
Solution of the one-dimensional spatially inhomogeneous cubic-quintic nonlinear Schrödinger
equation with an external potential

Xiao-Yan Tang1,2 and Padma Kant Shukla2,3

1Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
2Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44870 Bochum, Germany

3School of Physics, University of KwaZulu-Natal, 4000 Durban, South Africa
�Received 2 April 2007; published 13 July 2007�

Properties of the one-dimensional spatially inhomogeneous cubic-quintic nonlinear Schrödinger equation
�ICQNLSE� with an external potential are studied. When it is associated with the homogeneous CQNLSE, a
general condition exists linking the external potential and inhomogeneous cubic and quintic �ICQ� nonlineari-
ties. Besides for the nonpresence of an external potential, two classes of Jacobian elliptic periodic potentials are
discussed in detail, and the corresponding ICQ nonlinearities are found to be either periodic or localized. Exact
analytical soliton solutions in these cases are presented, such as the bright, dark, kink, and periodic solitons,
etc. An appealing aspect is that the ICQNLSE can support bound states with any number of solitons when the
ICQ nonlinearities are localized and an external potential is either applied or not.
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I. INTRODUCTION

During the past several years, there have been a great deal
of theoretical and experimental investigations in models
based on the nonlinear Schrödinger �NLS� or Gross-
Pitaevskii �GP� equations with a spatially periodic potential,
cubic and quintic nonlinearities �1–8�. The physical models
of this type emerge in various nonlinear physical phenom-
ena, such as pulse propagation in optical fibers and
waveguides �9�, light propagation in chalcogenide glasses
�10�, convection in pure and binary fluids �11�, mode-locked
lasers �12�, plasma-laser interaction �13�, pattern formation
�14�, and some organic materials �15�.

The cubic-quintic nonlinear Schrödinger equations
�CQNLSEs� with nonlinearity management presents practi-
cal interest, since it appears in diverse branches of physics
such as in nonlinear optics �16� and in Bose-Einstein con-
densation �BEC� �17�. In effect, in the past decade, tech-
niques for managing nonlinearity �18� have attracted consid-
erable attention, for instance, nonlinearity management
arises in optics for transverse beam propagation in layered
optical media �19�, as well as in atomic physics for the Fes-
hbach resonance of the scattering length of interatomic inter-
actions in BECs �20,21�. In these situations, one has to deal
with the governing equations with the nonlinearity coeffi-
cients being functions of time �21,22�, or equivalently, the
variable representing the propagation distance �19,23�. Re-
cently, spatially dependent nonlinear interactions are also re-
ceiving a great deal of attention, for instance, there are many
studies on nonlinear waves in BECs with spatially inhomo-
geneous interactions including solitonic emission �24�. In a
recent reference �25�, by using the classical Lie group theory
and canonical transformations, some general classes of non-
linear modulations and external potentials were found. Spe-
cifically, explicit soliton solutions for the cubic nonlinear
Schrödinger equation with a spatially inhomogeneous non-
linearity have been reported. It turns out that localized non-
linearities can support bound states with an arbitrary number
of solitons without any additional external potential.

The aim of the present paper is to study explicit stationary
solutions of the spatially inhomogeneous cubic-quintic non-
linear Schrödinger equation �ICQNLSE� with an external po-
tential, which can be written in the following dimensionless
form:

i�t + �xx + g�x����2� + G�x����4� − V�x�� = 0. �1�

In the context of BECs, Eq. �1� can model a dilute BEC in
the quasi-one-dimensional regime when both the two- and
three-body interactions of the condensate are considered
�26�. In this case, � is the macroscopic wave function of the
condensate, V�x� is an external potential, g�x� and G�x� are
the inhomogeneous cubic and quintic nonlinear coefficients,
corresponding to the two-body and three-body interactions,
respectively. The signs of g�x� and G�x� can be positive or
negative in the whole domain of x, indicating that the inter-
actions are attractive or repulsive, respectively.

It is noted that exact solutions of the homogeneous
CQNLSE, i.e., g�x� and G�x� in Eq. �1� are x independent,
have been discussed in Ref. �27� with and without external
potentials. In order to construct explicit stationary solutions
of ICQNLSE �1�, we can write the wave function in the form
of �=�e−i�t, where � is a constant and � is an x-dependent
function. The substitution of �=�e−i�t into Eq. �1� leads to a
time independent inhomogeneous nonlinear equation

�� + �xx + g�x��3 + G�x��5 − V�x�� = 0. �2�

It is remarkable that, similar to Ref. �25�, Eq. �2� can also
be transformed to the CQNLSE without an external potential
and with homogeneous nonlinearities in the new canonical
variables obtained from the classical Lie symmetry of Eq.
�2�. It is known that besides the classical and nonclassical
Lie group approaches �28�, the CK �Clarkson and Kruskal�
direct method �29� is also powerful in finding solutions of
nonlinear equations. Moreover, it has been revealed that all
the solutions obtained by the CK direct method can have
corresponding Lie symmetry explanations either for classical
or nonclassical cases. Hence it is implied that the CK direct
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method might be applied to find transformations between
spatial inhomogeneous equations and the corresponding ho-
mogeneous equations. This type of transformation is known
as the non-auto-Bäcklund transformation �NABT�, which has
been widely used in integrable systems to connect solutions
of two different equations �30�.

In Sec. II of this paper, we first use the classical Lie group
approach to obtain the classical Lie group symmetry of Eq.
�2�, from which the canonical variables are constructed to
transform the inhomogeneous equation �2� to a CQNLSE
with homogeneous nonlinearities. Then, following the idea
of the CK direct method without using any group theory, we
find a NABT between the inhomogeneous equation �2� and
its corresponding homogeneous one. It is manifested that, for
particular parameters, the NABT is equivalent to the canoni-
cal transformation. At the same time, a condition arises to
link the potential and the inhomogeneous cubic and quintic
�ICQ� nonlinearities. This condition can give rise to many
sets of potentials and ICQ nonlinearities, by which solutions
of ICQNLSE can be easily constructed from those of the
CQNLSE. Two classes of solutions are presented in Sec. III.
First, in the absence of an external potential, the correspond-
ing ICQ nonlinearities can be either periodic or localized. In
the periodic case, Eq. �2� can have bright and dark solitons
with periodic tails. In the nonperiodic case, we find that Eq.
�2� can support bound states with any number of solitons.
Second, two types of Jacobian elliptic periodic potentials are
introduced, when the ICQ nonlinearities are periodic with the
same periods of the potentials. Some exact Jacobian elliptic
periodic solutions of Eq. �2� are presented. Results in the
limit of the moduli of the Jacobian elliptic functions ap-
proaching 1 are discussed. Some representative figures are
plotted to show the profiles of the potentials, ICQ nonlineari-
ties, and exact soliton solutions. In Sec. IV, the main results
of the paper are briefly discussed and summarized.

II. SYMMETRIES, CANONICAL TRANSFORMATIONS,
AND NON-AUTO-BÄCKLUND TRANSFORMATIONS

Generally, it is difficult to directly solve Eq. �2� with some
particular external potentials and ICQ nonlinearities. Re-
cently, Ref. �25� provided a way to treat this problem by
transforming a variable coefficient equation to a correspond-
ing constant coefficient equation by virtue of the canonical
transformations obtained from the classical symmetries of
the original equation. In Sec. II A, following Ref. �25�, we
apply the classical Lie group approach to Eq. �2� for obtain-
ing its classical Lie group symmetries, from which we then
obtain the canonical transformations, and thus a CQNLSE
without an external potential and with homogeneous nonlin-
earities is deduced. In Sec. II B, we demonstrate that this
problem can also be solved by employing the idea of the CK
direct method, where a NABT between Eq. �2� and its cor-
responding homogeneous CQNLSE is obtained. It is found
that for some particular parameters, the canonical transfor-
mations and the NABT are equivalent. Hence exact solutions
of Eq. �2� can be easily constructed based on the solutions of
the CQNLSE.

A. Symmetries and canonical transformations
via the classical Lie group approach

The vector field

M = X
�

�x
+ �

�

��
, �3�

where X and � are functions of the variables �x ,��, is a
symmetry of Eq. �2� if

pr�2�M�A�A=0 = 0, �4�

where A=��+�xx+g�x��3+G�x��5−V�x��, and pr�2�M
=M +�x� /��x+�xx� /��xx is the second order prolongation
of the vector field M. It means that Eq. �2� is invariant under
the transformation x→x+�X, �=�+��, where � is an in-
finitesimal parameter. Solving Eq. �4�, we find that the only
Lie point symmetry �3� of Eq. �2� reads

M = a�x�
�

�x
+ �1

2
a��x� + K��

�

��
, �5�

with

g�x� =
g0

a�x�3 exp�− 2K	
0

x 1

a�s�
ds
 ,

G�x� =
G0

a�x�4 exp�− 4K	
0

x 1

a�s�
ds
 , �6�

and

a��x� − 2a�x�V��x� − 4�V�x� − ��a��x� = 0, �7�

where K is an arbitrary constant, and the prime stands for
� /�x.

Using the fact that the invariance of the energy is associ-
ated with the translational invariance whose generator is of
the form M =� /�x, we can define the canonical transforma-
tion related to the symmetry �5� as

� = p�x�, U = q�x�� , �8�

where p�x� and q�x� can be determined by requiring that
M =� /�� exists in the canonical variables to preserve the
energy conservation law. From Eqs. �5� and �8�, we obtain

p�x� = 	
0

x 1

a�s�
ds, q�x� =

1
�a�x�

exp�− K	
0

x 1

a�s�
ds
 .

�9�

Therefore Eq. �2� is transformed to

d2U

d�2 + 2K
dU

d�
+ EU + g0U3 + G0U5 = 0, �10�

where E= ��−V�x��a�x�2− 1
4a��x�2+ 1

2a�x�a��x� is a constant,
because �E /�x=0 in light of Eq. �7�.

It is noted that when K=0, Eq. �10� is just the CQNLSE
without an external potential and with homogeneous CQ
nonlinearities. Moreover, Eq. �10� with K=0 is also known
as the �6 model, which has wide applications in solid state,
condensed mater, quantum field theory, etc. �31�, and many
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exact solutions of Eq. �10� have been reported �32�. Gener-
ally, we can find solutions of Eq. �10� to construct exact
solutions of ICQNLSE �1�. For simplicity and also for a
direct connection between the ICQNLSE and CQNLSE, we
take K=0. In this case, the solutions of Eq. �2� are given by

� = �a�x�U��� , �11�

where U����U satisfies Eq. �10� with K=0, and � is deter-
mined by

� = 	
0

x 1

a�s�
ds , �12�

V�x� is determined by Eq. �7�, g�x� and G�x� are, respec-
tively, given by

g�x� =
g0

a�x�3 , G�x� =
G0

a�x�4 , �13�

where a�x� is an arbitrary function of the indicated argument,
g0 and G0 are arbitrary constants.

B. Non-auto-Bäcklund transformations
via the modified CK direct method

The CK direct method was first proposed to find similar-
ity solutions of nonlinear partial differential equations �29�.
It is remarkable that we cannot simply apply the original CK
direct method to find the NABT. In this subsection, we show
how to apply the idea of the CK direct method to construct a
NABT between Eq. �2� and Eq. �10� with K=0, namely,

d2U

d�2 + EU + g0U3 + G0U5 = 0, �14�

where U is a function of the argument �, and E, g0, and G0
are constants. In effect, a similar idea has been used to find
exact solutions of a general variable coefficient Korteweg–de
Vries �KdV�-type equation from the standard constant coef-
ficient KdV equation �33�. Moreover, the CK direct method
has been modified or extended in several different manners
to find conditional similarity reduction solutions �34� and
non-Lie symmetry groups �35�.

Hinted at by the CK direct method, the solutions of Eq.
�2� can be written in the form

� = � + �U��� � � + �U , �15�

where �, �, and � are functions of x which will be deter-
mined later. The differences from the standard CK direct
method are twofold. First, the new function U in Eq. �15� has
the same number of independent new variables as the func-
tion �, while in the standard CK direct method, U is called a
similarity reduction function which must have less indepen-
dent new variables than �. Second, in the standard CK direct
method, we first substitute the similar assumption �15� into
the original model, and then obtain the so called similarity
reduction equation that U satisfies. Contrarily, now we first
prescribe an equation that U satisfies, and then substitute the
assumption �15� together with this prescribed equation into
the original model. In our case, U satisfies Eq. �14�.

Now, substituting Eq. �15� into Eq. �2�, replacing all the
terms Un� �n	2� with the help of Eq. �14�, and setting to
zero all the coefficients of U� and different powers of U, we
obtain a system of seven equations. To set to zero the coef-
ficients of U4, i.e., G�x���4, we must have �=0. Hence the
set of equations are reduced to the following four equations:

G�x��4 − G0��2 = 0, g�x��2 − g0��2 = 0, �16�

��� + 2���� = 0, �� − �E��2 + �� − V�x��� = 0. �17�

Solving Eqs. �16� and �17�, we determine the new variable

� = c1 + c2	
0

x 1

��s�2ds �18�

and obtain three conditions

g�x� =
c2

2g0

�6 , G�x� =
c2

2G0

�8 , �19�

and

�� − V�x���4 + b3�� − c2
2E = 0, �20�

where � is an arbitrary function of x, and c1 and c2 are
arbitrary integration constants.

Therefore the NABT between Eq. �2� and Eq. �14� is
found to be Eq. �15� with �=0 and Eqs. �18�–�20�. It is seen
that when c1=0, c2=1, �2=a�x�, this NABT is the same as
the special canonical transformation Eq. �11� with Eqs. �12�
and �13�.

III. SYSTEMS WITH DIFFERENT EXTERNAL
POTENTIALS

In this section, we investigate exact solutions of Eq. �2�
with particular external potentials and ICQ nonlinearities,
which are obtained from the transformation �11� with Eqs.
�12�, �13�, and �7� with the help of the solutions of Eq. �14�
�or Eq. �10� with K=0�. It is noted that many sets of external
potentials and ICQ nonlinearities, which allow Eq. �2� to
support explicit analytical solutions, can be generated from
Eq. �7� by first assuming the form of V�x� and then solving
a�x�, or vice versa. In Ref. �25�, only a zero potential and a
quadratic trapping potential were discussed for the spatially
inhomogeneous cubic NLS equation. Recently, many spa-
tially periodic potentials have been considered for the GP
and NLS equations, such as V�x�
cos�x� �3,4�, cos2�x� �5�,
and sn2�x ,k� �6–8�. In Sec. III A, we consider the case with-
out an external potential, and Secs. III B and III C are de-
voted to the study of two types of Jacobian elliptic periodic
external potentials, respectively.

A. Systems without an external potential

In the absence of an external potential, namely V�x�=0,
Eq. �7� has solutions

a�x� = C1 + C2 cos�2��x + C3� �21�

for �
0, and

SOLUTION OF THE ONE-DIMENSIONAL SPATIALLY… PHYSICAL REVIEW A 76, 013612 �2007�

013612-3



a�x� = C1 + C2 exp�2�− �x� + C3 exp�− 2�− �x� �22�

for ��0, where the integration constants C1, C2, and C3
must be chosen to ensure a�x� positive. Accordingly, many
exact solutions can be obtained for Eq. �2� with either peri-
odic or exponentially localized ICQ nonlinearities. Here, we
simply present some special exact soliton solutions for each
case.

Case 1. For the case of Eq. �21�, the periodic ICQ non-
linearities are in the form

g�x� = g0�C1 + C2 cos�2��x + C3��−3,

G�x� = G0�C1 + C2 cos�2��x + C3��−4, �23�

where the condition �C2�� �C1� must be enforced for nonsin-
gularities. Thus E in Eq. �14� has a positive value ��C1

2

−C2
2�.
Equation �14� with E=��C1

2−C2
2� may have many pos-

sible exact solutions. For instance, it has the following pos-
sible localized soliton solutions:

U = �a1�sech���� ± 1� , �24�

with

�2 =
4

5
��C1

2 − C2
2�, g0 = 


8��C1
2 − C2

2�
5a1

,

G0 =
3��C1

2 − C2
2�

5a1
2 , �25�

and a1 being an arbitrary constant.
It is evident that Eq. �24� represents a bright soliton for

the upper sign �where a1 is positive� and a dark soliton for
the lower sign �where a1 is negative�. In both cases, g0 is
negative while G0 is positive, which leads to g�x� negative
and G�x� positive in the whole region of x. Therefore the
dilute BEC described by Eq. �1� has only repulsive two-body
and attractive three-body interactions, respectively. Under
some particular parameters, the periodic ICQ nonlinearities
and the corresponding bright soliton solution with periodic
tails are illustrated in Fig. 1.

Case 2. For the case of Eq. �22�, the ICQ nonlinearities
can be exponentially localized in the form

g�x� = g0 sech3�2�− �x�, G�x� = G0 sech4�2�− �x� ,

�26�

when in Eq. �22� C1=0 and C2=C3=1/2. Hence E=−�. A
special solution of Eq. �14� with E=−� can be easily ob-
tained. We have

U =
sn���,m�

�a0 + a1dn2���,m�
, �27�

with the requirement a0
 �a1�, m being the modulus of the
Jacobian elliptic functions,

�2 =� ��a0 + a1�
2m2a1 − m2a0 − a0 − a1

, �28�

and

g0 =
2�m2�a0

2 − 2a1m2a0 − a1
2 + m2a1

2�
m2a0 + a0 − 2m2a1 + a1

,

G0 =
3�a1m4a0�a0 + a1 − m2a1�

m2a0 + a0 − 2m2a1 + a1
. �29�

Now let us show that with the localized ICQ nonlineari-
ties given by Eq. �26�, the ICQNLSE without an external
potential can also support bound states with any number of
solitons, which resembles Ref. �25�. In this particular case,
from Eq. �12�, one can obtain �= arctan�e2�−�x� /�−�. Obvi-
ously, 0����1 with �1=� /2�−�. Therefore we have to en-
force U�0�=U��1�=0 to satisfy the boundary condition
��±��=0. Evidently, U�0�=0 is satisfied for the solution
�27�. The requirement U��1�=0 can be easily met by intro-
ducing the condition ��1=2nK�m� �n=1,2 , . . . �, where � is
determined by Eq. �28� and K�m� is the elliptic integral,

K�m� = 	
0

�/2 1
�1 − m2 sin2�x�

dx . �30�

Hence for every n, we can find a corresponding solution of
m. For instance, when we choose the parameters a0=−�

(a)

G(x)

g(x)

–0.4

–0.2

0

0.2

–8 –6 –4 –2 0 2 4 6 8 10
x (b)

1

1.1

1.2

1.3

1.4

–20 –10 0 10 20
x

FIG. 1. �a� The profiles of the periodic ICQ nonlinearities given by Eq. �23� with Eq. �25� and �=1/4, a1=C1=1, C2=0.1, C3=0. �b� The
bright soliton solution of Eq. �2� with V�x�=0, corresponding to �a�.
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=1/4 and a1=1, then we get m=0.773 382 for n=1, m
=0.829 632 for n=2, and m=0.838 431 for n=3, respec-
tively. In this manner, an infinite number of solutions � are
obtained in the form of Eq. �27� with exactly n−1 zeros.
With the above parameters, three sets of figures are plotted in
Fig. 2 to display the configurations of the ICQ nonlinearities
and the localized exact soliton solutions of Eq. �2� without an
external potential.

B. Systems with the first type of periodic potentials

In this subsection, a class of periodic potentials of the
form V�x�
sn2�x ,k� �6–8� are studied. From Eq. �7�, we
obtain a set of solutions

V�x� = 2k2sn2�x,k�, a�x� =
� − 1 − k2

k2 + sn2�x,k� , �31�

where k is the modulus of the Jacobian elliptic sine function.
Hence the ICQ nonlinearities are given by

g�x� =
g0k6

�� − 1 − k2 + k2sn2�x,k��3 ,

G�x� =
G0k8

�� − 1 − k2 + k2sn2�x,k��4 , �32�

and thus E in Eq. �14� reads

E =
1

k4 ��3 − 2�k2 + 1��2 + �k4 + 3k2 + 1�� − k2�k2 + 1�� .

�33�

It is noted that the amplitude of the external potential
depends on the modulus k. In the limit k→1, V�x� becomes
a hyperbolic secant potential well, and the ICQ nonlinearities
become localized similar to case 2 in the previous subsec-
tion. However, the limit k→0 is not allowed since it will
lead not only the potential to be zero, but the ICQ nonlin-
earities vanish as well.

Now, we solve Eq. �14� with Eq. �33�. It is not difficult to
verify that

U =�−
2m2�2

g0

sn���,m�
�1 + dn���,m�

, �34�

with m being the modulus of the Jacobian elliptic functions
and

�2 =
2��3 − 2�k2 + 1��2 + �k4 + 3k2 + 1�� − k2�k2 + 1��

k4�m2 + 4�
,

�35�

is a solution of Eq. �14� with Eq. �33� and

G0 =
3g0

2

16�2 . �36�

In this case, we must have g0�0 in order to ensure the
solution �34� to be real and G0
0 from Eq. �36�, which
means that the system �1� has only repulsive two-body and
attractive three-body interactions, respectively. Moreover, �

1+k2 must be enforced to ensure a�x� positive. It is also a
manifestation from Eq. �34� that we cannot take the limit k
→0, since it will introduce singularities.

G(x)

g(x)
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0.4

0.6

0.8

–3 –2 –1 1 2 3
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–3 –2 –1 1 2 3
x G(x)
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–2

0
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4
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8
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–3 –2 –1 1 2 3
x

0.2

0.4

0.6
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1

1.2

–10 –8 –6 –4 –2 2 4 6 8 10
x
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0
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1

1.5

–10 –8 –6 –4 –2 2 4 6 8 10
x

–1

–0.5

0

0.5

1

1.5

2

–10 –8 –6 –4 –2 2 4 6 8 10
x

FIG. 2. The structures of the localized ICQ nonlinearities �top� given by Eq. �26� and the corresponding bound states �bottom� with one,
two, and three solitons for Eq. �2� without an external potential are displayed with the parameters fixed by Eqs. �28� and �29�, a0=−�
=1/4, a1=1, m=0.773 382 �left�, m=0.829 632 �middle�, and m=0.838 431 �right�, respectively.
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Therefore soliton solutions of Eq. �2� corresponding to
Eq. �34� can be written straightforwardly. In Fig. 3, the left
panel shows the configurations of the periodic external po-
tential and ICQ nonlinearities, the middle panel exhibits the
corresponding periodic solution of Eq. �2�, which may be-
come a kink with periodic tails when the modulus m ap-
proaches 1, as shown in the right panel. Figure 4 is related to
Fig. 3 in the limit k→1, which reveals that the ICQ nonlin-
earities become localized, the external potential becomes a
sech-type trapping well, and the periodic tails of the kink
disappears. It is seen from Figs. 3 and 4 that the amplitude of
the negative cubic nonlinearity is larger than that of the posi-
tive quintic one, which is rightly coherent to the fact that the
repulsive two-body interaction in the dilute BEC is stronger
than the attractive three-body interaction.

It is noted that with the parameters used in Fig. 4, Eq. �12�
becomes �=�0

x2/ �1+2 tanh2�s��ds, and hence −�����.
Therefore in this case, quite different from case 2 in the last
subsection, we cannot obtain bound states with an infinite
number of solitons supported by Eq. �2� in the form of Eq.
�34�.

C. Systems with the second type of periodic potentials

Actually, Eq. �7� can give many sets of solutions for V�x�
and a�x�. For the first type of periodic potentials presented
above, it turns out that the modulus k of the Jacobian elliptic
function cannot take the limit k→0. Moreover, in the limit

k→1, though the ICQ nonlinearities turn out to be localized,
unlike the case without an external potential, an infinite num-
ber of soliton solutions of Eq. �2� are not obtainable. In order
to improve these facts, we find another set of Jacobian ellip-
tic periodic solutions from Eq. �7�. It is easy to check that

V�x� =
1

4
dn2�x,k� +

3

4
�k2 − 1�dn−2�x,k�, a�x� = dn−1�x,k� ,

�37�

where k is the modulus of the Jacobian elliptic dn function,
solve Eq. �7� for �= �k2−2� /4. Hence the ICQ nonlinearities
read

g�x� = g0dn3�x,k�, G�x� = G0dn4�x,k� . �38�

Due to Eqs. �37� with �= �k2−2� /4, E in Eq. �14� becomes
zero.

Obviously, in the limit k→1, V�x� turns into a hyperbolic
secant potential barrier, and the ICQ nonlinearities again be-
come localized. While in the limit k→0, both the external
potential and the ICQ nonlinearities assume constant values
so that we are back to the homogeneous nonlinear case.

The similar solution forms of Eqs. �27� and �34� are also
applicable to Eq. �2� with E=0 and different parameter con-
ditions. In fact, Eq. �2� possesses abundant exact solutions
related to the different combinations of the different Jacobian
elliptic functions. It is easy to prove that
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FIG. 3. The configurations of the periodic external potential given by Eq. �37� and the periodic ICQ nonlinearities given by Eq. �32� with
Eqs. �35� and �36�, �=5/2, g0=−1, and k=0.9 are shown in the left panel. The corresponding periodic soliton solution of Eq. �2� is shown
in the middle panel for m=0.9, which will become a kink with periodic tails in the limit m→1 as shown in the right panel.
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U =
3sn���,m�

�3a0�3 − �m2 + 1�sn2���,m��
�39�

is an exact solution of Eq. �2� with E=0 and

g0 =
2

3
a0�2�m4 − m2 + 1� ,

G0 =
1

9
a0

2�2�m2 − 2��2m2 − 1��m2 + 1� , �40�

where a0 is an arbitrary constant and m is the modulus of the
Jacobian elliptic sine function. Equation �39� requires a0

0, which thus gives g0
0 for any m. From the second
equation in Eq. �40�, one can find that G0 is positive for 0
�m�1/�2 and negative for 1 /�2�m�1. An exceptional
point is remarkable for m=1/�2 since it gives G0=0 and
thus the quintic nonlinearity identically vanishes. Therefore
in this case, the cubic nonlinearity in the ICQNLSE �1� can
only be attractive, while the quintic one can be either attrac-
tive or repulsive, depending on m.

The representative structures of a class of periodic exter-
nal potentials and ICQ nonlinearities and their corresponding
soliton solutions of Eq. �2� are exhibited in Fig. 5. It is seen
that with a small m, the periodic ICQ nonlinearities are both
positive and the cubic possesses a larger amplitude. While in
the limit m→1, the periodic quintic nonlinearity becomes
negative still with a smaller amplitude, whereas both ampli-
tudes are a little larger than those in the small m. Moreover,
in these two cases, the periodic external potential with a

negative amplitude remains unchanged, and the periods of
the external potential and the ICQ nonlinearities are of the
same. In addition, in the limit m→1, the periodic solution of
Eq. �2� becomes a kink with periodic tails, sharing a similar
structure as shown in Fig. 3 where the periodic external po-
tential has a positive amplitude, the cubic nonlinearity is
negative, and the quintic is positive.

It has been pointed out that in the limit k→1, the periodic
external potential becomes a hyperbolic secant potential bar-
rier, and the ICQ nonlinearities are localized. It is interesting
that, in this case, we can also obtain bound states of Eq. �2�
with an arbitrary number of solitons, as the case without an
external potential. From Eq. �12� with Eq. �37� and k=1, we
find �=2 arctan�ex�, and hence 0����. Therefore U�0�
=U���=0 must be satisfied to meet the boundary condition
��±��=0. For this solution �39�, U�0�=0 is obviously satis-
fied. In order to meet the requirement U���=0, we can re-
strict � as �=2nK�m� /� �n=1,2 ,3 . . . � with K�m� defined
by Eq. �30�. Here, instead of finding a value of m from the
constraint condition for �, which has been done for the case
without an external potential, it is more simple to find a
value of � for given m and n. In this way, Eq. �39� can
represent an n-soliton solution. The bound states with one,
two, and three solitons are displayed in Fig. 6, together with
their corresponding external potentials and localized ICQ
nonlinearities, respectively. It is observed from Fig. 6 that the
external potential has an invariant positive amplitude acting
as a potential barrier and the localized attractive cubic non-
linearity is stronger than the quintic. In addition, the ampli-
tudes of the ICQ nonlinearities become stronger with the
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increased number of solitons, and so does the positive am-
plitude of the solitons, which shares the similar properties as
shown in Fig. 2. However, it is noted that the n-soliton so-
lutions revealed in Figs. 2 and 6 are related to two different
physical systems described by Eq. �1� for the reason that in
the former case, there is no external potential and the quintic
nonlinearity is negative, while there is a hyperbolic secant
potential barrier and the quintic nonlinearity is positive in the
latter case. For instance, in the context of BECs, the former
solutions can describe matter waves in a dilute BEC without
an external potential when the two-body interaction is attrac-
tive and the three-body repulsive, while in the latter case we
have matter waves in a dilute BEC with a potential barrier
when the two-body and three-body interactions are both at-
tractive.

IV. SUMMARY AND EXTENSIONS

The properties of the one-dimensional spatially inhomo-
geneous cubic-quintic nonlinear Schrödinger equation �IC-
QNLSE� with an external potential have been studied ana-
lytically. By using a canonical transformation obtained from
the classical Lie group approach, this model is successfully
transformed to a homogeneous cubic-quintic nonlinear
Schrödinger equation �HCQNLSE�. A similar transforma-
tion, also known as the non-auto-Bäcklund transformation,
between the ICQNLSE and HCQNLSE is found by applying
the idea of the CK direct method. A direct link between the
ICQNLSE and HCQNLSE exists, when a specific condition
associated with the external potential and the ICQ nonlin-

earities is satisfied. Consequently, only with the special
classes of the external potentials and ICQ nonlinearities can
one obtain exact solutions of the ICQNLSE from those of the
HCQNLSE.

The investigation of the ICQNLSE without an external
potential is carried out first, and then we go on further re-
porting two classes of Jacobian elliptic periodic potentials
which have attracted a great deal of attention recently �6–8�
for the NLS equations with homogeneous nonlinearities. In
all these cases, the explicit expressions of the ICQ nonlin-
earities are obtained, either periodic or localized in different
ranges of the parameters. In every class of the external po-
tentials and ICQ nonlinearities, we present different types of
exact solutions, such as the bright, dark, kink, and periodic
soliton solutions. In particular, bound states with an arbitrary
number of solitons can be supported by the ICQNLSE in the
presence of the localized ICQ nonlinearities, and either with-
out an external potential or with a potential barrier, with a
distinct feature that the cubic nonlinearity in both situations
is positive; however, the quintic is negative in the former
while positive in the latter.

Figures 1–6 have one property in common that no matter
positive or negative, the amplitude of the cubic nonlinearity
is always larger than that of the quintic. It just means that the
cubic nonlinearity is stronger than the quintic, which is quite
reasonable because the quintic nonlinearity is a higher order
nonlinear correction and thus should be smaller than the
lower order cubic nonlinearity.

As an application, the physical meanings of the solutions
obtained in Sec. III have been interpreted in the context of

V(x)

G(x)

g(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

–3 –2 –1 1 2 3
x

V(x)

G(x)

g(x)

0

0.5

1

1.5

2

2.5

–3 –2 –1 1 2 3
x

V(x)

G(x)

g(x)

0

1

2

3

4

5

6

–3 –2 –1 1 2 3
x

0

0.2

0.4

0.6

0.8

1

1.2

–10 –8 –6 –4 –2 2 4 6 8 10
x

–1.5

–1

–0.5

0.5

1

1.5

–10 –8 –6 –4 –2 2 4 6 8 10
x

–1

–0.5

0

0.5

1

1.5

–10 –8 –6 –4 –2 2 4 6 8 10
x

FIG. 6. The upper panels are about the configurations of the external potential barriers given by Eq. �37� and the localized ICQ
nonlinearities given by Eq. �38�, and the lower panels display the structures of the bound states with one, two, and three solitons for Eq. �2�
corresponding to the upper, when the parameters are fixed by Eq. �40�, �=2nK�m� /�, a0=k=1, m=0.3, and n=1 �left�, n=2 �middle�, and
n=3 �right�, respectively.

XIAO-YAN TANG AND PADMA KANT SHUKLA PHYSICAL REVIEW A 76, 013612 �2007�

013612-8



BECs. Actually, our results for the ICQNLSE with the peri-
odic and localized external potentials and ICQ nonlinearities
might also be useful for understanding the nonlinear waves
in nonlinear optics with spatially inhomogeneous potentials,
but they are also relevant in plasma physics, in condensed
matter physics, in nuclear physics, etc. For instance, the in-
terest for considering ICQ nonlinearities in nonlinear optics
can stem from a nonlinear correction to the medium refrac-
tive index and a correction due to the inhomogeneity of the
medium as well. In this context, for instance, solutions
shown in Fig. 2 can be used to describe solitons in a non-
Kerr inhomogeneous optical media with a competition be-
tween self-focusing occurring at low intensities and self-
defocusing taking over at high intensities.

It is known that only stable �or weakly unstable� solitary
waves can be observed experimentally. Therefore the stabil-
ity of the solitary waves against small perturbations is a cru-
cial issue. Recently, Ref. �36� deals with the existence and
stability of localized solutions of a one-dimensional discrete
CQNLS equation without an external potential. Here we go a
little further to generally analyze the stability of our solutions
under small perturbations. In a linear stability analysis, we
perturb these solutions by

� = ���x� + �1�x,t��e−i�t, �41�

where �1�x , t� represents a small perturbation. Substituting
Eq. �41� into Eq. �1� and linearizing the resulting equation,
then considering solutions of the form �1�x , t�
= �̂1�x�exp��t�, we find that the real and imaginary parts

(v�x� ,w�x�)= �Re��̂1� , Im��̂1�� satisfy the following linear
eigenvalue equations:

�2w

�x2 + �g�x��2 + G�x��4 − V�x� + ��w + �v = 0, �42�

and

�2v
�x2 + �3g�x��2 + 5G�x��4 − V�x� + ��v − �w = 0.

�43�

A solitary wave solution of Eq. �1� is stable if none of the
eigenmodes of the linear eigenvalue problem given by Eqs.
�42� and �43� grows exponentially. In other words, if there is
at least one eigenvalue � with a positive real part, then in-
stability results. The presence of the inhomogeneous nonlin-
earities, the inhomogeneous external potential, and the com-
plex forms of the solutions � makes it difficult to find an
exact analytic solution of this linear eigenvalue problem.
Therefore numerical studies have to be carried out to address
this problem. Furthermore, as is often used to investigate the
stability of soliton solutions �6,36,37�, we can also conduct
numerical simulations of these solutions with perturbations
initially implanted to see whether their propagations are sta-
tionary or not.

Since the object of this work is to obtain some exact ana-
lytical soliton solutions of the nonlinear Schrödinger equa-
tion with the inhomogeneous competing cubic-quintic non-
linearities in the presence of periodical external potentials, a
thorough analysis of the stability of our new solutions is
beyond the scope of the present paper and is thus left for
further studies.
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