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A theory of dissociative electron attachment to molecules condensed at surfaces and embedded within bulk
media is developed. The theory of low-energy electron diffraction is used to obtain the width for electron-
molecule resonance scattering in the condensed phase from the width for the gas phase. It is then employed for
the calculation of dissociative attachment in the framework of the nonlocal complex potential theory. Specific
calculations using the effective mass approximation are carried out for electron attachment to CH3Cl and
CF3Cl molecules physisorbed on the surface of a Kr film. The role of image states and image-potential
resonances is analyzed. The results show an increase by several orders of magnitude in the cross section for
physisorbed molecules as compared with gas-phase molecules. This is in general agreement with the measured
cross sections. However, the position of the peak in the cross section for CH3Cl is significantly shifted towards
higher energies as compared to experiment �K. Nagesha et al., J. Chem. Phys. 114, 4934 �2001��, and the
magnitude of the calculated cross section for CF3Cl at the surface is significantly higher than the measured
value. Possible reasons for disagreements are analyzed.
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I. INTRODUCTION

Electron-molecule collision processes play a significant
role in many condensed-matter systems where the effects of
environment are important and the electron-molecule scatter-
ing process can no longer be considered as a binary interac-
tion event �1�. Examples include processes relevant to radia-
tion chemistry �2�, the process of ozone depletion in polar
stratospheric clouds �3,4�, and environmental remediation
�5�. At energies of a few eV and below, vibrational excitation
and dissociative electron attachment �DEA� are the most im-
portant of the processes through which electrons deposit en-
ergy and induce chemical transformations.

In spite of recent significant progress in experimental
studies of electron attachment to molecules condensed on
surfaces and embedded in bulk media �3,4,6–15�, theory is
still lagging behind. This is not surprising in view of the very
complex collision conditions that occur in the condensed-
matter and surface environments. Several theoretical studies
�6,16–20� have substantially improved our understanding of
resonance scattering by simple diatomics in the presence of
the surface environment. However, it is apparent that for
more complicated targets and for more complicated pro-
cesses completely ab initio calculations are not practically
feasible yet. This is particularly relevant to DEA processes
leading to the charging of dielectric films and fragmentation
of adsorbates.

The first attempts �8,21–23� to describe electron attach-
ment in condensed-matter environment were based on model
approaches employing a simple description of electron wave
functions in a crystal. The resonance R-matrix model for the
electron-molecule interaction �24,25� was combined with the
continuum-medium approximation for the medium. The
band structure of the crystal was taken into account using the
effective-mass approximation �22,23�. Several observed fea-
tures in electron attachment to physisorbed CH3Cl and
CF3Cl molecules, particularly the strong enhancement of the
DEA cross section as compared to the gas phase results, were

explained. However, disagreements were found also. In par-
ticular, the theory strongly underestimates DEA cross sec-
tions for CH3Cl embedded in a Kr film, but at the same time
overestimates cross sections for CF3Cl �23�.

In practice the rare gas molecular films are usually depos-
ited on a metal substrate. For thick enough films with ad-
sorbed molecules far from the metal surface, the metal ef-
fects are negligible, but as the thickness decreases electron
interaction with the metal starts to affect the resonance width
and to influence substantially the attachment cross sections.
A simple empirical calculation �8� explained the major fea-
tures in the dependence of the attachment cross sections on
the film thickness. However, accurate ab initio calculations
of this effect present another challenge.

In the present paper we reformulate the model approach
�22,23� in terms of the nonlocal complex potential theory,
since the latter is better adjusted to the inclusion of non-
spherical geometry, particularly for electron collisions with
surfaces. We assume that the dielectric film is infinitely thick,
so that the metal effects can be neglected. We also assume
that the attaching molecules are either placed on the dielec-
tric surface or buried in the film at a finite distance from the
surface. Specific calculations involve a series of approxima-
tions, the most important of which is the effective mass ap-
proximation for the electron wave function in the film. The
results of the calculations describe qualitatively and semi-
quantitatively the condensed-matter effects in DEA to the
CH3Cl and CF3Cl molecules. We discuss then how the
theory can be improved in order to achieve a better agree-
ment with experiment.

The rest of the paper is organized as follows. In Sec. II we
discuss the wave function for the electron interacting with
the surface. In Sec. III we develop the method of calculation
of the resonance width for the molecule placed on a surface
or embedded in a medium. This is a crucial step for the
description of the DEA process since it occurs through the
formation of a temporary negative ion �resonance� state. The
resonance width as a function of electron energy and nuclear
geometry serves as an input for the DEA cross section cal-
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culations. They are described in Sec. IV where we discuss
first some features in DEA cross sections related to the ge-
ometry of the scattering and the presence of the image-
charge potential, and then present results for the CH3Cl and
CF3Cl molecules. Conclusions are given in Sec. V.

II. ELECTRON WAVE FUNCTION

To account for the condensed-matter effects in DEA, we
use the theory of low-energy electron diffraction �LEED�
�26�. After the LEED functions are obtained, they can be
used for calculation of DEA cross sections. To show how to
do this, we will make a connection between the gas-phase
and condensed-phase wave functions. We choose the system
of units e=�=1, but keep the notation m for the electron
mass in vacuum.

A. Gas-phase wavefunction

In the gas-phase theory the initial �continuum� state of the
electron is characterized by the momentum K and the wave
function �27�

�K�r� = �2/��1/2�
ll�m

il�Ylm
* �K̂�Yl�m�r̂�ul�l

m �r� , �1�

normalized to the � function of K. Equation �1� is written in
the body frame where the quantization axis is taken along the
molecular axis. Here ull�

m �r� are radial wavefunctions satisfy-
ing the boundary condition of the incident plus outgoing
wave

ull��r� �
i

2Kr
�exp�− i�Kr − l�/2���ll�

− exp�i�Kr − l�/2��Sll��, r → � , �2�

where S is the scattering matrix. We assume that the mol-
ecule has cylindrical symmetry so that m is a good quantum
number. This is certainly true for linear molecules and is a
good approximation for molecules with C3v symmetry, such
as CH3Cl and CF3Cl, which will be the main object of the
present study. The electron capture into the resonance state is
described by the capture amplitude VK

�G� �28�,

VK
�G� = 	b
H
�� , �3�

where H is the total electronic Hamiltonian, and the state
vector 
b� represents the intermediate negative-ion state. We
use the index G to emphasize that we are dealing with the
gas-phase amplitude at this point. Note that the capture am-
plitude depends also on the nuclear geometry. In the present
paper this geometry will be represented by one internuclear
separation R corresponding to the reaction coordinate.

The capture amplitude can be expanded in partial waves
as �28�

VK
�G� = �

l=
�


�

VlK
�G�Yl�

* �K̂� , �4�

where �=�r−�t, �t being the projection of the angular mo-
mentum of the target molecule, and �r that of the resonant
state.

The total decay width can be written as

��G��K� = 2�	 f
�G� � 
VK

�G�
2dK̂ , �5�

where the density of states with our normalization is

	 f
�G� = mK . �6�

B. The condensed-phase wave function

For a description of DEA in condensed phases we start
with the LEED function �29,30�. Consider the z=0 plane as
an interface between the vacuum �z
0� and a crystal �z
�0�. We assume that attaching molecules are lying in a
plane at a distance rs�0 from the interface. In particular we
can have rs=0 for molecules lying on the surface. Consider
first the incident electron beam neglecting the electron-
molecule interaction. Outside the surface the electron inter-
acts with the medium by the image potential

V�z� =
C

4�z − z0�
, C =

� − 1

� + 1
, �7�

where � is the dielectric constant of the medium, and z0 a
positive phenomenological parameter introduced to make the
image potential finite at the interface. Suppose first that the
incident wave propagates from the vacuum toward the sur-
face. We will call this wave the “plus” solution. In the
vacuum the electron wave function is

�+� = �K�r� + �
i

Ri
�+��i�r� , �8�

where �K�r� is the incident wave obtained by solving the
Schrödinger equation with the potential �7� with the bound-
ary condition

�K�r� � �2��−3/2ei�K·r+�c�, z → − � , �9�

where �c=C / �4K��ln�2
z
� is the Coulomb asymptotic phase
for the one-dimensional Coulomb-potential problem. The
quantity K� is the perpendicular component of the incident
wave vector.

The solutions �i�r� are reflected waves and behave as

�i � �2��−3/2 exp�i�− Ki
� + K + gi

� · r − i�ci� �10�

at z→−�. Here gi
 is the surface projection of the reciprocal-

lattice vector gi. The parallel component K of the incident
wave vector and the perpendicular component of the scat-
tered wave vector Ki

� are related by the energy conservation


Ki
�
 = �2mE − 
K + gi


2�1/2. �11�

Inside the crystal �z�0� the plus solution can be written
as a linear combination of Bloch waves �30�

�+� = �
j

Tj
�+�� j

B�r� , �12�

where Tj
�+� are transmission coefficients,

ILYA I. FABRIKANT PHYSICAL REVIEW A 76, 012902 �2007�

012902-2



� j
B = �2��−3/2 exp�i�k j

� + K + g j
� · r�uj�r� , �13�

where uj�r� is a periodic function which can be expanded in
plane waves eigi·r. In principle, both the expansion coeffi-
cients and the perpendicular components of the wave vector
k j

� can be determined by solving the secular equation de-
rived from the Schrödinger equation for the crystal potential.
However, at very low electron energies, such that the de
Broglie wavelength is large compared to the lattice constant,
we can adopt the following simplified approach. We assume
that only one Bloch wave with the wave vector k �and g j
=0� contributes to expansion �12�, and the solution of the
secular equation yields a connection between k and E given
by the effective mass approximation formula

E = �0 +
k2

2m* , �14�

where �0 is the bottom of the crystal conduction band, and
m* is the effective mass. Note that in the approximation of
the infinitely thick film and for a long electron wavelength
we can assume that the effective mass is isotropic. For the Kr
film, which we will be mostly interested in, �0=−0.25 eV
and m*=0.42m �31�.

To find the reflection and transmission coefficients enter-
ing Eqs. �8� and �12�, we will also assume that only one term
�with gi=0� contributes to the Bloch-wave expansion of uj�r�
in plane waves. In other words, we assume that variation of
the wave function inside the crystal on the scale of the
atomic potential can be neglected. Again, this is a reasonable
assumption for the long electron wavelength.

In summary, the simplified expressions for the wave func-
tion �+� is

�+� = �K�r� + RK
�+��K−�r�, z 
 0, �15�

�+� = �2��−3/2TK
�+� exp�ik+ · r�, z � 0, �16�

where K−=−K�+K, k+=K +k�, and the absolute value of
k+ is given by Eq. �14�.

Total reflection is possible if the incident angle � satisfies
the condition

sin2 � �
m*

m
�1 −

�0

E
� . �17�

In this case the transmitted wave is evanescent and k�

= i
k�
. The reflection and transmission coefficients in Eqs.
�15� and �16� can be found from simple matching. Factorize
first function �+��r� in the Cartesian coordinates

�+��r� = �2��−3/2 exp�iK · r���+��z� , �18�

where

��+��z� = ��K��z� + RK
�+��−K��z� , if z 
 0,

TK
�+�eik�z, if z � 0.

� �19�

Here �K��z� is the solution of the one-dimensional

Schrödinger equation with potential �7� behaving as eiK�z+i�c

at z→−�. It can be expressed in terms of the standard Cou-
lomb functions FL�� ,	� and GL�� ,	� �32� as

�K�z� = G0��,	� − iF0��,	� , �20�

where 	=K�z0−z�, �=−C / �4K�. Now we write the matching
conditions as �33�

��z = 0−� = ��z = 0+� , �21�

1

m
�d�

dz
�

z=0−
=

1

m*�d�

dz
�

z=0+
. �22�

The second equation guarantees the conservation of current.
As a result we obtain

T�+� =
2iK�

imv��−K� − �−K��
, R�+� = −

iv�m�K� − �K��

iv�m�−K� − �−K��
,

�23�

where v�=k� /m* and the prime means the derivative in z.
For the evanescent wave v� is pure imaginary. All functions
in Eqs. �23� are taken at z=0.

In order to calculate the resonance width, we need a com-
plete set of the electron wave functions. The second class of
solutions corresponds to incident waves propagating from
the medium toward the interface �we will call them “minus”
solutions�:

�−� = �2��−3/2�exp�ik− · r� + Rk
�−� exp�ik+ · r��, z � 0,

�24�

�−� = Tk
�−��K−�r�, z 
 0, �25�

where k−=−k�+K. In this case the transmitted wave is eva-
nescent if the angle of incidence �k, associated with vector
k−, satisfies the condition

sin2 �k � �m*

m
�1 −

�0

E
��−1

. �26�

The reflection and transmission coefficients are given now
by

T�−� =
2iv�

iv��−K� + �−K�� /m
, R�−� =

iv�m�−K� − �−K��

iv�m�−K� + �−K��
.

�27�

An important feature of the minus solution is that it remains
physical even below the vacuum level as soon as the energy
is above the bottom of the conduction band, E��0. Although
the initial conditions typically correspond to the incident
wave propagating from vacuum with E�0, intermediate
negative-ion state can have a negative electron energy be-
cause of virtual excitations of the target. Therefore negative
energies above �0 also contribute to the decay width.

The third class of solutions corresponds to the image
states �34� which are bound in the z direction but freely
propagate on the surface. They exist due to the long-range
image-charge potential, Eq. �7�, and are possible even when
the bottom of the conduction band lies below the vacuum
level �such as, for example, in Kr and Xe�. This happens
because the component of the electron energy parallel to the
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surface, E = �K�2 /2m*, can be greater than the total energy E
relative to the bottom of the conduction band, so that E
−E 
�0.

To analyze properties of these states let us write down the
corresponding wave function �s��r� in the form

�s��r� = �2��−1 exp�iK · r���s��z� , �28�

where

��s��z� = ����z� , if z 
 0,

e−�z, if z � 0,
� �29�

where �2=−�K��2, �2=−�k��2, so that the relation between
� and � is

1

m
�− �2 + �K�2� = 2�0 +

1

m* �− �2 + �K�2� . �30�

For each K the spectrum of � is determined from the match-
ing equation

1

m

���

��

= −
1

m*� . �31�

Although the left-hand side of this equation has an infinite
number of zeroes and poles, the solution is possible only for
high enough K because of the condition �2�0, or

�K�2�m − m*� + m*��2 + 2m�0� � 0. �32�

In Fig. 1 we plot �2 as a function of �K�2 for solid Kr,
whereby �0=−0.25 eV, �=1.91, m*=0.42m, and parameter
z0=2.955 a.u. is chosen to reproduce the correct surface po-
larization energy −0.72 eV �35� for a Kr film. The infinite
Coulomb spectrum appears at �K�2=0.013 07 a.u., but for
lower states higher values of �K�2 are necessary. For ex-
ample, the n=3 state appears at �K�2=0.0146 a.u., the n=2
at �K�2=0.0151 a.u., and the ground state n=1 at �K�2

=0.0159 a.u.

We conclude that for a Kr surface the image states start to
contribute to the decay width at rather low energies, above
0.18 eV, but they are very weakly bound. For the width cal-
culation the solution ��n

�z� should be normalized. This is
achieved by calculation of the normalization constant An
from the condition

An
2��

−�

0


��n
�z�
2dz +

Bn
2

2�� = 1, �33�

where Bn=��n
�0�. Note that the image states exist for each

total energy E above the lower bound. The corresponding
value of Kn

 is determined from 2mE=−�n
2+ �Kn

 �2.

III. CONDENSED-PHASE WIDTH

We will modify now the gas-phase capture amplitude, Eq.
�4�, to incorporate the surface effects. First we expand each
plane wave in Eqs. �16� and �24� in spherical harmonics

eik·r = 4��
lm

iljl�kr�Ylm
* �k̂�Ylm�r̂� . �34�

For evanescent waves with �k��2
0 this expansion should
be generalized. As was shown by Tong �26�, in this case

Ylm
* �k̂� should be defined as �for m�0�

Ylm
* �k̂� = �− 1�m� �2l + 1�

4�

�l − m�!
�l + m�!�1/2

Pl
m� k�

k
�e−im�,

�35�

where Pl
m�z� is the analytical continuation of the associated

Legendre functions into the complex plane. Note that Ylm
* �k̂�

is not the complex conjugated of Ylm�k̂�, if �k��2
0. To

emphasize this, we will be calling Ylm
* �k̂� the adjoint of

Ylm�k̂�.
According to Eq. �1� the electron-molecule interaction

transforms each spherical wave jl�kr�Ylm�r̂� into

�
l�

Yl�m�r̂�ul�l
m �r� . �36�

Accordingly, the capture amplitude in the gas phase, Eqs. �3�
and �4�, is transformed into

VK
�+� = TK

�+�eik�rsVk+
�G� �37�

for the wave propagating from vacuum to the interface �plus
solution�,

Vk
�−� = e−ik�rsVk−

�G� + eik�rsVk+
�G�Rk

�−� �38�

for the minus solution, and

Vn
�s� = �2��1/2AnBne−�nrsVk

�G� �39�

for the image-state solution. Again, for evanescent waves
Vk

�G� should be understood as the analytical continuation of
Eq. �4�. Equations �37�–�39� assume that the part 	b
H of the
matrix element �3� is not affected by the presence of the
medium. This is a reasonable assumption since the shape of

FIG. 1. Dependence of the energy of the image states in Kr on
�K�2.
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the virtual electron orbital corresponding to the resonance
state is mainly determined by the electron-molecule interac-
tion. The energy of the resonance state is significantly modi-
fied, however, due to the polarization of the medium by the
negative ion. As in our previous R-matrix calculations
�22,23�, this energy modification is included by a uniform
shift of the anion potential energy curve. Equations �37�–�39�
also imply that the molecule lies completely in the region z
�0. In practice it is important to know how the capture
amplitude varies with the distance rs from the interface to the
molecule, therefore it is reasonable to obtain the surface case
by a gradual decrease of rs with reaching the limit rs=0 and
assuming that the electron wave function in the continuum
does not vary significantly on the scale of the order of the
size of the molecule. This assumption is valid for low-energy
electrons.

The total decay width can be separated into three parts:
the plus-solution contribution

��+� = 2�	 f � 
VK
�+�
2dK̂, 	 f = mK , �40�

where the integration is limited by the condition K�

=K cos �K�0, the minus-solution contribution

��−� = 2�	 f � 
Vk
�−�
2dk+̂, 	 f = m*k , �41�

where the integration is limited by the condition k�

=k cos �k+ �0, and the image-state-solution contribution

��s� = �
n

�2�AnBn�2e−2�nrs� 
Vk
�s�
2	nd�k, �42�

where 	nd�k is the density of the image states

	nd�k =� dK��E − En�K�� �43�

=Kn
 � dE

dK�−1

Kn
 d�k, �44�

where the derivative is determined from the equation

2mE = − �2�K� + �K�2. �45�

Therefore

	n = m�1 −
d�n

2

d�K�2�−1

. �46�

Although formally �2 as a function of �K�2 has a square-root
singularity at the threshold, in general it varies very slowly
�as can be seen from Fig. 1�, so that 	n is practically a con-
stant, as typical for the density of surface states.

The validity of Eq. �41� for the minus-solution contribu-
tion is limited by the range of energies where the effective-
mass relation between energy and momentum, Eq. �14�,
holds. In fact this region lies very close to the bottom of the
conduction band. In solid Kr, for example, deviations from
Eq. �14� are seen already above 1.2 eV, whereas in DEA
calculations substantially higher energies are involved, par-

ticularly when the resonance shift is computed. The simplest
way to correct Eq. �41� is to multiply it by the factor

� = 	 f/m
*k , �47�

where 	 f is the actual density of states. This modification
does not take into account the correction to the matrix ele-
ment due to the breakdown of the effective mass approxima-
tion. However, Michaud et al. �36� showed that the rate of
inelastic processes in rare-gas films is mostly determined by
the density of states in the conduction band. This allows
direct observation �36,37� of the density of states in experi-
ments of phonon excitation in electron scattering from rare-
gas films. In our calculations for DEA to molecules phys-
isorbed on solid Kr we used the density of states calculated
by Bacalis et al. �38� with the relativistic augmented-plane-
wave method.

The total decay width is

� = ��+� + ��−� + ��s�. �48�

In order to express it in terms of the gas-phase amplitudes,
we should recall that the amplitude VK

�G� was defined in the
body �molecular� frame, whereas all other quantities entering
Eqs. �37�–�39� are defined in the laboratory frame with the z
axis normal to the interface. Therefore the gas-phase ampli-
tudes should be transformed first into the laboratory frame by

the use of the Wigner rotation matrix D�m
l �R̂�, where the unit

vector R̂ with spherical angles � and �0 characterizes the
orientation of the molecule. Since the molecule is treated as
pseudodiatomic, as described in Sec. II A, the third Euler
angle is 0. The transformation from the body frame to the
laboratory frame is

Yl��k̂�R̂ = �
m

Ylm�k̂�D�m
l �R̂� , �49�

with a similar equation for the adjoint spherical harmonics.
Since angles � and �0 are always real, we do not need to
generalize the rotation matrix for the evanescent wave. Sub-
stituting Eqs. �4�, �37�–�39�, and �49� into Eqs. �40�–�42� we
obtain

��+��R̂� = 2�mK�
ll�

Vlk
�G�Vl�k

�G�*�
m

D�m
l* �R̂�D�m

l� �R̂�

�� 
TK
�+�eik�rs
2Ylm

* �k̂�Yl�m
*† �k̂�dK̂ , �50�

where “�†” means the complex conjugate of the adjoint,

��−��R̂� = 2�m*k�
ll�

Vlk
�G�Vl�k

�G�*�
m

D�m
l* �R̂�D�m

l� �R̂�

�� �e−ik�rs�− 1�l+� + eik�rsRk
�−���eik�rs�− 1�l�+�

+ e−ik�rsRk
�−�*�Ylm

* �k̂+�Yl�m
*† �k̂+�dk̂+, �51�
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��s��R̂� = �2��2�
n

�AnBn�2e−2�nrs�
ll�

Vlk
�G�Vl�k

�G�*�
m

D�m
l* �R̂�

�D�m
l� �R̂�2�Ylm

* �k̂�Yl�m
*† �k̂� . �52�

In all equations the double sum in m is reduced to the single
sum because of the integration over �K.

We will consider now two simplifications of these general
equations. First, let us assume that only one term with l= lr
contributes to expansion �4�. This is a typical approximation
for low-energy resonance scattering by nonpolar molecules.
For example, the �g resonance in e-N2 scattering is domi-
nated by the d wave. Then from Eqs. �50� and �51� we obtain

��+��R̂� = 2�mK
Vlrk
�G�
2�

m


D�m
lr �R̂�
2

�� 
TK
�+�eik�rsYlrm

* �k̂�
2dK̂ , �53�

��−��R̂� = 2�m*k
Vlrk
�G�
2�

m


D�m
lr* �R̂�
2� 
e−ik�rs�− 1�lr+�

+ eik�rsRk
�−�
2
Ylrm

* �k̂+�
2dk̂+, �54�

��s��R̂� = �2��2�
n

�AnBn�2	ne−2�nrs
Vlrk
�G�
2

��
m

2�
D�m
lr �R̂�Ylm

* �k̂�
2. �55�

The other simplification corresponds to the randomly ori-
ented molecules. In this case we have to average over all

directions of R̂. Using the orthogonality of the Wigner’s
functions

1

4�
� D�m

l* �R̂�D�m�
l� �R̂�sin �d�d�0 =

1

2l + 1
�ll��mm�,

�56�

we obtain

��+� =
mK

2 �
l


Vlk
�G�
2� 
TK

�+�eik�rs
2
4�

2l + 1�
m


Ylm
* �k̂�
2dK̂ ,

�57�

��−� =
m*k

2 �
l


Vlk
�G�
2� 
e−ik�rs�− 1�l+� + Rk

�−�eik�rs
2dk̂+,

�58�

��s� = �2��2�
n

�AnBn�2	ne−2�nrs�
l


Vlk
�G�
2

2�

2l + 1�
m


Ylm
* �k̂�
2.

�59�

Note that the sum over m in Eqs. �57� and �59� cannot be
simplified by using the addition theorem for spherical har-

monics because the vector k̂ is generally complex.

IV. DISSOCIATIVE ATTACHMENT

A. General considerations

Dissociative attachment cross section can be obtained by
solving an inhomogeneous Schrödinger equation with a non-
local complex potential �39,40� whose kernel can be con-
structed from the width � as a function of electron energy E
and internuclear separation R, and the shift function

��E,R� =
1

2�
P� dE�

��E�,R�
E − E�

, �60�

where P stands for the principal value. For calculation of the
shift we employ ��E ,R� with the correction factor �47� tak-
ing into account the actual density of states in the film. The
gas-phase ��E ,R� is extrapolated above E=5 eV using an
exponential function as usually suggested �39�.

The inhomogeneous term in the Schrödinger equation
with the nonlocal potential is proportional to the capture am-
plitude VK�R�, where we have introduced the explicit depen-
dence of the capture amplitude on the internuclear separation
R. For the electron beam incident from the vacuum we
choose VK

�+��R� from Eq. �37�. In the Franck-Condon approxi-
mation used within the framework of the quasiclassical
theory �40� the DA cross section can be factorized as

�vK = 
VK
�+��Rv�
2av, �61�

where v is the quantum number of the initial vibrational
state, Rv is the Franck-Condon point for the electron transi-
tion from the initial neutral state to the anion state, and the
parameter av is obtained from the solution of an integral
equation containing matrix elements with the nonlocal com-
plex potential. All details are given in Ref. �40�. The capture
width 
VK

�+��Rv�
2 can be calculated in the same way as the

decay width, but without integration over K̂, therefore trans-
formation �49� is unnecessary. For randomly oriented mol-

ecules we do the average over R̂.
The factor strongly influencing DEA cross sections is the

Franck-Condon overlap between the initial vibrational state
of the neutral molecule and the nuclear wave function for the
negative-ion state. This overlap grows strongly when the
negative-ion curve is shifted downward due to the polariza-
tion interaction between the negative ion and the medium.
This effect was studied in our previous work �8,22,23�.

B. Models for CH3Cl and CF3Cl

The theory developed is applied first to DEA to CH3Cl
and CF3Cl. These molecules exhibit very strong condensed-
matter effects in the DEA process. According to previous
theoretical results �41,42�, the gas-phase DEA cross section
for CH3Cl at room temperature does not exceed 4
�10−22 cm2, whereas corresponding values for molecules
physisorbed on a Kr film and imbedded in a bulk Kr are
1.2�10−17 and 1.0�10−16 cm2, respectively, with the peak
positions 0.5 and 0.2 eV �8,22,23�.

There are two gas-phase measurements of DEA to CF3Cl
�43,44�, one using the swarm method and the other the beam
method. Although there is some discrepancy between them,
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at room temperature both give the peak value about 2
�10−18 cm2 with the position of the peak at about 1.7 eV.
The latter is close to the value of the vertical attachment
energy EVAE=1.83 eV obtained by the electron transmission
spectroscopy method �45�. The DEA peak is not very
strongly shifted relative to this value because the resonance
is rather narrow. Measurements of the DEA to CF3Cl on the
surface gives the peak value 0.4�10−16 cm2 at E=0.78 eV
�9,23�. When CF3Cl molecules are sandwiched between two
Kr films, the corresponding peak value is 2.1�10−16 cm2 at
E=0.60 eV �23�. The enhancement is substantial, although
not as significant as for CH3Cl.

DEA to the CH3Cl and CF3Cl molecules is caused by the
capture into the lowest unoccupied molecular orbital
�LUMO� of the a1 symmetry. Experimental data �46,47� on
resonant vibrational excitation of these molecules indicate
that the differential cross section at low energies is close to
isotropic. Deviations from isotropy can be explained by the
effects of the long-range dipolar interaction �41�. The p-wave
contribution is suppressed in the low-energy capture ampli-
tude because of the repulsive centrifugal barrier. In addition,
at present we do not have information how these molecules
are oriented on surfaces or in bulk in corresponding experi-
ments. Therefore in our first application of the theory, as in
our previous gas-phase calculations �41,42,48�, we will as-
sume the s-wave dominance for gas-phase scattering. With
this assumption the resonance width is independent of the
molecular orientation, although comparison of Eq. �53� with
Eq. �57� and Eq. �54� with Eq. �58� shows that averaging
over orientations for the general case of an l-mixed reso-
nance is not equivalent to the lr=0 case.

For our model studies we use potential curves param-
etrized in the Morse form as described in our previous
R-matrix calculations, Refs. �41,42,48�. However, the previ-
ously obtained curves should be modified since the reso-
nance shift is different in R-matrix and nonlocal-complex-
potential formalisms. The R-matrix shift is obtained from the
logarithmic derivative of the electron wave function and the
R-matrix surface amplitude �24,25�. The gas-phase calcula-
tions show that the R-matrix shift function is quite small, and
does not exceed 0.3 eV in absolute magnitude for 
E


2 eV, whereas the nonlocal shift function, Eq. �60�, is
much bigger reaching the value −1.5 eV at zero energy.

Since the diabatic state of the scattering theory and the
resonance shift are not observable quantities, there is some
arbitrariness in the choice of the diabatic state, although in an
exact theory the final results for observable quantities, such
as the resonance width and the scattering cross sections,
should not depend on the choice of the diabatic state. In the
present work we base our choice of the diabatic state on
results of ab initio calculations of adiabatic energies for
CH3Cl �42� and CF3Cl �48� and experimental data �46,47� on
the excitation of symmetric stretch vibrations �3 in these
molecules. The latter were also used to obtain the gas-phase
resonance width in Refs. �42,48�, which remains unchanged
in the present work.

For surface and bulk calculations the negative-ion curve is
shifted downwards by 0.72 eV for the surface case and by
1.15 eV for the bulk case in accordance with the results of
the calculations of polarization energy for the Kr film �35�.

C. Image states, image-potential resonances, and threshold
effects

It is well known that insulators can support image states
due to the image-potential interaction between the electron
and the surface on the vacuum side �34�. The dielectric films
are usually deposited on a metal substrate, and the latter
increases the strength of the image potential �see, e.g., Refs.
�49–52��. The coupling of the resonance anion states with the
image states can strongly increase the efficiency of inelastic
processes on the surface �16�. Nagesha and Sanche �10� ob-
served tremendous increase in near-zero-energy electron
trapping by adsorbed molecules at the surface of glassy
n-hexane �nHg�. The conduction band edge for nHg films
lies 0.8 eV above the vacuum level and this creates a favor-
able condition for formation of the image states. In contrast,
in Kr films the bottom of the conduction band lies at 0.25 eV
below the vacuum level, and the enhancement is not ob-
served. As we saw above, the image states are possible in Kr
films too because of the different values of the normal energy
components in vacuum and the film. However, they are very
weakly bound, therefore their contribution to the decay
width, Eq. �42�, is expected to be small, as is confirmed by
calculations. Moreover, their influence on the DEA process
can be only adverse in the present formalism. Nagesha and
Sanche �10� suggested that the mechanism for DEA enhance-
ment involves initial electron capture into an image state due
to electron-surface scattering with the following electron
transfer to anionic state. This process is not incorporated into
the present theory.

The image states have some similarities with Rydberg
resonances important in dissociative recombination �53�.
However, the image states are bound only along the z axis
and remain the plane waves in the direction parallel to the
surface. Therefore they should be treated as a part of con-
tinuum as suggested by Eq. �42�. Comparison of Eq. �52�
with Eq. �50� indicates that the coupling of these states to the
anion state increases substantially at low energies since the
width ��s� does not contain the factor K typical for scattering
states. However, for a Kr surface the coupling remains weak
even for low energies.

The presence of the image-charge potential leads also to
another effect: oscillations of the reflection coefficient R�−�

occur as a function of energy and, accordingly, oscillations in
��−��E�. Physically these features can be interpreted as
image-charge-potential resonances for the perpendicular en-
ergy component below the vacuum level. This apparently
corresponds to the total internal reflection for the minus so-
lution. From condition �26� we obtain that the total internal
reflection is possible if

E 
 − �0� m

m* sin2 �k
− 1�−1

. �62�

Therefore the maximum possible energy for which image-
charge resonances are observed is

Emax = −
�0m*

m − m* . �63�

For the Kr film this condition gives Emax=0.18 eV. Appar-
ently, if m*
m, the Coulomb oscillations in the width are
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possible only if the bottom of the conduction band lies below
the vacuum level. Note that these oscillations are not related
to the image surface states since the corresponding wave
function is not bounded from the medium side.

Figure 2 illustrates the behavior of the reflection coeffi-
cient R�−� as a function of energy for two values of cos �k, 0.6
and 0.1 �or �k=53° and 84°�. The energy given by the con-
dition �62� is the accumulation point for the Coulomb reso-
nances. This results in oscillatory behavior of the resonance
width � and shift � as functions of electron energy. In Fig. 3
we present the near-threshold surface width for CH3Cl. Al-
though the resonance width is nonzero even at negative en-
ergies �above �0�, the energy region where the width is
mostly affected by the Coulomb resonances lies between 0
and 0.18 eV.

Another interesting feature noticeable in Fig. 3 is the fi-
nite width at the threshold energy, E=�0. At first glance this
is not surprising since the gas-phase width is finite at the
threshold for molecules with a supercritical permanent dipole
moment �54�. However, inspection of Eq. �58� for ��−� leads
to a different conclusion. Equation �27� for the reflection
coefficient indicates that R�−�→−1+O�k� for k→0, as
should be. Therefore the surface width should be suppressed
by the factor k2 as compared to the gas-phase width. How-
ever, calculations for Kr show that the derivative of the Cou-
lomb function �−K�� accidentally passes through 0 very close
to the bottom of the conduction band, therefore R�−� is non-
zero very close to the threshold. This phenomenon can be
considered as a threshold image-potential resonance.

Let us look now at the threshold behavior of ��+�. In this
case the threshold corresponds to E=0. Equation �57� indi-
cates that this behavior is determined by the threshold behav-
ior of the transmission coefficient TK

�+�. According to Eq.
�23�, T�+��K1/2 at K→0, where we have used the known
expression for the Coulomb functions at K→0, �32�:

F0�r� = ��Kr�1/2J1��2Cr�, G0�r� = − ��Kr�1/2Y1��2Cr� ,

�64�

where J1 and Y1 are Bessel and Neumann functions. We
conclude that ��+� is proportional to K2, or to the electron
energy above the vacuum level. This behavior can also be
observed in Fig. 3. Note that in the absence of the image-
charge-potential interaction T�+� would be proportional to K
and ��+� to K3. This threshold behavior is essentially different
from what is usually observed in standard theory of scatter-
ing by targets in the gas phase with the scattering wave de-
scription in spherical coordinates. Indeed, according to the
Wigner threshold law �55� the inelastic scattering cross sec-
tion, or the decay width, is finite at the threshold in the
presence of the attractive Coulomb potential or dipolar po-
tential with supercritical dipole moment �54�, and is propor-
tional to K in the absence of the long-range interaction. The
presence of the surface changes the threshold behavior. The
threshold behavior of the inelastic cross section �or the decay
width� is basically determined by two factors: the square of
the wave function in the final state and the final density of
states. For scattering by molecules in a vacuum the wave
function is finite at the threshold in the short-range case and
is proportional to K−1/2 in the Coulomb case, whereas the
density of final states is proportional to K. However, for scat-
tering by targets on surfaces the wave function is propor-
tional to K in the short-range case and to K1/2 in the Coulomb
case, leading to the threshold behavior discussed above. Note
that this qualitative change in the dependence of the wave
function on K is compatible with the correct threshold laws
for scattering in one-dimensional systems �56� and scattering
in the presence of an external magnetic field �57�.

D. Results for CH3Cl and CF3Cl and discussion

In Fig. 4 we compare the gas-phase width with the width
for a physisorbed molecule �rs=0� and for a molecule buried
under the surface at a distance 50 a.u. in the �111� direction

FIG. 2. Real part of the reflection coefficient R�−� as a function
of energy for cos �k=0.6 �solid line� and 0.1 �dashed line�.

FIG. 3. Near-threshold behavior of the resonance width for the
CH3Cl molecule on the Kr-film surface at the equilibrium internu-
clear separation: ��+� contribution �solid line�, ��−� contribution
�dashed line�, and the total width �dotted line�.
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of the lattice that corresponds to eight monolayers of Kr
from the interface. We observe a substantial reduction of the
width in the near-threshold region due to the medium effect.
This is mainly due to the lower density of states in the me-
dium, which is proportional to the effective mass m* in the
near-threshold region.

Note that the width is nonzero below the vacuum level
down to the bottom of the conduction band, since the elec-
tron can escape into the medium at E��0 even at negative
energies. Accordingly, thresholds for vibrational excitation
channels are redshifted by �0. This leads to the increase in
the negative-ion decay probability. However, this effect is
small compared to those leading to the reduction of the de-
cay width.

Another feature found in the calculations is the weak de-
pendence of the width on rs for rs exceeding 20 a.u. In con-
trast, the experimental data on DEA to CH3Cl adsorbed on a
Kr surface indicate a strong dependence of the DEA cross
section on rs for film thicknesses less than 20 monolayers
�125 a.u.� �8,23�. It is well known, however, that this depen-
dence is due to the effect of the metal substrate �8�. Typically
for a fixed film thickness, the greater is the distance rs of the
molecule from the interface, the closer it is to the metal
substrate. However, the metal effects are not included in the
present theory.

In Fig. 5 we present the resonant shift calculations for the
equilibrium internuclear separation. The relatively low value
of the bulk width in the near-threshold region is reflected in
the low values of the shift at low energies.

In Fig. 6 we present cross sections for DEA to the ground
vibrational state of methyl chloride calculated with the use of
the nonlocal complex potential theory incorporating the de-
cay width obtained as described above. The gas-phase cross
sections are very small and barely exceed 10−21 cm2. We
should stress, however, that they are significantly higher than
those obtained from the R-matrix calculation �41,42� and are

closer to the experimental upper bound at room temperature,
2�10−21 cm2 �58�, although both calculations are based on
the same adiabatic potential energy curves and experimental
information on vibrational excitation cross sections. This
high sensitivity of the DEA cross sections to theoretical
model is typical when the cross sections are very small. For
higher temperatures, when the cross sections are significantly
larger, both theoretical approaches become compatible and
are in agreement with experimental data �42�. However, in
the present work we are interested in cold molecules since in
experiments they are deposited on Kr film at cryogenic tem-
peratures.

The gas-phase cross sections exhibit peaks at thresholds
for vibrational excitation of symmetric stretch C-Cl vibra-
tions. They are due to vibrational Feshbach resonances ana-
lyzed in detail in Refs. �59,60�. Some threshold structures are
noticeable in the surface cross sections as well. However,

FIG. 4. Resonance width for the CH3Cl molecule at the equilib-
rium internuclear separation: solid line, gas-phase width; dashed
line, molecules at the surface of the Kr film; dotted line, molecules
buried under the surface at the distance 50 a.u.

FIG. 5. Resonance shift for the CH3Cl molecule at the equilib-
rium internuclear separation. The curve notation is the same as in
Fig. 4.

FIG. 6. DEA cross sections for the CH3Cl molecule. Experi-
mental data: squares, surface; circles, bulk.

DISSOCIATIVE ELECTRON ATTACHMENT ON SURFACES… PHYSICAL REVIEW A 76, 012902 �2007�

012902-9



their nature is different. Whereas in the gas phase the reso-
nances appear due to the long-range �dipolar and polariza-
tion� interaction between the electron and the molecule, in
the process at the surface the resonances are caused by the
image-charge interaction as discussed in Sec. IV C.

The surface effects lead to a four orders of magnitude
increase of cross sections as compared to the gas phase, and
further one order of magnitude increase is observed for the
bulk case. The obtained surface and bulk cross sections are
bigger than those from our previous R-matrix calculations
�22,23� where the surface effects were accounted for mainly
by the potential curve shifting and the incorporation of the
density of states in the bulk. The inclusion of the correct
geometry in the present calculations leads to further increase
of the DEA cross sections. However, for the bulk case they
still remain below the measured values by a factor of 2.5. A
more striking disagreement with the experiment is observed
in the peak position: the calculated curves peak at substan-
tially higher energies than the experimental curves. It was
argued in Ref. �23� that disagreement between theory and
experiment for CH3Cl might be due to the nonuniform shift
of the negative-ion curve. Due to modification of the inter-
action between the Cl− ion and the CH3 fragment by the
medium, the anion curve is not simply uniformly shifted
downwards, but becomes more repulsive. As was demon-
strated in Ref. �23�, this leads to a further increase of the
DEA cross sections and shifting of the peak position to lower
energies. Another drawback which might be even more im-
portant in the present studies is a possible inaccuracy in cal-
culations of the resonance shift. Indeed, in the present non-
local theory we need the width in the broad energy range in
order to calculate the resonance shift. The approximation
which was made in the width calculation for higher energies
�effective mass approximation with the correction factor �47�
for the density of states� might lead to an overestimate �un-
derestimate in absolute magnitude� of the resonance shift.
Indeed, from Fig. 5 we see that the surface and bulk shifts lie
significantly higher than the gas-phase shift in the low-
energy region. As can be seen from Fig. 6, this leads to the
fact, that the position of the peak in the DEA cross section
virtually does not change when going from the gas phase to
the surface �although it is shifted slightly towards lower en-
ergies for the bulk case�. In contrast, the R-matrix calcula-
tions �22,23� generate a significant shift in the peak position,
mainly due to the polarization energy, since the resonance
shift is small for both gas and surface cases. The sensitivity
of the DEA cross section to the resonance shift is clearly
seen in Fig. 6: the difference in the polarization shift in the
surface and bulk calculations is only 0.43 eV, but this differ-
ence leads to the four orders difference in magnitude of the
cross section in the low-energy region. This sensitivity sug-
gests that the inaccuracy in the resonance shift calculation is
the most likely reason for the wrong behavior of the calcu-
lated cross sections at E
1 eV.

In Figs. 7–9 we present the resonance width, shift, and
DEA cross sections for CF3Cl. The results for the width and
shift look qualitatively the same as those for CH3Cl. How-
ever, in contrast to the CH3Cl case, the calculated cross sec-
tions are greater than measured, especially for molecules at
the surface, where disagreement reaches a factor of 5. How-

ever, there is much better agreement in peak positions. Over-
all, the results show much better agreement with the experi-
ment than previous R-matrix calculations �23�. However,
qualitatively the situation is similar: for CH3Cl the theoreti-
cal results are too small and for CF3Cl they are too big. Since
the velocity of Cl− is greater in the DEA process with CF3Cl
than that with CH3Cl, it was suggested in Ref. �23� that the
cage effect �61� might play an important role in the former
case. The cage effect leads to the return of the Cl− fragment
into the region where the anion CF3Cl is unstable and de-
creases its survival probability. Another mass-dependent ef-
fect is the excitation of the phonon modes in the Kr film by
the Cl− fragment. Interaction between the resonantly trapped
electrons and acoustical phonons might be important in low-
energy inelastic scattering �62�. Again, in the CF3Cl case

FIG. 7. Resonance width for the CF3Cl molecule at the equilib-
rium internuclear separation. Solid line, gas-phase width; dashed
line, molecules at the surface of the Kr film.

FIG. 8. Resonance shift for the CF3Cl molecule at the equilib-
rium internuclear separation. The curve notation is the same as in
Fig. 7.

ILYA I. FABRIKANT PHYSICAL REVIEW A 76, 012902 �2007�

012902-10



when the Cl− velocity is higher, this process is more efficient
and can lead to lower DEA cross sections since inelastic
anion-phonon interaction slows down the anion and de-
creases its survival probability. At the same time the prob-
ability of vibrationally inelastic process in electron-surface
scattering is rather small, as has been established in electron
energy-loss spectroscopy studies �63�, therefore the electron-
phonon interaction in the initial state can be safely neglected
in DEA calculations for physisorbed molecules. On the other
hand, if the target molecule is buried deep in the medium, the
electron energy loss before the attachment should be taken
into consideration.

Note also that although the present calculations corre-
spond to cryogenic temperatures relevant to experiments
with rare-gas films, there are no major difficulties in extend-
ing them to a higher temperature region �provided that the
crystal lattice still exists�. The major effect here will be the
increase of the population of vibrationally excited states of
the target molecules, which in the case of CH3Cl and CF3Cl
leads to a strong increase in DEA cross sections �41,42,48�.
In contrast, the electronic structure parameters such as �0 and
� will not change significantly.

V. CONCLUSION

We have presented a theoretical description of surface and
condensed matter effects in DEA based on nonlocal complex
potential theory. The major step in the application of the
theory is the conversion of the gas-phase resonance width
into the condensed-matter width. In the first applications we
have made several approximations in order to simplify this
procedure. The most severe is the effective-mass approxima-
tion, which was corrected at higher electron energies in order
to take into account the actual density of states in Kr. Al-
though we did some investigation of the role of the image
states, it was shown that they play a very insignificant role in
thick Kr films, and they were neglected in present calcula-
tions. In other dielectric media, however, particularly those
exhibiting a surface barrier, these states might play a signifi-
cant role �10,16�, and for this case the present theory should
be developed further to take into account the image states as
intermediaries in the anion formation.

The calculations of DEA to CH3Cl and CF3Cl molecules
on surfaces and in the bulk of Kr films demonstrate that the
present theory reproduces the major features observed in ex-
periments: strong enhancement of DEA at the surface and in
the medium as compared to the gas phase and the shifting of
the peak position towards lower energies. However, quanti-
tatively this shift is too small for CH3Cl as compared to the
experimental data. This can be due to our underestimate �in
absolute magnitude� of the resonance shift in the case of
surface and medium. Detailed studies of the resonance width
at higher energies beyond the effective mass approximation
model are necessary to resolve this discrepancy. To explain
too large values of DEA cross sections for CF3Cl at the Kr
surface, the cage effect, and the anion-phonon interaction
effects should be investigated.
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