1�, the harmonic
potential decorated with one Dirac � function at its center
P=1, x1=0,

V�x� =
1

2
m�2x2 −

�2

2m
���x� , �7�

the eigenvalue equation of the even states is written as
�32,33,36�

���1 − 	�/2�
��− 	/2�

=
��3/4 − E/2���
��1/4 − E/2���

=
���/m�

4
. �8�

In this case, the odd solutions of the harmonic potential are
unaffected because the Dirac � function is located at the
center of the harmonic potential. On the other hand, the en-
ergy eigenvalues of even states change as a function of �.
The ground-state energy eigenvalue decreases unlimitedly as
� increases �attractive case�. However, the energies of the
excited even states are limited by the energies E2n+1 of odd
states and as �→�, E2n+2→E2n+1= �2n+1+1/2��� where
n=0,1 , . . . . Thus, as �→� the energy eigenvalues of these
states go to the energy eigenvalue of the one lower eigen-
state, and the odd energy eigenstates asymptotically become
doubly degenerate.

III. BEC IN A ONE-DIMENSIONAL HARMONIC
POTENTIAL WITH A DIRAC � FUNCTION

We begin our discussion about BEC in a one-dimensional
harmonic potential decorated with a Dirac � function by in-
vestigating the change of the critical temperature as a func-
tion of �. One estimates a � value using the parameters of
Ref. �22�. In this paper, the minimum value of the dimple
potential is given as Uc=kB4 K and the average potential
width is given as r=1–100 m. We equate the strength
�−�2� /2m� to the product Ucr to get an estimate of �. We
find that � varies approximately between 1081/m and
10101 /m as r changes from 1 m to 100 m. We define a
dimensionless parameter in terms of � as


 = �� �

m�
. �9�

If 1081 /m���10101 /m, then 460�
�46 000 for the ex-
perimental parameters m=23 amu �23Na�, �=2��21 Hz
�37� and 230�
�23 000 for the experimental parameters
m=133 amu �133Cs�, �=2��14 Hz �21�. In this work, we
show that, even for small 
 values, the condensate fraction
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and critical temperature change considerably.
The critical temperature �Tc� is obtained by taking the

chemical potential equal to the ground-state energy �=Eg
=E0� and

N � �
i=1

�
1

e�c�i − 1
, �10�

at T=Tc, where �c=1/ �kBTc�. For finite N value, we define
Tc

0 as the solution of Eq. �10� for 
=0 �only the harmonic
trap�.

In Eq. �10�, �i’s are the eigenvalues for the potential given
in Eq. �7�. The energies of odd states are unchanged and
equal to �2n+1+1/2���. The energies of even states are
found by solving Eq. �8� numerically. Then, these values are
substituted into Eq. �10�, and finally this equation is solved
numerically to find Tc. We obtain Tc for different 
 and show
our results in Fig. 1. In this figure, logarithmic scale is used
for 
 axis. As 
 increases, the critical temperature increases
very rapidly when 
�1. The solid line in Fig. 1 shows the
change of the critical temperature with 
. Here we take N
=104 and use the experimental parameters m=23 amu �23Na�
and �=2��21 Hz �37�.

We have calculated the change in the critical temperature
approximating dimple-type potentials by the Dirac � func-
tion. The change in the critical temperature can also be cal-
culated by assuming that the optical trap is added to the
harmonic trap adiabatically �20,38�. In this semiclassical ap-
proach, one uses the density of states and assumes the energy
spectrum is continuous utilizing the fact that �� / �kBT��1.
For a one-dimensional harmonic trap, the number of particles
in the thermal gas can be found as

N = N0 +
1

��
�

�3/2���

�

d�
1

e���−� − 1
, �11�

where N0 denotes the average number of particles in the
ground state. The 1/ ���� factor before the integral in Eq.

�11� is the density of states for the one-dimensional harmonic
potential. The critical temperature Tc

0 in the harmonic trap
can be found by taking =�� /2 and writing the following
equation for the total number of particles, N:

N =
1

��
�

�3/2���

�

d�
1

e�c
0��−��/2� − 1

, �12�

where �c
0=1/ �kBTc

0�. The addition of an attractive dimple po-
tential to the harmonic trap decreases the ground-state en-
ergy, resulting a decrease in the chemical potential. Since the
chemical potential is assumed to be equal to the ground-sate
energy at the critical temperature, replacing  in Eq. �11� by
Eg, the ground-state energy for the harmonic trap together
with the dimple potential, it is possible to calculate the criti-
cal temperature of the new system:

N =
1

��
�

�3/2���

�

d�
1

e�c
SC��−Eg� − 1

. �13�

where �c
SC=1/ �kBTc

SC� denotes the critical temperature values
obtained by semiclassical method. Here we assume that the
energies of the excited state are same as the harmonic trap by
following Ref. �20�. We have calculated the critical tempera-
ture for various dimple potentials differing according to po-
tential depths. We take the Eg values as the ground state of
the potential given in Eq. �7� for different � �or 

=��� / �m��� values in order to compare the results of this
method with our results.

The critical temperature values calculated using this semi-
classical approach �Tc

SC� are shown in Fig. 1 as points. As
seen from the figure, the critical temperature values esti-
mated by our method and by the semiclassical method are
almost equal. We show in Fig. 2 the percentage difference of
the critical temperatures that are calculated by using these
methods. The difference of these two methods for very small

 values is due to the accurate calculation of the summation
with accurate energy values for the excited states for our
method; however, the summation is approximated with an
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FIG. 1. The critical temperature Tc and Tc
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 for N=104. 


is a dimensionless variable defined in Eq. �9�. The crosses and dots
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�23Na� and �=2��21 Hz �37�. The logarithmic scale is used for
the 
 axis.

10
−4

10
−2

10
0

10
2

10
4

1

2

3

4

5

6

7

8x10
−2

Λ

(T
cS

C
−

T
c)/

T
c

FIG. 2. 100�Tc
SC−Tc /Tc� vs 
, the difference of the critical tem-

peratures calculated by the semiclassical and our method with re-
spect to 
. The logarithmic scale is used for the 
 axis.

BOSE-EINSTEIN CONDENSATE IN A HARMONIC TRAP … PHYSICAL REVIEW A 76, 013618 �2007�

013618-3



integral by using the harmonic trap density of states for the
semiclassical method.

For a gas of N identical bosons, the chemical potential 
is obtained by solving

N = �
i=0

�
1

e���i−� − 1
= N0 + �

i=1

�
1

e���i−� − 1
, �14�

at constant temperature and for given N, where �i is the
energy of state i. We present the change of  as a function of
T /Tc

0 in Fig. 3 for N=104; 
=0 and 
=46. By inserting 
values into the equation

N0 =
1

e���0−� − 1
, �15�

we find the average number of particles in the ground state.
N0 /N versus T /Tc

0 for N=106 and 
=0,4.6,46 are shown in
Fig. 4. In this figure, the result for 
=0 is the same as the

result obtained by Ketterle and van Druten �8�. As mentioned
in Ref. �8�, the phase transition due to a discontinuity in the
observable macroparameter occurs only in the thermody-
namic limit, where N→�. However, we make our calcula-
tions for a realistic system with a finite number of particles.
Thus, N0 /N is a finite nonzero quantity for T�Tc without
having any discontinuity at T=Tc.

It is useful to know the behavior of the condensate frac-
tion as a function of temperature for a fixed value of 
. We
present the condensate fraction for N=104 ,106 ,108 when 

=46 in Fig. 5. All condensate fractions for different N values
are drawn by using their corresponding Tc

0 values. These Tc
0

values are 13 K for N=104, 85 K for N=106, and
6200 K for N=108.

We also find the condensate fraction as a function of 
 at
a constant T=Tc

0. These results for N=104 are shown in Fig.
6. In the following section we show that the condensate frac-
tion changes exponentially for large 
. Thus, large 
 values
�
�1� induce a sharp increase in the condensate fraction.
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FIG. 3. The chemical potential  vs temperature T /Tc
0 for N

=104 and the solid line is for 
=0 and dashed line for 
=46. The
other parameters are the same as in Fig. 1.
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FIG. 4. N0 /N vs T /Tc
0 for N=106 and the solid line is for 


=0, dashed line for 
=4.6, and dotted line for 
=46. The other
parameters are the same as in Fig. 1.
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FIG. 5. Condensate N0 /N vs temperature T /Tc
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Finally, we compare the density profiles of condensates
for a harmonic trap and a harmonic trap decorated with a �
function �
=4.6� in Fig. 7. Since the ground-state wave
functions can be calculated analytically for both cases, we
find the density profiles by taking the absolute square of the
ground-state wave functions.

IV. ADIABATIC CONDENSATION

One can also find the condensate fraction assuming a
dimple potential is added to harmonic trap adiabatically
�20,38�. We first calculate the grand potential of a one-
dimensional Bose gas in a harmonic trap using the semiclas-
sical approximation:

� = �0 +
kBT

��
�

�3/2���

�

d� ln�1 − e��−��� , �16�

where �0 denotes the contribution of the ground state to the
grand potential. The 1/ ���� factor before the integral in Eq.
�16� is the density of states for the one-dimensional harmonic
potential. We calculate the entropy using S=−d� /dT and get

S

kB
=

2kBT

��
g2�e��−3��/2�� + 
 

��
−

3

2
�ln�1 − e��−3��/2�� ,

�17�

where g2�x� is a Bose function and is defined as

g2�x� = �
l=1

�
xl

l2 . �18�

For temperatures slightly above Tc
0, the entropy is

S

kB
=

2kBT

��
g2�e��/kBTc

0
� − ln�1 − e−��/kBTc

0
� , �19�

assuming =�� /2. We assume that adding a dimple poten-
tial changes the ground state and the chemical potential such
that =Eg��� /2 and the entropy expression becomes

S

kB
=

2kBT

��
g2�e��Eg−3��/2�� + 
 Eg

��
−

3

2
�ln�1 − e��Eg−3��/2�� .

�20�

Since the entropy remains constant during an adiabatic pro-
cess, we can use Eqs. �19� and �20� to calculate the final
temperature of the system. Then, we calculate the condensate
fraction for this final temperature. We present the change of
condensate fraction with respect to �E / �kBTc

0� in Fig. 8
where �E=�� /2−Eg. The solid and dashed lines in Fig. 8
show the results of the semiclassical method and our method,
respectively. �E increases with 
, representing the potential
depth for a constant width. We have calculated the conden-
sate fraction for the same ground-state energy values of the
dimple potential in both the semiclassical and our method to
make a comparison. The condensate fraction results in Fig. 8
differ for these two methods for very small 
 values. This is
due to two effects: �a� Calculations of the chemical potential
are done accurately by using the constant N for the finite
number of particles for our method; however, the chemical
potential is just taken the ground-state energy for the semi-
classical method �20,38�. �b� An accurate summation calcu-
lation is performed for our method; however, the summation
is approximated by an integral for the semiclassical method.

The plots in Figs. 1 and 8 show that the agreement of the
results of the two methods is better for large 
 �or large �E�
values. This is due to the fact that the average occupations
for excited states is so low �nexcited�1� that the semiclassical
treatment for this gas is valid.
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FIG. 7. Comparison of density profiles of a BEC in a harmonic
trap with a BEC in a harmonic trap decorated with a � function
�
=4.6�. The solid curve is the density profile of the BEC in deco-
rated potential. The dashed curve is the density profile of the 1D
harmonic trap �
=0�. The parameter z is the dimensionless length
defined after Eq. �2�. The other parameters are the same as in Fig. 1.
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ated with the semiclassical method and our method for N=104. The
crosses and dots show the results of the semiclassical method and
our method, respectively. The logarithmic scale is used for the x
axis, where �E=�� /2−Eg.
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V. APPROXIMATE SOLUTIONS OF THE CRITICAL
TEMPERATURE AND CONDENSATE FRACTION

FOR LARGE �

If we apply a deep dimple potential ��→�� to the atomic
condensate in a harmonic trap, the problem can be solved
analytically by approximating the summation for N with an
integral. As T→Tc, →�0�E�, where

E� = −
�2

2m

�

2
�2

�21�

and it is the bound-state energy of a Dirac � potential �32�.
By using the density of states ���� and utilizing E2n+2

→E2n+1 �odd-state energies� as �→�, the summation in Eq.
�14� is converted to the integral

N =
1

��
�

�3/2���

� d�

e�c�+� − 1
, �22�

where �=�c��2 / �2m���� /2�2 and �c=1/kBTc. After calculat-
ing the integral, we get

N = −
kBTc

��
ln�1 − exp�− �c�3��

2
−

�2

2m

�

2
�2��� .

�23�

Defining A= E� /��, we have A�1 and exp�−�c��A��1
for very large �. Then,

N �
kBTc

��
e−�c��A �24�

for this case, and we get for the critical temperature

kBTc �
A

ln
 A/N

ln�A/N��
�� , �25�

for large A /N values. For one-dimensional experimental sys-
tems, N�103–106 atoms. For a specific case A /N�104

�e9, one gets

kBTc �
E�
7

, �26�

which shows that the critical temperature increases linearly
with increasing bound-state energy for the dimple potential.

By using Eq. �24�, the condensate fraction can be written
as

N0

N
= 1 −

T

Tc
e−��ckB�Tc−T���A �27�

for T�Tc. This result indicates an exponential increase of N0
as a function of T for T�Tc. Thus, the number of atoms in
Bose-Einstein condensates will rise drastically when a very
strong, very-short-range �point� interaction is added to a har-
monic confining potential. However, we ignore the interac-
tions between the atoms and neglect nonlinear terms in the
Gross-Pitaevski equation which will modify these results.

VI. CONCLUSION

We have investigated the effect of the tight dimple poten-
tial on the harmonically confined one-dimensional BEC. We
model the dimple potential with the Dirac � function. This
allows for analytical expressions for the eigenfunctions of
the system and a simple eigenvalue equation greatly simpli-
fying the numerical treatment. Pure analytical results are ob-
tained in the limit of an infinitely deep dimple potential.

We have calculated the critical temperature, chemical po-
tential, and condensate fraction and demonstrated the effect
of the dimple potential. We have found that the critical tem-
perature can be enhanced by an order of magnitude for ex-
perimentally accessible dimple potential parameters. In gen-
eral, Tc increases with the relative strength of the dimple
potential with respect to the harmonic trap. In our model
system, the increase in the strength of the Dirac � function
can be interpreted as increasing the depth of a dimple poten-
tial.

In addition, the change of the condensate fraction with
respect to the strength of the Dirac � function has been ana-
lyzed at a constant temperature �T=Tc

0� and with respect to
temperature at a constant strength. It has been shown that the
condensate fraction can be increased considerably and large
condensates can be achieved at higher temperatures due to
the strong localization effect of the dimple potential. Analyti-
cal expressions are given to clarify the relation of the con-
densate fraction and critical temperature to the strength of
deep dimple potential.

We also show that similar results for the critical tempera-
ture and condensate fraction can be obtained by using a
semiclassical approximation. However, in this simpler ap-
proach, it is not possible to determine the density profile, and
when the thermodynamic limit is not satisfied, the estima-
tions of the semiclassical approach fail.

Finally, we have determined and compared the density
profiles of the harmonic trap and the decorated trap with the
Dirac � function at the equilibrium point using analytical
solutions of the model system. Comparing the graphics of
the density profiles, we see that a dimple potential maintains
a considerably higher density at the center of the harmonic
trap.

The results presented are obtained for the case of nonin-
teracting condensates for simplicity. The treatment should be
extended to the case of interacting condensates in order to
make the results more relevant to experimental investiga-
tions. This case deserves further detailed and separate calcu-
lations. We believe the method presented of �-function mod-
eling of tight dimple potentials can help significantly such
theoretical examinations.
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