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We develop a theoretical approach for the dynamics of Rydberg excitations in ultracold gases,with a real-
istically large number of atoms. We rely on the reduction of the single-atom Bloch equations to rate equations,
which is possible under various experimentally relevant conditions. Here, we explicitly refer to a two-step
excitation scheme. We discuss the conditions under which our approach is valid by comparing the results with
the solution of the exact quantum master equation for two interacting atoms. Concerning the emergence of an
excitation blockade in a Rydberg gas, our results are in qualitative agreement with experiment. Possible sources
of quantitative discrepancy are carefully examined. Based on the two-step excitation scheme, we predict the
occurrence of an antiblockade effect and propose possible ways to detect this excitation enhancement experi-
mentally in an optical lattice, as well as in the gas phase.
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I. INTRODUCTION

The possibility to routinely create samples of ultracold
gases in the �-Kelvin regime has opened a new avenue to the
investigation of interacting many-particle systems. At such
temperatures, the thermal velocities of the atoms are low
enough that the atoms move a negligible distance over the
duration of the experiment. Hence, �thermal� collisions are
not relevant and it is possible to study quasistatic interactions
between the particles.

For densities of a dilute ultracold but nondegenerate gas
typical for atoms in magneto-optical traps, the interaction
between ground state atoms is very weak. Rydberg atoms, on
the other hand, can strongly interact among each other, even
in a dilute gas, due to their large polarizability, which scales
with the principal quantum number n as n7. This scaling
allows accurate control over their interactions �1� over a
huge range by varying n. In contrast to amorphous solids,
with which ultracold Rydberg gases share some similarities,
the atoms are practically stationary on the time scale of elec-
tronic dynamics because of their low thermal kinetic energy
�2,3�.

A striking consequence of the strong Rydberg-Rydberg
interaction is the so-called “dipole blockade,” i.e., a suppres-
sion of Rydberg excitations due to an induced dipole cou-
pling of the Rydberg atoms to their environment. This phe-
nomenon was first considered theoretically in proposals to
build fast quantum logic gates �4�, to improve the resolution
of atomic clocks �5�, and to create single-atom and single-
photon sources �6�. It was experimentally verified for
second-order dipole-dipole �or van der Waals� coupling be-
tween the Rydberg atoms �7,8� by measuring the density of
the Rydberg atoms as a function of increasing laser intensity,
atomic density, or principal quantum number, i.e., as a func-
tion of increasing interaction strength. By applying and vary-
ing an external electric field the blockade effect was also

demonstrated for a direct �i.e., first-order� dipole-dipole in-
teraction of the Rydberg atoms, and it was shown that the
suppression of excitations is particularly pronounced at the
so-called Förster resonances �9�. Furthermore, it was shown
that the blockade effect also leads to a quenching of the
probability distribution for the excitation to the Rydberg state
�10–12�.

The theoretical description of this laser-driven, interacting
many-particle system is challenging. In �7� a mean field ap-
proach was used and the Bloch equations for a single Ryd-
berg atom in a sphere were solved. Within the sphere, em-
bedded in a constant background density of Rydberg atoms,
no further excitations were allowed. With the help of a fit
parameter the experimental results of �7� could be repro-
duced.

The system was also investigated by solving the many-
particle Schrödinger equation numerically �13�. There, intel-
ligent use was made of the fact that the blockade itself re-
duces the number of atoms that can be excited, which allows
a substantial reduction in the number of states that had to be
considered for the calculations. Yet, the number of atoms that
could be simulated was still so small that appropriate bound-
ary conditions had to be used to establish contact with the
experiments. However, experiments using a two-step �three-
level� excitation scheme could not be described since impor-
tant effects, such as radiative decay, were not included.

Here, we focus, in particular, on the two-step excitation
scheme, used in the experiments �8,10�, where the interme-
diate level decays radiatively. As we will show, this leads to
a reduction of the description of the Rydberg excitation dy-
namics in a single atom to a rate equation, which in turn
enables us to formulate a quasiclassical approach taking fully
into account all atoms in the excitation volume and all inter-
actions of the Rydberg atoms.

Experimentally, a gas of atoms is prepared in a magneto-
optical trap �MOT� with peak densities up to 1011 cm−3 at
temperatures of about 100 �K. Under these conditions the
gas is far from the quantum degenerate regime and can be
viewed as a classical ideal gas. Furthermore, the laser inten-
sities used in �8,10� are relatively low, so that coherent cou-
pling of the atoms by the laser field, e.g., through stimulated
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emission and reabsorption of photons, is negligible. How-
ever, the interaction of the individual atoms with the laser
fields has to be treated quantum mechanically.

Our approach is based on the observation that, under the
conditions of the experiments �8� and �10�, the description of
the single-atom excitation dynamics can be reduced substan-
tially to a single rate equation using an adiabatic approxima-
tion for the coherences. Despite the approximations made,
the rate equation accurately describes the population dynam-
ics of the Rydberg state, including nontrivial effects such as
the Autler-Townes splitting of the excitation line. This sim-
plification in the description of the single-atom dynamics is
the key that ultimately allows us to fully account for the
correlated many-particle dynamics with a simple Monte
Carlo sampling, thereby reducing greatly the complexity of a
full quantum treatment.

The paper is organized as follows. In Sec. II we present
the approach, which enables us to describe the dynamics in
an ultracold gas of interacting three-level atoms using a
many-body rate equation. Starting from the full quantum
master equation, we justify our approximations first on the
single-atom level �Sec. II A�, then for the interacting system
�Sec. II B� and finally, describe how the Rydberg-Rydberg
interaction is included in our description �Sec. II C�. For two
interacting atoms, we compare the results of our rate equa-
tion with the solution of the quantum master equation �Sec.
III�. In Sec. IV we compare the results of the simulations for
a realistic number of atoms with experimental data and com-
ment on the possibility to experimentally observe an interac-
tion induced enhancement of Rydberg excitation �“antiblock-
ade”�. Section V summarizes the results. Throughout the
paper atomic units will be used unless stated otherwise.

II. TWO-STEP RYDBERG EXCITATION IN AN
ULTRACOLD GAS

A. Dynamics of the noninteracting system

In what follows, we will discuss a two-step cw-excitation
scheme for the Rydberg state �see Fig. 1�, as typically used in
experiments. In the first step, the atom is excited from its
ground state �g� to an intermediate level �m� with a transition
strength given by the Rabi frequency �. The photon for this
step is typically provided by the MOT lasers, which are
tuned on resonance with the transition �g�→ �m� during the
time of Rydberg excitation.

In the second step, a separate tunable laser drives the
transition between the intermediate level and the desired Ry-
dberg state �e� with Rabi frequency �, where in this step we
allow for a detuning � from resonant excitation. The decay
of the intermediate level with rate � has to be taken into
account, as its radiative lifetime is typically shorter than the
pulse duration. On the other hand, the lifetime of the Ryd-
berg state is much longer so that its decay can be neglected.

The coherent dynamics of N noninteracting three-level at-
oms coupled to the two laser fields is governed in the inter-
action picture by the Hamiltonian H0,

H0 = H� + HAL � �
i

N

h�
�i� + �

i

N

hAL
�i� , �1�

where

h�
�i� = ��ei�	ei� , �2a�

hAL
�i� =

�

2
��mi�	gi� + �gi�	mi�� +

�

2
��ei�	mi� + �mi�	ei�� ,

�2b�

describe the interaction of the levels of atom i with the laser
beams.

The time evolution of the system including the decay of
the intermediate level is then given by a quantum master
equation for the N-particle density matrix �̂�N�� �̂,

d

dt
�̂ = − i�H0,�̂� + L��̂� , �3�

where the spontaneous decay of level �m� is included via the
Lindblad operator L. In general, the rate of spontaneous de-
cay of an atom is influenced by the presence of other atoms
through a coupling mediated by the radiation field, which
can account for collective effects such as superradiance. The
strength of this coupling is determined by the dimensionless
quantity xij �2� �ri−rj � /�, which measures the atom-atom
distance in units of the wavelength � of the �g�→ �m� transi-
tion. For xij 	1 the spontaneous decay of an atom is strongly
affected by its neighbors, while for xij 
1 the atoms radiate
independently. In typical experiments with ultracold gases,
the mean atomic distance between atoms is a
5 �m. For
the 5s→5p transition of Rb this corresponds to xij 
40.
Hence, the collective decay is negligible and the Lindblad
operator can be written as a sum of single-atom operators,

L = ��
i

N �Li�̂Li
† −

1

2
Li

†Li�̂ −
1

2
�̂Li

†Li� , �4�

with

Li = �gi�	mi� and Li
† = �mi�	gi� . �5�

Hence, the dynamics of the atoms is completely decoupled
and the N-atom density matrix factorizes, �̂= �̂1

�1�
� ¯ � �̂N

�1�.
The time evolution of a noninteracting gas of three-level
atoms is therefore completely determined by the master
equation for the single-atom density matrix �̂k

�1�� �̂, i.e., the
optical Bloch equations �OBE� for a three-level atom,

FIG. 1. Sketch of the two-step excitation scheme for
rubidium.
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�̇gg = i
�

2
��gm − �mg� + ��mm, �6a�

�̇mm = − i
�

2
��gm − �mg� + i

�

2
��me − �em� − ��mm, �6b�

�̇ee = − i
�

2
��me − �em� , �6c�

�̇gm = − i
�

2
��mm − �gg� + i

�

2
�ge −

�

2
�gm, �6d�

�̇me = − i��me − i
�

2
��ee − �mm� − i

�

2
�ge −

�

2
�me, �6e�

�̇ge = − i��ge − i
�

2
�me + i

�

2
�gm, �6f�

��� = ������ for � � � . �6g�

As usual, the level populations are described by the diagonal
elements of the density matrix, whereas the off-diagonal el-
ements, i.e., the coherences, contain the information about
the transition amplitudes between the levels. Conservation of
probability leads to the sum rule

�
�

��� = 1 �7�

for the populations so that eight independent variables re-
main to be solved for.

This single-atom description is too complex to serve as
the basis of a tractable description for the many-particle sys-
tem. Fortunately, under the set of relevant experimental pa-
rameters, �6� simplifies substantially. In the experiments
�8,10�, the upper transition is much more weakly driven than
the lower one ��	�� due to the different transition dipole
moments of the respective excitations. This defines two well
separated time scales, such that the Rydberg transition �m�
→ �e� is slow compared to the pump transition �g�→ �m�.
Thus, the time evolution of the system is governed by the
slow Rydberg transition in the sense that the coherences of
the fast pump transition will adiabatically follow the slow
dynamics of the Rydberg transition.

Furthermore, the decay rate of the intermediate level is
much larger than the Rabi frequency of the upper transition
��
�� implying that the populations will evolve only
slightly over a time �−1. Hence, dephasing of the atomic
transition dipole moments, i.e., damping of the oscillations
of coherences, is fast compared to the dynamics of the Ryd-
berg population.

Under these conditions, the coherences can be expressed
as a function of the populations at each instant of time, i.e.,
their dynamics can be eliminated adiabatically �14� by set-
ting

�̇�� = 0 for � � � . �8�

Solving the algebraic equations arising from Eqs. �6� and �8�
for the populations, making use of Eq. �7�, and inserting into
the differential equation for �mm and �ee, one arrives at

�̇mm = q1�mm + q2�ee + q3, �9a�

�̇ee = q4�mm + q5�ee + q6, �9b�

where the coefficients qk=qk�� ,� ,� ,�� are some functions
of the parameters describing the excitation dynamics of the
three-level system.

To simplify further, we note that within the adiabatic ap-
proximation �8� the dynamics of the population difference
�mm−�gg can be neglected for times t1/2�. This can be
verified by direct integration of �̇mm− �̇gg from the OBE,
which shows that the dynamics of the population difference
is proportional to 1−exp�−2�t� and thus reaches its satura-
tion limit at a time scale on the order of 1 /2�. Using the sum
rule �7� this leads to the relation

2�̇mm + �̇ee = 0, �10�

which can be used to eliminate the population of the inter-
mediate level occurring in Eq. �9�. Finally, one arrives at a
single differential equation for �ee,

�̇ee = −
�↑

�ee
� �ee + �↑, �11�

which can readily be solved to give

�ee�t� = �ee
� �1 − exp−

�↑

�ee
� t�� , �12�

where �ee
� =�ee

� �� ,� ,� ,�� denotes the steady-state occupa-
tion of level �e� and �↑=�↑�� ,� ,� ,�� is the rate for popu-
lating the Rydberg level for short times. The expressions for
�↑ and �ee

� are given in the Appendix . Here we note only that
in the limit �
�
� they reduce to

�↑ =
��2/�2

2�1 − 4�2/�2�2 , �ee
� =

1

1 + 8�2/�2 , �13�

which shows that the resonant excitation rate is proportional
to �� /��2.

Introducing an effective ground state �gg
eff=1−�ee, one can

write Eq. �11� in the form of a rate equation �RE� for an
effective two-level atom

�̇ee�t� = �↑�gg
eff − �↓�ee, �14�

with deexcitation rate

�↓ = �↑�1 − �ee
�

�ee
� � . �15�

A comparison of the solutions of the OBE �6� and the RE
�14� for the Rydberg populations as a function of the detun-
ing � is shown in Fig. 2 for different pulse lengths. The
parameters correspond to those of the experiments �10,8�.
The agreement of the solutions is generally good and be-
comes even better for longer pulses. For the parameters of
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experiment �10� the convergence of the RE solution to that of
the OBE in the region around �=0 is slower as a function of
pulse length. This is due to ���, which indicates that it is
not fully justified to neglect the nonlinear short-time popula-
tion dynamics.

The RE reproduces the Autler-Townes splitting of the in-
termediate level �m� manifest in a splitting of the Rydberg
line, proportional to � for short times. The splitting is tran-
sient, as the steady state with its single central peak is ap-
proached for long times when the Rydberg population
reaches the saturation limit. A detailed analysis of the peak
structure of the Rydberg populations in this system, espe-
cially the occurrence of the Autler-Townes splitting and its
impact on the excitation blockade, has been given in �15�.

For future reference, we will cast the single-atom RE �14�
into a form that will be used for the simulation of the inter-
acting many-particle system. To this end, we denote the state
of the atom by �, where �=1 if the atom is in the Rydberg
state, and �=0 otherwise. Furthermore, we define the rate of
change for the state �,

���,�� � �1 − ���↑��� + ��↓��� , �16�

which describes excitation of the atom if it is in the �effec-
tive� ground state ��=0� and deexcitation if it is in the ex-
cited state ��=1�. Using these definitions, we can combine
Eq. �14�, which determines �ee�t�, and the corresponding
equation for �gg

eff�t� in the form of an evolution equation for
the single-atom state distribution function p���,

dp���
dt

= �
��

T��,���p���� , �17�

with p�0�=1−�ee, p�1�=�ee, and the transition rate matrix

T��,��� = − ���,����,�� + ���,1 − ���1−�,��. �18�

The first term of Eq. �18� describes the transition �→1−�,
through which the system can leave the state �, while the
opposite process �1−�→��, which brings the system into
the state �, is described by the second term.

Proceeding to the case of N noninteracting atoms, we de-
fine the many-particle state � as the configuration containing
all single-atom states �i, i.e., ����1 , . . . ,�i , . . .�N� and �i

as the many-body configuration which is identical to � ex-
cept for the state of atom i, i.e., �i���1 , . . . ,1−�i , . . . ,�N�.
If we finally use the notation ��� ,����i��� ,�i� and
��,�����1,�1�

¯��N,�N�
, the matrix of the transition rates gen-

eralizes to

T��,��� = − ���,����,�� + �
i

���,1 − �i���i,��, �19�

and the evolution equation for the many-body state distribu-
tion function P��� can be written in a closed form as

dP���
dt

= �
��

T��,���P���� . �20�

For noninteracting particles the rate � depends �besides on
the laser detuning� only on the state of particle i, i.e., on �i.
However, this is no longer true in the interacting case and �
will depend on the entire many-body configuration.

B. Correlated many-particle dynamics

In order to study the correlated dynamics of the interact-
ing many-particle system, we have to add the Hamiltonian
describing the Rydberg-Rydberg interaction

HRR =
1

2 �
i,j�i�j�

Uij�ei,ej�	ei,ej� �21�

to H0 �cf. Eq. �1��, where Uij is the interaction energy of a
pair of Rydberg atoms at a distance rij ��ri−r j�. The quan-
tum master equation �3� then reads

d

dt
�̂ = − i�H0 + HRR,�̂� + L��̂� , �22�

with the Lindblad operator given in Eq. �4�.
To see which terms of the master equation are affected by

the inclusion of the Rydberg-Rydberg interaction we con-
sider the commutator �H�+HRR ,�� in the many-body basis
������1 , . . . ,�N�= ��1�¯ ��N�, where ��i� denotes the state
of atom i,

��H� + HRR,����� = �
i
�� + �

j�i�j�

Uij

2
��j,e���i,e

− �� + �
j�i�j�

Uij

2
��j,e���i,e����,

�23�

and rewrite it �using the conservation of probabilities for
each atom, i.e., 1=��k,g+��k,m+��k,e���k,g̃+��k,e, and the
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FIG. 2. �Color online� Population of the Rydberg level for the
three-level system of Fig. 1 according to the RE �14� �solid lines�
and OBE �6� �dashed lines� for different pulse lengths: 0.3 �s �low-
est pair of curves�, 1.0 �s �middle pair�, and 2.0 �s. The param-
eters in MHz are �� ,� ,��= �4,0.2,6� in �a� and �22.1,0.8,6� in
�b�.
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symmetry of the Rydberg-Rydberg interaction Uij =Uji� as

��H� + HRR,����� = �
i

���i,e
��i,g̃

− ��i,g̃
��i,e

�

�� + �
j�i

Uij��j,e
��j,e����

+ �
i,j�i�j�

Uij

2
���i,e

��j,e
��i,g̃

��j,g̃

− ��i,g̃
��j,g̃

��i,e
��j,e

����. �24�

In the first term of Eq. �24� the Rydberg-Rydberg interac-
tion shows up as an additional �local� detuning of an atom at
ri, whenever the atom at r j is in the Rydberg state �i.e., if
� j =� j =e�. In particular, no additional coherences are gener-
ated by the Rydberg-Rydberg interaction and, therefore, this
term does not change the structure of the master equation as
compared to the noninteracting case.

The second term describes direct transitions between
states where atoms i and j are not in the Rydberg state and
the state where the atoms form a Rydberg pair. These transi-
tions require the simultaneous absorption or emission of at
least two photons and are thus higher-order processes. The
dynamics of these multiphoton processes is very slow com-
pared to all other transitions in the system, therefore it can be
neglected �see also the discussion in Secs. III and IV A�, i.e.,
the commutator �24� can be approximated as

��H� + HRR,����� � �
i

���i,e
��i,g̃

− ��i,g̃
��i,e

�

�� + �
j�i

Uij��j,e
��j,e����. �25�

Thus, within this approximation, we recover the simple pic-
ture, which is commonly used for the explanation of the
dipole blockade effect, namely, that a highly excited atom
shifts the Rydberg levels of nearby atoms out of resonance
with the excitation laser.

By neglecting multiphoton transitions, the structure of the
master equation is not changed compared to the noninteract-
ing system and we can perform the adiabatic approximation
discussed above. Identifying finally ��j,e

��j,e
with � j, it is

straightforward to generalize Eq. �19� to the interacting case,

T��,��� = − ���,����,�� + �
i

���i,1 − �i���i,��,

�26�

where now ��� ,��=�i��� ,�i ,�i� and all atoms are coupled
by the energetic shift caused by the Rydberg-Rydberg inter-
action

�i = � + �i � � + �
j�i

� jUij , �27�

so that in the interacting case the rate for a state change
��� ,�i ,�i� for the atom i depends on the entire many-body
configuration through the local detuning �i.

The above approximations simplify the description of the
correlated many-particle dynamics to a high degree, since a
particular many-particle configuration � is directly coupled
to “only” N configurations �� by the transition rate matrix
T�� ,���, which has to be compared to the available number
of 2N many-particle states. To explicitly show this simplifi-
cation, we insert Eq. �26� into the evolution equation �20� of
the state distribution function, perform the sum over ��, and
finally arrive at

dP���
dt

= − �
i

N

���,�i,�i�P��� + �
i

N

���,�i,1 − �i�P��i� .

�28�

Knowing Uij, Eq. �28� can be solved with standard Monte
Carlo sampling techniques, allowing us to treat systems up to
several 105 atoms.

We emphasize that the description presented above is not
restricted to the three-level scheme considered in this work.
It can, e.g., also be applied for a direct excitation of the
Rydberg state from the ground state �two-level scheme� pro-
vided that the atomic coherences are damped out fast enough
to not significantly affect the population dynamics of the
Rydberg state �e.g., if the bandwidth of the excitation laser is
larger than the Rabi frequency of the transition�. For a
single-step excitation scheme the �de�excitation rates are
given by

�↑ = �↓ =
2��2

�2 + 4�2 ,

where � is the measured width of the excitation line.

C. Determination of the Rydberg-Rydberg interaction

An accurate determination of the interaction potential Uij
is challenging due to the mixing of a large number of elec-
tronically excited molecular potential curves. Results from a
perturbative treatment exist for the rij→� asymptote of the
alkali-metal atoms �16� and for the level shifts of Rb �17� as
well as calculations for Cs based on the diagonalization of
the interaction Hamiltonian of two highly excited atoms us-
ing a large number �
5000� of pair states as basis �18�. In
the latter spirit, a simple picture was formulated in �19� for
Rb that allows for an intuitive understanding of the basic
dependence of Uij on rij and on the principal quantum num-
ber n of the Rydberg state.

Following �19�, a pair of Rydberg atoms in states �a� and
�b� at distance rij experiences a shift Uij of its electronic
energy due to an induced dipole coupling Vij =�aa��bb� /rij

3 to
an energetically close pair of states �a�� and �b��. The shift is
given by the eigenvalues

Uij =
1

2
��0 ± ��0

2 + 4Vij
2� �29�

of the two-state Hamiltonian matrix

MANY-BODY THEORY OF EXCITATION DYNAMICS IN AN… PHYSICAL REVIEW A 76, 013413 �2007�

013413-5



H = � 0 Vij

Vij �0
� ,

where �0 is the asymptotic �rij→ � � difference between the
energies of the two pairs.

For a pair �ns ,ns� of two atoms in the ns state, the rel-
evant dipole coupling is to the energetically close pair ��n
−1�p3/2 ,np3/2�. For an arbitrary but fixed quantum number n0

we may define �2�n0���n0s�n0−1�p�n0sn0p. The interaction
strength for other Rydberg levels n then follows from the
scaling �1�

�2�n� = �2�n0��n*

n0
*�4

, �30a�

�0�n� = �0�n0��n0
*

n*�3

, �30b�

where n*=n−� includes the appropriate quantum defect �
�for the ns states of Rb �=3.13�. For rij→� one recovers the
familiar van der Waals r−6 dependence and the dominant n11

scaling for the pair interaction Uij. For Rb we will use in the
following the values �2�n0�=843800 a.u. and �0�n0�
=−0.0378 a.u. for n0=48 from �19�.

III. ACCURATE TREATMENT OF TWO INTERACTING
ATOMS

As a test for our rate equation approach in the case of
interacting atoms, we have numerically solved the full quan-
tum master equation �22� and the rate equation �28� for two
interacting atoms separated by an interatomic distance r. The
quantity directly accessible in the experiments is the fraction
of excited atoms fe. It is shown in Figs. 3�a� and 3�b� as a

function of the principal quantum number n for excitation
parameters used in the experiments �10,8�, respectively. The
overall agreement between the exact result and our approxi-
mation is very good, and the discrepancy of only a few per-
cent between the solutions is comparable to that of the
single-atom calculations �cf. Fig. 2; note the different scaling
of the ordinate� and practically independent of the interaction
strength. This indicates that most of the deviation is a con-
sequence of the approximations already introduced at the
single-atom level.

For both parameter sets we see a suppression in fe for
large n, i.e., an excitation blockade. Additionally, in the case
where the single-atom excitation spectrum shows a double-
peak structure �Fig. 3�b��, there is an excitation enhancement
for a certain n. Its actual value depends on the separation r of
the atoms, so that in a gas this “antiblockade” will be
smeared out due to the wide distribution of mutual atomic
distances. However, for atoms regularly arranged in space,
i.e., on a lattice where the interatomic distances are fixed, the
antiblockade should be clearly visible �15�. To verify that the
observed �anti�blockade in fe is really a suppression �en-
hancement� of Rydberg pairs we have plotted the probability
�ee;ee that both atoms are in the Rydberg state. Indeed, we
observe a complete suppression of the pair state in the block-
ade regime �Fig. 3�c�� and the antiblockade peak �Fig. 3�d��
as well as a good agreement between the solutions of the
master and the rate equation in both cases.

Neglecting two-photon transitions �the second term in Eq.
�24�� is the central approximation, which we make in the
description of the dynamics of the interacting system. In
fact, these processes can be dominant, if the two-photon de-
tuning vanishes far away from resonance, i.e., if �2ph�2�
+U�r�=0 for �� � 
0, �U�r� � 
0. This is clearly seen in Fig.
4�a�, where �ee;ee is shown as a function of the laser detuning
� for two atoms separated by r=5 �m. The solution of the
master equation exhibits a triple-peak structure with the cen-
tral peak located at �=−U�r� /2 �cf. Eq. �24��, which is not
present in the solution of the rate equation. However, the
probability for this two-photon transition is too small to be
visible in the signal of the total probability fe that the atoms
are in the Rydberg state �see inset�.

Increasing the interatomic distance to r=7 �m, i.e., de-
creasing the interaction strength, we expect that the blockade
mechanism becomes ineffective and the contribution of Ry-
dberg pairs to fe becomes relevant. This is indeed reflected in
the fact that the peak of �ee;ee in Fig. 4�b� is orders of mag-
nitude higher than in Fig. 4�a�. Here, however, the atoms are
successively excited to the Rydberg state by two single-
photon transitions. Hence, the peak in �ee;ee is correctly re-
produced by the rate equation.

IV. RYDBERG EXCITATION IN LARGE ENSEMBLES
AND COMPARISON WITH THE EXPERIMENT

A. Dipole blockade

1. Density of Rydberg atoms

We have calculated the density of Rydberg atoms as a
function of the peak density of a Rb gas in a MOT according
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FIG. 3. �Color online� Comparison of the solutions of the master
equation �22� �dashed lines� and the rate equation �28� �solid lines�
for two interacting atoms at distance r=5 �m. Upper graphs ��a�
and �b�� show the fraction of excited atoms fe, lower graphs ��c� and
�d�� the probability �ee;ee that both atoms are in the Rydberg state as
a function of the principal quantum number n for a pulse length �
=2 �s. The parameters of ��a� and �c�� and ��b� and �d�� are those of
Figs. 2�a� and 2�b�, respectively.
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to Eq. �28� for excitations to the 62S and 82S state via the
two-step excitation scheme as measured in �8�.

More specifically, we have determined the Rabi frequency
� of the first excitation step by using the data for the
5S1/2�F=2�→5P3/2�F=3� trapping transition of 87Rb �20�
and by taking the intensity of the MOT lasers from the ex-
periment �21�. The measurement of � as a function of the
intensity of the MOT lasers using the Autler-Townes splitting
of a Rydberg line �21� is in very good agreement with our
result.

To obtain the coupling strength � of the Rydberg transi-
tion we have fitted it to the low-intensity measurements in
�8� using our rate equation and scaled the result to high in-
tensities and/or excitations to different principal quantum
numbers.

Figure 5 shows the results of our calculations and the
experiment. Although we see a qualitative agreement, we
predict Rydberg densities about twice as large as the mea-
sured ones. As the curves for both principal quantum num-
bers exhibit the same deviation from the measured data, it is
tempting to scale our results to the experimental points using
a common factor. Note, however, that without other influ-

ences in the experiment, there is no free parameter in our
description that would justify such a scaling. In the following
we estimate the quantitative influence that several effects
could have on the results presented.

2. Influence of different Rydberg-Rydberg interactions

The “exact” Rydberg-Rydberg interaction may differ from
the one we have used in our description. To assess the impact
of such a difference, we have performed our calculations
with the simple two-state model discussed above �solid lines
in Fig. 5� and assuming a “pure” van der Waals interaction
−C6 /r6 between the Rydberg atoms �dashed lines in Fig. 5�.
The interaction coefficients C6�n� for the latter are calculated
in second-order perturbation theory for r→� and have been
taken from �16�. The interaction strength for the nS states
calculated in this way is considerably larger than the one
from the two-state model �e.g., for the 82S state the differ-
ence in U�r� at r=10 �m is roughly a factor of 2.5 and
increases with decreasing r�. Yet, the final results for the
Rydberg population differ only slightly �see Fig. 5�. We con-
clude that �e is relatively robust against changes in the inter-
action strength. This is due to the fact that the measurement
of the Rydberg density as a function of the ground state
density does not probe the exact shape of the interaction
potential but rather the critical distance rc at which the ener-
getic shift caused by the interaction becomes larger than half
the width of the spectral line ��20 MHz�. For U�r� deter-
mined in perturbation theory and estimated by the two-state
approximation rc�8 �m and rc=7 �m, respectively, for the
82S state, so that significant differences emerge only for
large densities.

3. Influence of ions

Another effect, so far not accounted for, is the presence of
ions. The excitation pulse length used in �8� was 20 �s. For
pulse durations that long, it was shown that a significant
amount of Rydberg atoms can undergo ionizing collisions
even for a repulsive Rydberg-Rydberg interaction �19,22�.
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FIG. 4. �Color online� Probability �ee;ee that both atoms are in
the Rydberg state 82S as a function of the laser detuning � after an
excitation time of �=2 �s at an interatomic distance of r=5 �m �a�
and r=7 �m �b�. Solid lines are the solutions of Eq. �28�, the
dashed lines of Eq. �22�. The excitation parameters are those of Fig.
2�b�. The insets show the corresponding fraction of excited atoms
fe.
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taken from �8�. Lines: Calculations using different models for the
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pure van der Waals interaction from perturbative treatment �16�
�dashed�.
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The presence of ions in the system influences the excitation
dynamics due to the polarizing effect of the electric field of
the ions on the highly susceptible Rydberg atoms. The
Rydberg-ion interaction ��r−4�, therefore, leads to an addi-
tional energetic shift of the Rydberg levels and, thus, can
lead to an enhanced excitation suppression.

To see if the presence of ions can account for the differ-
ence between our results and the measured data, we have
performed calculations in which we have replaced up to 20%
of the Rydberg atoms by ions. The change in the results
compared to the situation without ions is comparable to that
of stronger Rydberg-Rydberg interaction discussed above.
Therefore, ions can be ruled out as a source for the discrep-
ancy between our and the experimental results.

4. Influence of multiphoton transitions

The excitation line profiles presented in �8� showed an
enormous broadening for measurements at high densities. In
contrast, the line profiles that we have calculated with the
present approach are much narrower, in accordance with the
simulations reported in Ref. �13�.

The strong line broadening in the experiment could be
due to nonresonant effects, such as multiphoton transitions,
not included in our rate description �see discussion in Sec.
III�. To estimate their possible influence, we have to deter-
mine first the number of Rydberg pairs, which could be ex-
cited by these transitions. To this end, we have determined
the number of �ground state� atoms np�r��r, which form a
pair with a distance between r and r+�r in the excitation
volume, from the pair density np�r�. Furthermore, we have
calculated the probability �ee;ee for a pair of atoms to be in
the Rydberg state after �=20 �s by solving the quantum
master equation �wp

ME� and the rate equation �wp
RE� for two

atoms as a function of the laser detuning � and interatomic
distance r �cf. Fig. 4�. The difference wp�r ,��=wp

ME�r ,��
−wp

RE�r ,�� should give a rough estimate for the probability
of a Rydberg pair being excited by a multiphoton transition.
The average number of such pairs as a function of � can then
be estimated by Np���=�iwp�ri ,��np�ri��r.

Figure 6 shows that for a sample with ground state peak
density �0=1010 cm−3 our estimate yields a negligible num-
ber of Rydberg pairs excited by multiphoton transitions after
20 �s. Although these estimates are rather crude, the result
shows that multiphoton effects are too small to explain the

broadening of the excitation line profile in the experiment
�8�.

In summary, the unexplained line broadening and the dif-
ference between experiment and theory in the Rydberg popu-
lations make it likely that some additional, presently not
known process, has contributed significantly to the results
obtained in �8�.

B. Antiblockade

1. Lattice configurations

The discussion in Sec. III has shown that the structure of
the single-atom excitation line strongly influences the exci-
tation dynamics in the interacting system. Even on reso-
nance, the Rydberg-Rydberg interaction can cause an excita-
tion enhancement, if the spectral line exhibits a double-peak
structure. This antiblockade occurs whenever the interaction-
induced energetic shift �i for an atom at position ri matches
the detuning �max at which the single-atom excitation prob-
ability has its maximum value.

In the gas phase, where the mutual atomic distances are
broadly distributed, the antiblockade can hardly be observed
by measuring the fraction of excited atoms fe, as the condi-
tion �i=�max is only met by relatively few atoms �15�. In
contrast, if the atoms are regularly arranged in space, e.g.,
with the help of an optical lattice produced by CO2 lasers
�23�, one should clearly observe peaks in fe for certain n �see
Fig. 7�a��. The peak positions can easily be determined by
analyzing the geometry of the underlying lattice. Moreover,
the effect is quite robust against lattice defects �unoccupied
lattice sites� and should therefore be experimentally realiz-
able. A more detailed discussion can be found in �15�.

The underlying lattice structure allows for a statistical in-
terpretation of the antiblockade as “clustering” of Rydberg
atoms. Using the terminology of percolation theory, we de-
fine a cluster of size s as a group of s nearest neighbor sites
occupied by Rydberg atoms. For negligible Rydberg-
Rydberg interaction the excitation of atoms on a lattice is
analogous to the situation encountered in classical �site-� per-
colation theory. This is seen in Fig. 7�b�, where a histogram
of the average number ns of s-clusters per lattice site as a
function of the cluster size �normalized to the number of
1-clusters, i.e., isolated Rydberg atoms� is shown for atoms
excited to the state n=40. The shaded area represents the
prediction of percolation theory �24� for the same number of
isolated Rydberg atoms per site and shows good agreement
with the “measured” data. In the antiblockade regime �n
=65, Fig. 7�c�� we observe a broadening of the cluster size
distribution and a significant enhancement of larger Rydberg
clusters, while in the blockade regime �n=68, Fig. 7�d�� a
quenching of the distribution and an enhancement of the
probability to excite isolated Rydberg atoms is evident.

2. Random gases

Based on the solution of a many-body rate equation using
Monte Carlo sampling, the present approach is particularly
well suited to determine statistical properties of interacting
Rydberg gases.
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FIG. 6. Estimated average number Np of n=82 Rydberg pairs
excited by multiphoton transitions as a function of the laser detun-
ing � after �=20 �s for a ground state peak density �0

=1010 cm−3.
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In �10� the distribution of the number of Rydberg atoms
was measured as a function of the interaction strength. The
distributions obtained were quantified by Mandel’s
Q-parameter

Q =
	Ne

2� − 	Ne�2

	Ne�
− 1, �31�

where Ne is the number of Rydberg atoms and 	¯� denotes
the average over the probability distribution. The Q param-
eter measures the deviation of a probability distribution from
a Poissonian, for which it is zero, whereas for a super- �sub-�
Poissonian it is positive �negative�. The experiment showed a
quenching of the Rydberg number distribution, i.e., a de-
crease of Q, for increasing interaction strength as theoreti-
cally confirmed �11,12�. The differences between the theoret-
ical calculations �Q�0, for all n� and the measured values

�Q0� can be attributed to shot-to-shot fluctuations of the
number of ground state atoms in the experiment �25�.

The excitation parameters in �10� were in the blockade
regime, where the single-atom excitation line exhibits a
single peak at �=0. Therefore, there is a volume �“correla-
tion hole”� around each Rydberg atom, where the excitation
of additional atoms is strongly suppressed. On the other
hand, in the parameter regime of the antiblockade, where the
excitation line shows a double-peak structure, there is in ad-
dition a shell around each Rydberg atom, in which additional
excitations are strongly enhanced. Thus, the statistics of the
Rydberg excitations should depend on the structure of the
single-atom excitation line and the antiblockade can be de-
tected indirectly even in the gas phase by measuring the
atom counting statistics.

Figure 8 shows the calculated Q parameter as a function
of the principal quantum number n for the blockade and
antiblockade regime. In the blockade configuration �squares�
one observes a monotonic decrease of Q with n in accor-
dance with the measurements in �10�. In the antiblockade
regime �circles�, however, Q is nonmonotonic, i.e., the dis-
tribution is slightly broadened, and the quenching starts at
much higher n. Although the broadening of the distribution
may be difficult to observe experimentally, the difference in
the functional form of Q�n� provides a clear experimental
signature in a mesoscopic region of the MOT, where the
atomic density is approximately homogeneous.

V. CONCLUSIONS

We have developed a simple approach, which allows one
to describe the dynamics in ultracold gases in which Rydberg
atoms are excited via a resonant two-step transition. Starting
from a quantum master equation, which incorporates the full
dynamics of an interacting gas of three-level atoms, we have
derived a many-body rate equation. It covers the correlated
dynamics of the system, yet, it can easily be solved by Monte
Carlo sampling for a realistically large number of atoms.

Our approach, valid under well defined conditions typical
for experiments, is based upon two approximations: �i� an
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FIG. 7. �Color online� �a� Fraction of excited atoms for atoms
on a simple cubic lattice with 20% unoccupied sites as a function of
the principal quantum number n. The lattice constant is a=5 �m;
all other parameters are those of Fig. 2�b�. ��b�–�d�� Corresponding
number of “Rydberg clusters” per lattice site ns normalized to the
number of 1-clusters �i.e., isolated Rydberg atoms� n1 as a function
of the cluster size s for principal quantum number n=40 �b�, n
=65 �c�, and n=68 �d�. The shaded areas represent predictions from
percolation theory �24� for a system with the same number of iso-
lated Rydberg atoms �1-clusters� per lattice site.
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FIG. 8. �Color online� Comparison of the Q parameter in the
blockade �squares� and antiblockade �circles� configuration as a
function of the principal quantum number n for a sample with a
homogeneous atomic density �0=8�109 cm−3 and for an excitation
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adiadabtic approximation on the single-atom level to elimi-
nate the atomic coherences and �ii� the negligence of multi-
photon transitions in the interacting system. Solving the
problem of two interacting atoms exactly with a quantum
master equation we could show that the approximate solution
based on the rate equation is in very good agreement with the
exact result.

The present approach is capable of reproducing the partial
excitation blockade observed in �8� qualitatively. Qualita-
tively in accordance with our calculations regarding the ex-
citation line shape and the so-called Q parameter are also the
experimental results of �10�.

Finally, the careful analysis of the two-step excitation
scheme has led to the prediction of an antiblockade effect
due to an Autler-Townes splitting of the intermediate level
probed by the Rydberg transition in the appropriate param-
eter regime. This antiblockade should be directly observable
for a lattice gas, realized, e.g., with an optical lattice. As we
have demonstrated, it could also be observed indirectly in the
gas phase through the atom counting statistics, which differs
qualitatively from its counterpart in the blockade regime.
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APPENDIX: EXPRESSIONS FOR �ee
� and �_

The steady-state solution of the OBE �6� for the Rydberg
population is

�ee
� =

�2��2 + �2�
��2 + �2�2 + 4�2��2 + 2�2�

. �A1�

The excitation rate in Eq. �11� can be written as

�↑ =
2�����2��2 + �2�
a0 + a2�2 + a4�4 , �A2�

where

a0 = ��2 + �2����2 − 2�2�2 + 2�2��2 + �2�� , �A3a�

a2 = 8��4 − 4�4� + 4�2��2 + 4�2� + 8�4, �A3b�

a4 = 32��2 + 2�2� . �A3c�
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