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We present a B-spline-based complex-rotation �BSCR� method with spin-dependent interaction for the study
of atomic photoionization leading to multiple ionization channels dominated by doubly excited resonances for
two-electron and divalent atoms. The degree of mixing between different spin states and between the bound
and continuum components of the state function of the resonance state can be easily identified in the BSCR
method. Its application to Mg photoionization gives good agreement with observed singlet-triplet mixed Mg
spectra.
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I. INTRODUCTION

Recent applications of B-spline-based methods to the con-
tinuum, e.g., the B-spline-based configuration-interaction
�BSCI� method for a single continuum �1� and the
B-spline-based K-matrix �BSK� method for multiple con-
tinua �2,3�, have shown the effectiveness of such methods for
the study of doubly excited resonances for two-electron and
divalent atoms �2,4�. A straightforward application of these
two methods requires rapidly increasing computational effort
as the number of ionization channels increases. Alternatively,
using a complex scaled Hamiltonian with a set of
B-spline-based orbital functions, Fang and Ho �5� have re-
cently applied the complex-rotation method successfully to
study the effects of an electric field on the structure profiles
of doubly excited resonances in He.

Much earlier, Rescigno and McCurdy �6� employed a set
of complex basis functions to reduce the problem of identi-
fying resonances to the solution of a complex eigenvalue
problem. In particular, Rescigno �7� applied the methods of
complex basis functions to study in detail the lowest 1P reso-
nance for Mg. More recently, McCurdy and co-workers �8�
have made substantial progress by using exterior complex
scaling �ESC� to treat the atomic and molecular collision
problem. In particular, they employed the B-spline �9� and
other techniques to substantially reduce the computational
effort �e.g., two-electron integrals with B splines under ESC�
required in the application to atomic and molecular processes
�10�. B-spline approaches for atomic and molecular pro-
cesses have also been reviewed recently by Bachau et al.
�11�, including details on many of the earlier works by
Chang and co-workers. Other recent B-spline works include
a complex scaled application to photodetachment carried out
by Sanz-Vicario et al. �12� and application to multiphoton
processes by Nikolopoulos �13�.

Instead of using a complex scaled Hamiltonian �14�, Fang
and co-workers �15� recently employed a set of complex
B-spline-based basis functions to study the 1P Mg resonance
structure above the 3p 2P threshold. The results of this pre-

liminary B-spline-based complex-rotation �BSCR� applica-
tion are in good agreement with the observed photoabsorp-
tion spectrum and the results of an earlier BSK calculation
�15�. In Sec. II, we present a more comprehensive discussion
of the BSCR method by including explicitly the spin-
dependent interactions which account for the mixing of reso-
nances corresponding to different spin states. In contrast to
the BSK method, which can be applied to calculate directly
the partial cross section for each ionization channel, the
BSCR method, which requires substantially less computa-
tional effort, is limited to the calculation of total cross sec-
tions only. We should also note that the BSCR method could
include the spin-dependent interactions substantially more
easily than the BSK calculations. Instead of applying the
B-splines directly �which are more efficient computation-
ally�, the orthonormal sets of atomic orbitals ae used in the
BSCR calculation to facilitate an unambiguous identification
of the dominating electronic configuration, and the mixing of
the spin states for each doubly excited resonance.

In Sec. III, we present an application of the BSCR method
to Mg ground-state photoionization, which leads to cross
sections in good agreement with the observed Mg singlet-
triplet mixed spectrum. The Mg photoabsorption spectrum,
with two distinct autionization series �one narrow and one
broad and separated from each other�, offers a unique oppor-
tunity to study in detail the mixing of different spin states
due to the relatively small, but nevertheless experimentally
resolved, spin-dependent interactions. With the spin-
dependent interactions explicitly included in the BSCR cal-
culation, a small mixing of 3p2 3PJ=0 in the ground state
leads to the presence of 3pnd 3DJ=1 resonances in the photo-
ionization spectrum. The photoionization spectra from the
Mg metastable 3s4s 3SJ=1 state to J=0,1 ,2 continua are also
presented.

II. THEORY

Similarly to the BSCI and BSK methods, the BSCR
method also starts with a quasicomplete set of discretized
one-particle functions �nl�r�, corresponding to electronic or-
bitals nl with an orbital angular momentum l but variable
energy �both negative and positive�, defined by an effective
one-particle Hamiltonian hl
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hl
ef f�nl = �nl�nl, �1�

with a boundary condition �nl�r=R�=0. A set of N B splines
Bi,K�r� of order K �9� is defined inside a sphere of radius R.
The solution �nl is expanded as

��r� = �
i

N

CiBi�r� , �2�

where the index K is dropped for simplicity. The computa-
tional procedure used to generate the one-particle radial
function ��r� is given in detail in �1�.

The Hamiltonian matrix is constructed with a set of
J-dependent basis functions �n1l1,n2l2,. . .

� �r�1 ,r�2 , . . . � character-
ized by an electronic configuration �n1l1 ,n2l2 , . . . � and a set
of quantum numbers ���SLJMJ�, where S, L, J, and MJ are
the total spin, the total orbital angular momentum, the total
angular momentum, and its corresponding magnetic quantum
number, respectively. The basis function �n1l1,n2l2,. . .

� repre-
sents a sum of J-independent basis function �n1l1,n2l2,. . .

� over
all MS and M, where ���SLMSM� is a set of quantum num-
bers S ,L ,MS, and M. MS and M are the magnetic quantum
numbers of S and L, respectively. Within the central field
approximation, the basis function �n1l1,n2l2,. . .

� is expressed as
a sum of Slater determinant wave functions corresponding to
the configuration �n1l1 ,n2l2 , . . . � over all magnetic quantum
numbers with an appropriate angular momentum coupling.
The Slater determinant wave functions are constructed in the
usual form as the product of one-particle orbitals �nl�r�.
More details are given elsewhere �1�.

In the BSCR method, the radial function representing an
outgoing ionized �� electron of an open channel no�o��,
leaving the inner electron in an no�o orbital of the residue
ion, is replaced by a complex function, i.e., the radius r is
replaced by a complex variable z=re−i�,

����re−i�� = �
i=1

N

Ci
��Bi�re−i�� . �3�

By staying with the real knot sequence in our calculation, the
BSCR method differs from the ESC approach of McCurdy
and co-workers, which uses a complex knot sequences �8�. In
addition, a variational parameter � for each open channel is
also introduced to define a modified complex radial function,
i.e.,

�̃���z� = �
i=1

N

Ci
��Bi

˜ �z� , �4�

where Bi
˜ =Bi�z�e−�z. In other words, an open channel

�no�o�� �� ,��� is represented by a set of complex nonor-
thogonal basis functions �no�o����,��

� . For a closed channel
�no�on� �, however, the radial functions �n� in a set of or-
thogonal basis functions �no�on�

� remain real. In essence, the
BSCR method employs a real Hamiltonian and real basis
functions for all closed channels, but sets of back-rotated
complex functions for open channels, similar to the method
used by Davis and Chung �16�.

Within the Breit-Pauli approximation �17�, the Hamil-
tonian is given by

H = Hnr + Hm, �5�

where Hnr is the N-electron nonrelativistic Hamiltonian
given explicitly by Eq. �2� of �1� and Hm is the sum of
spin-dependent interactions in Rydberg units, i.e.,

Hm = 	2�Hso + Hss + Hsoo� , �6�

where 	 is the fine-structure constant,

Hso = �
i

N
Z

ri
3 ��i

� · si
� � �7�

is the spin-orbit interaction subject to a nuclear charge Z,

Hss = �
i�j

N
1

rij
3 	si

� · sj
� − 3

�si
� · rij

� ��sj
� · rij

� �
rij

2 
 �8�

is the spin-spin interaction,

Hsoo = �
i�j

N
1

rij
3 �rij

� 
 pi
� � · �si

� + 2sj
� � �9�

is the spin–other-orbit interaction, and rij
� =rj

� −ri
� .

Following the inner-projection technique suggested by
Rescigno et al. �6�, the Hamiltonian matrix between two
open channels takes the form

��no�o������,��
� �H��no��o��

���
����,���

�� �

= �
n�,n��

O��,n�
��no�on���

� �H��no��o�n
���

��
�� �On

��,�
��

t , �10�

where the overlap integral

O��,n�
= ��no�o������,��

� ��no�on���

� � �11�

and its corresponding transpose

On
��,�

��
t = ��no�on�����

�� ��no�o�
���

����,���
�� � . �12�

The Hamiltonian matrix between one open and one closed
channel can be readily obtained by setting �=0 and �=0 in
one of the open channels in Eq. �10�, i.e.,

��no�on���

� �H��no��o��
���

����,���
�� � = �

n��

��no�on���

� �H��no��o�n
���

��
�� �On

��,�
��

t

�13�

and

��no�o������,��
� �H��no��o�n

���
��

�� � = �
n�

O��,n�
��no�on���

� �H��no��o�n
���

��
�� � .

�14�

Finally, the Hamiltonian matrix between two closed chan-
nels, i.e.,
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��no�on���

� �H��no��o�n
���

��
�� � , �15�

is calculated using the same procedure for the BSCI method
outlined in �1� for the nonrelativistic Hamiltonian Hnr and in
�18� for the spin-dependent interactions Hm. The configura-
tion mixing between the bound and continuum components
of the state functions is accounted for by including all nega-
tive and positive energy one-particle orbital functions �n���

and �n
���

��
in the overlap integrals O��,n�

and On
��,�

��
t . For a

converged result, the BSCR calculation has shown that the
“quasicomplete” set of real functions �no�on���

� , which satisfy
the boundary condition given by Eq. �31� of �1�, must cover
the energy region of the calculated spectrum. The use of the
inner-projection technique, together with the orthonormal
sets of orbital functions, makes it easier to characterize the
atomic states of interest, especially the spin mixing.

Similar to the procedure proposed earlier by Chang and
Bryan �18�, the BSCR calculation is also carried out by first
diagonalizing the Hamiltonian matrix which includes only
the nonrelativistic Hamiltonian Hnr corresponding to a set of
�SLJ� states using the expressions given by Eqs. �10�–�15�.
The resulting set of orthogonal energy eigenfunctions �which
we shall denote as zeroth-order-state wave functions similar
to the ones in �18�� is then employed as a set of new basis
functions in the construction of the complex matrix for the
total Hamiltonian which couples all allowed �SL� states
through the spin-dependent interactions Hm. The key advan-
tage of employing the zeroth-order-state wave function is to
offer a possibility to effectively identify the degree of mixing
of the spin states from the calculated J-dependent state wave
functions for each of the atomic resonances.

The diagonalized complex energy E��� ,��=Eres
� − i
� /2

from the nonrelativistic complex Hamiltonian matrix leads to
an estimated resonance energy Eres

� and its corresponding
resonance width 
�. The variational parameter � for each
open channel is determined by the condition

	 � �E���,���
��


 = 0, �16�

where the absolute value indicates that both Eres
� and 
� are

optimized simultaneously. Similar to the example shown by
Fig. 14 of �2�, Fig. 1 presents a typical example of the varia-
tions of Eres and 
. The optimal � for the Mg 3p5s 1P dou-
bly excited resonance is determined as � varies from 0.31 to
0.39. The success of the BSCR method also depends largely
on the stability of the value � as � varies. It turns out that, in
the application of the BSCR approach presented in Sec. III,
our estimated � values for all members of an autoionization
series vary very little, and can be approximated by a single
value for each resonance series. In fact, even for different
autoionization series decaying into the same open channel,
our calculation has shown that a single � is a reasonably
good approximation for each open channel. Once the opti-
mized � value is determined as shown in Fig. 1, � is varied
again to assure the stability of the resonance parameters. We
also note that the � parameter in the BSCR approach is simi-
lar to the nonlinear parameter of the Slater-type functions

used by Davis and Chung �16�, or the Hylleraas-type func-
tions used by Ho �14�, with the same optimum condition, i.e.,
Eq. �3.1.2b� of �14�.

With the variational parameters properly determined, the
energy eigenfunction �i.e., the zeroth-order-state wave func-
tion� following the diagonalization of the nonrelativistic
complex Hamiltonian matrix may be expressed as the sum of
the bound �i.e., all closed channel j� and continuum �i.e., all
open channel k� components, i.e.,

��
���� = �

j

Cnj��j�nj�j

�SLJ��
�nj��j�nj�j

� + �
k

Cnk��k��k�k���
�SLJ��

�nk��k��k�k��,�k�
� .

�17�

The series of doubly excited autoionization resonances
�n0�0n���� with an inner electron n0�0 can be identified ap-
proximately by projecting the state function ��

���� to its cor-
responding basis function �n0�0n���

� , i.e., by calculating the
spectral density

��
SLJ = �

�

����
������n0�0 n���

� ��2 = �
�

�Cn0�0n���

�SLJ�� �2. �18�

With this choice of zeroth-order-state wave functions as
the basis functions, the new Hamiltonian matrix is con-
structed by including the spin-dependent interactions Hm.
Since the nonrelativistic Hnr is already diagonalized with re-
spect to the basis functions, no additional calculation is re-
quired, i.e.,

���
�����Hnr���

������ = �������E���� . �19�

The Hamiltonian matrix elements for Hm, i.e.,

���
�����Hm���

������ , �20�

are evaluated in terms of the expressions given by Eqs.
�10�–�15�, with H=Hm and the matrix element

��no�on���

� �Hm ��no��o�n
���

��
�� � of Eqs. �9�, �A1�, and �A8� in �18�.

For each total angular momentum J, all allowed SL states are
included in the construction of the total Hamiltonian matrix.
The energy eigenvalues E�=Eres

� − i
� /2 and their corre-
sponding state functions

FIG. 1. The variations of Eres and 
 of the Mg 3p5s 1P reso-
nance as � changes from 0.31 to 0.39. The � value is stabilized at
around 0.32 rad.
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��
JM��� = �

S,L,�
C�

�SL�J���
���� �21�

are obtained by diagonalizing the new Hamiltonian matrix
using the standard International Mathematical and Statistical
Libraries �IMSL� routines for the generalized eigenvalue
problem. The mixing of the spin states can be determined by
the sum of the squares of the appropriate expansion coeffi-
cients, i.e., �C�

�SL�J��2.
The photoionization cross section ��E� from an initial

state �I
JIMI with an energy EI is given by �7�

��E� = 4�	fEI, �22�

where 	 is the fine-structure constant and the complex tran-
sition amplitude fEI is given by

fEI =
��E���

3gI
Im	�

�
�

q,M,MI

��I
JIMI�Dq

�1����
JM����2

E���� − E 
 , �23�

where gI=2JI+1 is the degree of degeneracy of the initial
state I and �E=E−EI is the transition energy. The state func-
tion of the initial state,

�I
JIMI = �

SI,LI

�
i

Cni��i�ni�i

�SILIJI� �ni��i�ni�i

�I , �24�

is calculated with the procedure outlined in �1,18�.
The cross section ��E� given by Eq. �22� can be readily

identified as the imaginary part of the dynamic polarizability
�14,19,20�. In the length approximation, the dipole operator
D= �̂ · �r�1+r�2� and ��=1, and in the velocity approximation,

D= �̂ · ��� 1+�� 2� and ��=−1, where �̂ represents the light po-
larization. More explicitly,

fEI =
��E���

3gI
Im	�

�

�FEI
� ����2

E���� − E
 , �25�

and

FEI
� ��� = �

SLSILI�i

C�
�SL�J�	�

j

Cnj��j�nj�j

�SLJ�� Cni��i�ni�i

�SILIJI� DEI
ji

+ �
k

Cnk��k��k�k���
�SLJ�� O�knk

Cni��i�ni�i

�SILIJI� DEI
ki 
 , �26�

where O�knk
= ��nk��k��k�k��,��

� ��nk��k�nk�k

� � and DEI
ji is the real di-

pole transition matrix between two basis functions �nj��j�nj�j

�

and �ni��i�ni�i

�I , given by

DEI
ji = �− 1��j+�j�g�LSJLISIJI��dEI�j�j,i�i� + �− 1��IdEI�j�j,ii��

+ �− 1��dEI�j j�,i�i� + �− 1��I+�dEI�j j�,ii��� , �27�

where

g�LSJLISIJI� = �SIS
��2J + 1��2JI + 1��2L + 1��2LI + 1��1/2


�− 1�1+L
L LI 1

JI J S
� , �28�

�I = �i� + �i − LI − SI, �29�

and

� = � j� + � j − L − S . �30�

For a configuration corresponding to two equivalent elec-
trons, a factor of 1 /�2 should be added. The dipole matrix
element dEI is given by Eq. �45� of �1�.

III. RESULTS AND DISCUSSION

Some of the earlier BSCI results on Mg, with no spin
mixing, are already in good agreement with the experimental
and other earlier theories and are presented elsewhere �21�.
Figure 2 compares the current results of the spin-mixed
BSCR calculation on the Mg ground-state photoionization
spectrum with the observed absolute photoabsorption cross
sections by Fung and Yih �22�. We should point out that the
comparison between theory and experiment for photoabsorp-
tion spectra for narrow resonances �e.g., the 3pnd 1,3P reso-
nances� requires detailed information on �i� the experimental
energy resolution, �ii� the detailed characteristic of the slit
function for the incident light, and �iii� the vapor density of
the medium �23�. In the absence of these detailed experimen-
tal parameters, to compare with the observed spectra, a con-
voluted theoretical spectrum for a narrow resonance would
have three free parameters to adjust the peak cross sections.
As a result, the theoretical data could easily be manipulated
and artificially matched with the experimental peak cross
sections. The theoretical spectrum shown in Fig. 2 represents
the calculated BSCR results without the convolution, and the
peak cross sections for the narrow resonances, as expected,

FIG. 2. Comparison between the calculated Mg ground-state
photoionization cross sections and the experimentally observed
spectrum �22�.
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are substantially higher than the experimental values. Fol-
lowing our discussion in Sec. II, the optimized values of �
=0.32 rad and �=0.33 are used in the present calculation.

For Mg, the spin-dependent interaction is not expected to
contribute significantly. In the present calculation, for sim-
plicity, we have included only the spin-orbit interaction. Our
calculated cross sections quantitatively reproduce very well
the experimental data. In addition to the 3pns 1,3P1 and
3pnd 1P1 resonance series, the 3pnd 3D1 autoionization se-
ries has also been identified in our calculated spectrum, al-
though it is much too small in magnitude to be observed
experimentally. The 3pnd 3P1 series is both too narrow and
too weak to appear in the spectrum shown. The calculated
widths and resonance energies �in terms of the effective
quantum number � against the Mg 3p threshold� are tabu-
lated in Tables I–III. As expected, the width of the 3pnl 1,3PJ
resonance, which measures qualitatively the interaction
strength of the Coulomb interaction between the dominant
doubly excited electronic configuration �e.g., 3pns or 3pnd�
and the 3s�p 1,3PJ continua, decreases as � increases along
the autoionization series, except for the 3p7s 3PJ=1 resonance
shown in Table I. It turns out that, in the absence of spin-
orbit interaction, the calculated width �
=9.5
10−5 Ry� of
the 3p6s 3PJ=1 resonance is indeed greater than the calcu-
lated width �
=6.4
10−5 Ry� of the 3p7s 3PJ=1 resonance.
The widths of both resonances increase substantially when
the spin-orbit interaction is included to account for the mix-
ing with the corresponding neighboring and much broader
3pns 1PJ=1 resonances, and the effect on width due to the
mixing of spin states is much bigger for the 3p7s 3PJ=1 reso-

nance than that for the 3p6s 3PJ=1 resonance. For the
3pnd 1,3DJ resonance, it is allowed, in theory, to autoionize
into the 3s�p 1,3PJ ionization channel only through its small
3pnd 1,3PJ mixing due to the spin-dependent interactions. As
a result, qualitatively, its autoionization width does not have
to vary similarly to that of the 3pnl 1,3PJ resonance as �
increases.

The difference in length and velocity results can be attrib-
uted to the use of a model potential �1,13,18�, that simulates
the polarization of the atomic core. In a separate recent study
on oscillator strength for transitions in Be-like systems �24�,
we succeeded in reducing the difference between length and
velocity results by replacing the model potential in our cal-
culation with electronic configurations corresponding to
three excited atomic orbitals �i.e., with one of the inner-shell
electrons also in an excited orbital�. The use of a basis set
with atomic orbitals corresponding to three actively interact-
ing electrons accounts explicitly for the polarization of the
atomic core. Such calculations, of course, are computation-
ally highly intensive. In general, they do not lead to a differ-
ent physical interpretation of the atomic transition, except for
transitions with extremely small transition rates.

By including the spin-dependent interactions explicitly,
the BSCR method offers the possibility of studying directly
in a single calculation the spectra leading to autoionization
series of various combinations of ��l1l2�LSJ�. We present in

TABLE I. Widths �in a�b�=a
10−b Ry� and resonance energies �in terms of effective quantum number
� against the Mg 3p threshold� for 3PJ=0,1,2 autoionization series.

3PJ J=0 J=1 J=2


 �Ry� � 
 �Ry� � 
 �Ry� �

3p4s 4.6�−4� 2.323 4.7�−4� 2.323 4.6�−4� 2.323

3p5s 2.3�−4� 3.359 2.7�−4� 3.359 2.3�−4� 3.359

3p6s 9.5�−5� 4.380 1.8�−4� 4.378 9.5�−5� 4.379

3p7s 6.3�−5� 5.401 2.3�−4� 5.394 6.3�−5� 5.401

3p3d 1.1�−3� 2.877 1.1�−3� 2.878 1.1�−3� 2.878

3p4d 3.3�−4� 3.860 3.1�−4� 3.862 3.1�−4� 3.863

3p5d 8.8�−5� 4.855 6.4�−5� 4.866 6.5�−5� 4.867

3p6d 4.6�−5� 5.855 2.8�−5� 5.882 2.9�−5� 5.883

TABLE II. Widths �in a�b�=a
10−b Ry� and resonance ener-
gies �in terms of effective quantum number � against the Mg 3p
threshold� for 3DJ=1,2 autoionization series.

3DJ J=1 J=2


 �Ry� � 
 �Ry� �

3p3d 4.5�−6� 2.821 5.1�−6� 2.821

3p4d 2.7�−5� 3.829 2.8�−5� 3.829

3p5d 2.4�−5� 4.823 2.8�−5� 4.826

3p6d 1.9�−5� 5.811 2.6�−5� 5.821

TABLE III. Widths �in a�b�=a
10−b Ry� and resonance ener-
gies �in terms of effective quantum number � against the Mg 3p
threshold� for 1PJ=1 and 1DJ=2 autoionization series.

1PJ=1
1DJ=2


 �Ry� � 
 �Ry� �

3p4s 3.06�−2� 2.399

3p5s 8.47�−3� 3.438

3p6s 3.33�−3� 4.451

3p7s 1.55�−3� 5.466

3p3d 2.1 �−4� 3.111 1.0�−5� 2.564

3p4d 6.4 �−5� 4.108 7.0�−5� 3.632

3p5d 2.5 �−5� 5.109 1.2�−4� 4.657

3p6d 6.7 �−6� 6.118 1.0�−4� 5.675
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Figs. 3–5 the calculated photoionization spectra from the Mg
metastable 3s4s 3SJ=1 state to J=0,1 ,2 final continua. For
the J=0 continuum, only two odd-parity autoionization se-
ries, i.e., a stronger 3pns 3P0 series and a weaker 3pnd 3P0
series, are allowed. As expected, the spectrum shown in Fig.
3 is dominated by the shakeup of an outer 4s electron fol-
lowing the one-electron inner 3s→3p core excitation �25�.
The length and velocity results agree very well. For the J
=2 continuum, all four allowed autoionization series, i.e.,
3pns 3P2, 3pnd 3P2, and 3pnd 1,3D2 series, are identified in
Fig. 4. Again, the spectrum is dominated by the shakeup of
the outer 4s electron with a peak cross section over
6000 Mb. As expected, the transitions to the spin-flip
3pnd 1D2 resonances are very weak.

For the J=1 continuum, there are a total of five allowed
odd-parity autoionization series, i.e., the 3pns 1,3P1,
3pnd 1,3P1, and 3pnd 3D1 series. Similar to the J=0 and 2
spectra, the J=1 spectrum is dominated by the 3p4s 3P1
resonance due to the shakeup of the outer 4s electron follow-
ing the inner 3s→3p core excitation. The rest of the
3pns 3P1 resonances can also be clearly identified, as shown
in Fig. 5. The pair of 3pnd 3P1 series �on the shorter-
wavelength, or higher-energy, side� and 3pnd 3D1series �on
the longer-wavelength side� are also clearly shown. The tran-
sition rate to the 3pnd 1P1 series is expected to be very

FIG. 6. Calculated total photoionization spectrum from the Mg
metastable 3s4s 3SJ=1 state to J=0,1, and 2 continua.

FIG. 3. Calculated photoionization spectrum from the Mg meta-
stable 3s4s 3SJ=1 state to the J=0 continuum.

FIG. 4. Calculated photoionization spectrum from the Mg meta-
stable 3s4s 3SJ=1 state to the J=2 continuum.

FIG. 5. Calculated photoionization spectrum from the Mg meta-
stable 3s4s 3SJ=1 state to the J=1 continuum.
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small, due to the spin flip and the change of electronic orbit-
als of both outer electrons. As a result, the 3pnd 1P1 reso-
nances barely show up in our calculated spectrum shown in
Fig. 5. We also find with interest that the relatively broad
3pns 1P1 series, i.e., the one that dominates the ground-state
spectrum shown in Fig. 2, does not appear in the J=1 spec-
trum from the metastable 3s4s 3S1 state shown in Fig. 5. Of
course, the transition rate to the spin-flip 3pns 1P1 series is
expected to be small due to the change of spin, similar to the
ionization leading to the 3pnd 1P1 and 3pnd 1D2 series. But
why should a substantially broader 3p4s 1P1 resonance fail
to show up, whereas the spin-flip 3pnd 1P1 resonances can
be seen in our calculated spectrum? This can be readily at-
tributed to the fact that the weak transition rate to the spin-
flip 3p4s 1P1 resonance is overshadowed by the fairly large
3p4s 3P1 cross sections extended over a large energy region
�much larger than its width� with a peak cross section over

3000 Mb. The total photoionization cross sections, including
transitions to all continua, are given in Fig. 6.

Whereas the other B-spline-based approaches offer advan-
tages in computational efficiency, the BSCR method pre-
sented in this paper, with the spin-dependent interactions ex-
plicitly included, offers an alternative to investigate in detail
the configuration mixing in the spectral density of doubly
excited resonances embedded in multiple continua through
Eqs. �17� and �18�, and also the mixing of the spin states
through Eq. �21�.
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