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Cascade effects on the polarization of He-like Fe 1s2/-1s? x-ray line emission
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We calculate x-ray line polarization degrees for cases with axial symmetry using a collisional-radiative
magnetic-sublevel atomic kinetics model and the properties of multipole radiation fields. This approach is well
suited for problems where the alignment is determined by the competition between many atomic processes. We
benchmark this method against polarization measurements performed at the Livermore electron beam ion trap,

and we study the 3-to-2 cascade effects on the polarization of 2-to-1 lines in He-like Fe.
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I. INTRODUCTION

Polarized line emissions have been recognized as a signa-
ture of anisotropy in distributions of plasma electrons [1]. In
particular, beams of plasma electrons can excite upper levels
of line transitions in a nonstatistical way, i.e., causing differ-
ent magnetic sublevels of fine structure levels to have differ-
ent populations. This condition called alignment reveals it-
self in partial polarization of emitted radiation. Beams of
electrons occur in plasmas in several cases: electrons spiral
along magnetic field lines in solar corona [2,3] and electron
beam ion trap (EBIT) experiments [4]. In laser-produced
plasmas electron beams are generated via nonlinear absorp-
tion of laser radiation [5-7]. Understanding the effects of the
presence of directional electrons in plasmas is of fundamen-
tal importance. Frequently these electrons are very energetic
compared to the thermal plasma electrons, and excluding
them from theoretical models may lead to serious overesti-
mates of plasma temperature [8]. Also, the fast-igniter ap-
proach to inertial confinement fusion relies on a beam of fast
electrons that can initiate a fusion burn. It is therefore desir-
able to develop diagnostic tools capable of characterization
of nonthermal electrons’ distribution properties in plasmas.
Analyses of polarized line radiation from plasmas provide a
way for doing that. Polarization-based diagnostics takes ad-
vantage of a degree of freedom of electromagnetic radiation
not typically used in plasma spectroscopy in the past. Fun-
damental quantum mechanical studies are necessary in order
to provide insights into the mechanism and characteristics of
polarized line emissions. Most of this work was done using
density-matrix formalism [9-13].

While polarization-based plasma diagnostics breaks new
ground, good quality modeling for its purposes must face the
same issues addressed by the more traditional radiation-
based diagnostic techniques. Plasma spectroscopy has been a
valuable tool for the determination of plasma characteristics
in celestial as well as laboratory plasmas. Observed spectral
line intensity ratios are yardsticks for measuring plasma tem-
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perature and charge balance; Stark-effect-induced broaden-
ing of line profiles contains information about plasma den-
sity. Theoretical reproduction of recorded spectra requires
calculation of populations of the plasma ion species that are
in their ground as well as excited states. In non-local-
thermodynamical-equilibrium (non-LTE) plasmas, the popu-
lations often strongly deviate from the Boltzmann-Saha-
equilibrium values. In order to address this issue multilevel
collisional-radiative atomic kinetic models are constructed.
Energy level populations are then calculated as a result of
combined effects of many atomic processes. Many energy
levels may need to be included in a model for satisfactory
reproduction of experimental data, which in turn leads to
large sizes of atomic databases. The size and complexity of a
particular atomic kinetic model is determined by the level of
detail used in the description of energy level structure. Since
polarized radiation emerges from collections of ions with
unequal populations of magnetic sublevels within individual
fine-structure levels, development of fundamental, magnetic-
sublevel atomic kinetic models is warranted. Such models
must be complemented with a way of calculating polarized
line emissions based on magnetic sublevel populations. Work
in this direction has been done using density-matrix formal-
ism [10]. We present another approach based on properties of
multipole radiation fields, which agrees with the work of Inal
and Dubau [10] and is consistent with results of another den-
sity matrix method [11].

In this paper we report the results of the application of our
technique to several experiments performed at the Livermore
EBIT-II electron beam ion trap. Experimental conditions in
EBIT are under very precise control, which makes EBIT
very well suited for fundamental studies and tests. To this
end we have constructed sublevel kinetics models (without
cascades) for He-like Si, and Be- and B-like Fe and calcu-
lated polarizations of dielectronic satellite line emissions
from these ions driven by monoenergetic electron beams.
Having tested our method in these cases we then proceed to
report on our calculations of polarized K-shell emissions
from He-like Fe based on a sublevel kinetics model that in-
cludes cascade effects. Elsewhere we describe the results of
the same procedure applied to a more complex plasma envi-
ronment aimed at studying the polarization properties of Ly-
«a satellites in laser-produced Si plasma [14].
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II. THEORY

Previous calculations of polarized line emissions have
used various implementations of density-matrix theory
[9-13]. Here, we present a method for the calculation of
polarized line emissions that is based on a collisional-
radiative atomic kinetics model of magnetic sublevel popu-
lations. This technique is well suited for cases with cascade
effects because it eliminates the need of a priori identifica-
tion of dominant atomic processes. This method is also par-
ticularly useful for application in transient plasmas where
different atomic processes may become important at different
times. Magnetic sublevels are quantum states characterized
by parity , energy E, total angular momentum J, and its
projection M. In the absence of hyperfine interaction and
external fields these are good quantum numbers. These quan-
tum numbers are complemented by the dominant configura-
tion and LS labels. We consider a fundamental collisional-
radiative atomic kinetics model for calculating magnetic
sublevel populations and, subsequently, polarization-
dependent line spectra. This is accomplished by setting up a
system of kinetic rate equations for the magnetic sublevels
which, in general, is time dependent. However, for the cases
considered here we can assume steady-state conditions, and
therefore the system of rate equations can be written down in
matrix notation as follows:

Ag=b, (1)

where g is the vector of magnetic sublevel populations, A is
the rate matrix associated with the atomic processes included

in the model, and b is a vector that depends on populations
not computed by the model and thus considered to be input
(e.g., ground state populations in the applications discussed
here). The number of magnetic sublevels in the model deter-
mines the number of rate equations in the system, and the
number and type of atomic processes included determines
the level of coupling between the equations. Implicit in the
model is the selection of an axis of quantization with respect
to which the magnetic sublevel quantum number M and the
direction of observation are defined, and axial symmetry is
assumed; we take the z-coordinate axis to be this axis.

In general, to address the problem of calculating polarized
line emission one has to consider the density matrix of the
ion and electromagnetic field system. Then, the photon den-
sity matrix can be extracted which contains the Stokes pa-
rameters that characterize the polarization properties of the
radiation field. The diagonal elements of the ion density ma-
trix are the magnetic sublevel populations, and the off-
diagonal elements represent coherences. However, for the
case of systems with axial symmetry the ion-density matrix
remains diagonal and the line polarization properties are only
characterized by magnetic sublevel populations [10]. Hence,
a line transition is formed as an incoherent collection of sub-
level transitions that are inherently polarized due to angular
momentum conservation of the ion and photon system. Pure
multipole radiation emissions from optically thin sources due
to transitions between magnetic sublevels have distinct an-
gular and polarization characteristics [15]. It is customary to
observe polarized emissions in a direction perpendicular to
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TABLE 1. Relative multipole intensities of electric (E1) and
magnetic (M 1) dipole transitions. 6 and ¢ are the polar and azimuth
angles of spherical coordinates, respectively. For 6=90°, 6 defines
the parallel and ¢ the perpendicular polarization state.

El M1
Ml, M, Mi, Ml,

AM=0 3sin? @ 0 0 3sin? @

AM==1 (3/2)cos? 0 3/2 3/2 (3/2)cos? 0

the chosen quantization axis. In the case of an electric dipole
(E1) line whose upper and lower states have the same value
of the magnetic quantum number M, the emission is linearly
polarized parallel to the axis of quantization. On the other
hand, if the magnetic quantum number changes by one unit,
an E1 emission is polarized in a direction perpendicular to
the quantization axis. The polarization of emissions from
sublevel-to-sublevel transitions is determined by the multi-
pole type of the transition and the absolute difference in M,
values of the upper and lower levels. This is a manifestation
of angular momentum conservation of the ion+radiation
field system during the ion’s decay by photon emission. A
fine structure line J;— J; consists of sublevel lines polarized
in both directions, which overlap due to degeneracy with
respect to M ;. Hence, in the optically thin approximation, we
calculate polarization-dependent fine-structure line intensi-
ties by

J; Jr

L < hvAJ;—J) X 2 f(M) 2 M, (AM,6=90°)
M==J; Mp==lp 7

X(Jyq My =AM |J; M)?, (2)

where hv is the transition energy, A(J;— J)) is the transition’s
radiative decay rate, f(M;) are populations of upper level’s
sublevels, € is the angle between the quantization axis and
the line of sight, ¢ is the multipolarity of the transition,
AM=M;~M;, and (J;qM;-AM |J; M,) is a Clebsch-
Gordan coefficient. The products of Clebsch-Gordan coeffi-
cients and A(J;—Jy) are the spontaneous radiative decay
rates of the constituent magnetic sublevel transitions [16].
MI,, (AM,0)’s are relative multipole intensities based on
wave-zone multipole fields whose angular parts are known
as vector spherical harmonics [15], and 6 is the angle be-
tween the direction of observation and the axis of symmetry
(same as the polar angle). Their values for dipole and quad-
rupole transitions are listed in Tables I and II. The two
polarization-dependent line intensities observed at 6=90°
then yield the polarization degree

L-1,

T+l ®)

Under isotropic conditions (LTE plasmas, for instance) popu-
lations of magnetic sublevels within a fine-structure level are
the same, which results in unpolarized line emissions. Polar-
ization may therefore arise only from lines whose upper lev-
els are aligned, i.e., the population is unequally distributed
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TABLE II. Same as in Table I but for electric (E2) and magnetic (M2) quadrupole transitions.

E2 M2
Ml, MI Ml, M,
AM=0 15 sin® @ cos? 0 0 15 sin? fcos? 0
AM==1 (5/2)(2 cos? 6—1)? (5/2)cos? 0 (5/2)cos? 0 (5/2)(2 cos? 6—1)?
AM=+2 (5/2)sin? 6 cos* 6 (5/2)sin* 6 (5/2)sin* 6 (5/2)sin® @ cos?6

among their magnetic sublevels. Alignment can be created
by anisotropic processes such as electron collisional excita-
tion or electron capture driven by electron beams.

In this work, all atomic structure, rate and cross section
data are calculated with the Los Alamos atomic structure and
scattering codes CATS, ACE, and GIPPER. CATS is a multicon-
figuration Hartree-Fock atomic structure code that computes
energy level structure characteristics (eigenstates” wave func-
tions and energies) and transition matrix elements for spon-
taneous radiative decay rates [17]. The electron scattering
code ACE uses atomic structure data computed by CATS to
calculate electron-impact excitation scattering amplitudes
and cross sections in the Born, Coulomb, or distorted wave
approximation for transitions between magnetic sublevels,
fine-structure levels, LS terms, and configuration-averaged
states [18]. In its sublevel mode ACE provides differential
cross sections which we integrated over the scattering angle.
The ionization code GIPPER also uses atomic structure data
from CATS to calculate autoionization rates and cross sections
for electron-impact ionization and photoionization [19]. This
suite of codes can efficiently generate large databases for
atomic kinetics modeling.

III. POLARIZATION OF DIELECTRONIC
SATELLITE LINES

In this section we discuss the results of our calculations
for the polarization degrees of dielectronic satellite lines in
Fe ions, and compare them with measurements at the Liver-
more EBIT as well as independent calculations [20-22]. In
particular, we consider 1s2120'21" — 1s*2]2]' transitions in
Be-like Fe and 1s2/21'21"21" — 15*2121'21" in B-like Fe
where [, I’, I, and [ can be s or p. An electron beam is
capable of creating alignment in the upper (autoionizing)
levels of dielectronic satellite lines by populating them
via resonant electron capture. The potential anisotropy of this
process stems from the conservation of the z component of
the total angular momentum of the system. The continu-
um electron has m;=0 which leads to the selection rule
|AM|=1/2 between the two ionic states involved in the elec-
tron capture process [23]. For the low density conditions at
EBIT (N,~1 X 10'? cm™) we can assume that each autoion-
izing state is populated solely by electron capture from the
ground state of the next higher ionization stage, and depopu-
lated by autoionization and spontaneous radiative decays.
Furthermore, the energy of the electron beam can be tuned in
such a way that only subsets of electron capture resonances
are excited. Hence, the populations of autoionizing magnetic
sublevels can be calculated from a set of decoupled kinetic

rate equations [see Eq. (1)] given the rates of electron cap-
ture, autoionization, and spontaneous radiative decays, and
the population of the ground state of the next higher ioniza-
tion stage. Actually, we have normalized this ground state
population to 1 so that all other populations in our model are
calculated in units of the ground state population. Sublevel
radiative decay rates for pure multipole radiative transitions
are calculated from the J-level rates by the following formula
which is based on the Wigner-Eckart theorem [16]:

AM; — I M) =A(J;— Jp) X (Jp g My =AM |J; M))*.
4)

While for spontaneous radiative decay this is a general rela-
tionship, magnetic sublevel autoionizing and electron capture
rates can also be written in terms of the corresponding
J-level rates under the approximation that this process occurs
through a single dominant open channel. A detailed discus-
sion of the calculation of these rates is given in the Appen-
dix. We note that each individual magnetic sublevel JM of a
given level J decays with the same total radiative [as seen
from summing over M in Eq. (4)] and autoionization decay
rates [Eq. (A12)], respectively. This reflects the fact that
these processes are isotropic.

Spontaneous radiative decay and autoionization rates for
fine structure J levels were computed with the codes CATS
and GIPPER, and then used to compute magnetic sublevel JM
rates according to Eq. (4) and the method discussed in the
Appendix. Next, magnetic sublevel populations and polariza-
tion degrees were computed according to the model dis-
cussed in the theory section. Our results agree with the B-
and Be-like Fe measurements at EBIT, and also with results
from independent calculations based on the photon density
matrix [20,22]. This agreement between our and previously
published calculations is seen in the rational polarization de-
gree values published in [20,22], whose exact decimal ex-
pressions are reproduced by our model. The only exception
is line No. 9 in Table I of Ref. [20] (1s 2s 2p? {1} °P,
— 1s% 25 2p *P,) in Be-like Fe. This line has not one but two
open dominant transition channels from terms 'D and *D and
therefore our single-channel assumptions about its electron
capture rates do not apply. Even for this line, however, we
reproduce the two limiting values of —1 and —3/7 depending
on which LS term is taken as dominant, also in accordance
with Ref. [20]. Finally, polarization degree results for the
He-like Si satellites of the Ly-a agree with those of Ref.

[21].
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IV. CASCADE EFFECTS ON THE POLARIZATION
OF LINES w, x, y, AND z IN He-LIKE Fe

Beiersdorfer er al. measured the polarization of the s
2p 'P,— 15> 'S, resonance line w (E1), 1s 2p *P,— 152 'S,
intercombination line x (M2), 1s 2p 3P1 — 152 1S0 intercom-
bination line y (E1), and 1s 2s 3§ | — 1s? 1S0 forbidden line z
(M1) from He-like Fe ions in EBIT experiments [11]. These
emissions were driven by an unpolarized, monoenergetic
(6.8 keV) electron beam. Using Egs. (2) and (3) we can ex-
press the polarization of these lines in terms of upper level
magnetic sublevel populations f(M;) as follows.

Lines w and y:

J=1) =2f(0) +f(+ 1)

ST C D42/ 1 [ 1) ©)
line x:
sz(—z)—f(— 1) —f+ 1)+ f(+2) ©)
FE)+ =D+ =D+ f(+2)]
line z:
P_f(— 1) - 2£(0) + f(+ 1) ™

=D +2£(0) + f(+ 1)

which are consistent with the formulae of Inal and Dubau
[10]. Under the steady-state conditions of an EBIT and the
assumption of no cascades, the upper sublevels of these tran-
sitions are populated solely by direct electron-impact excita-
tion from the ground state characterized by sublevel cross
sections o0,,. Since radiative decay is isotropic, we have
J(M) gy, and the polarization formulas (5)—(7) agree with
that of Ref. [11] with the cross sections in place of sublevel
populations. This approximation only holds for such special
cases, and these “two-level-atom” polarization results con-
taining sublevel cross sections have to be modified in the
presence of other feeding channels for the upper level. Such
effects are automatically accounted for in our multilevel
atomic kinetic models, which yield sublevel populations, and
therefore require no formal modification of expressions
5)=(7).

Our atomic kinetic model for He-like Fe consists of a total
of 53 magnetic sublevels from configurations 1s2, 1s 2/, and
Ls 3/'. In order to address the effects of 1s 3/ — 1s 2/ radia-
tive decay cascades we calculated polarization of the four
lines at electron beam energies 6.8 and 8.0 keV. Due to the
small energy dispersion of EBIT electron beams (=50 eV)
the electrons do not excite the 1s 3/ 3/’ resonances that lie
in the 6.95-7.01 keV range (see Fig. 1) and whose effects to
Is 21 excitation have been studied by Inal and Dubau [23].
The 1s 3/ excitation threshold is 7.9 keV, hence at 6.8 keV
the 1s 3/ states acquire only negligible populations by step-
wise excitation via ls 2/ states. Therefore only cascades
within the 1s 2/ states may play a role at 6.8 keV. At 8.0 keV
the 1s 3/ states become accessible to direct excitation from
the ground state which turns on the n=3 to n=2 cascades. It
is straightforward to exclude any levels from the model and
thus identify dominant feeding channels by looking at the
sensitivity of the final result. Considering the low electron
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FIG. 1. Energy level structure of He- and Li-like Fe.

density of the beam (10'> cm™) it is sufficient to include
only electron-impact excitation and spontaneous radiative
decay processes. Using the suite of Los Alamos codes we
constructed a database of 50 rates of electric dipole transi-
tions between J levels. Our model also includes the rates of
three higher-order transitions, namely those associated with
lines x and z [24] and the two-photon decay ls 2s 'S,
—1s? 'SO [25]. Inclusion of these processes is necessary be-
cause upper levels of these three transitions lack dominant
electric dipole decay channels

Electron-impact excitations are represented by a database
of 1296 sublevel excitation cross sections created with the
Los Alamos code ACE [18]. (There is some redundancy in the
database because sublevel cross sections are the same if M,
values of the initial and final states both change sign.) Since
the results of kinetic models depend on the quality of the
employed atomic database, we also obtained another collec-
tion of cross sections independently calculated by a fully
relativistic code [26]. This allows us to investigate the sen-
sitivity of our results with respect to various collections of
atomic data produced under different methods and approxi-
mations. The comparisons between these two collections
of data representing excitations of the upper levels of lines
w, x, y, and z from the ground state (Table III) show that
the relativistic corrections play a small role, as is expected
for a light element such as Fe. While the excitation data of 1s
2s S, level show the largest differences between the two
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TABLE III. Electron collisional excitation cross sections 1s>— 1s 2/ (I=s,p) (values in units of
10723 cm?) as calculated with the nonrelativistic (ACE) and the relativistic codes [26] at two electron beam

energies (6.8 and 8.0 keV).

Spectral line and its upper 6.8 keV 8.0 keV
level characteristics Nonrelativistic Relativistic Nonrelativistic Relativistic

z M=0 1.688 2.088 1.255 1.496
Is 2s 3Sl M==x1 1.688 2.067 1.255 1.480
y M=0 3.617 3.644 3.405 3.379
1s 2p 3P1 M==x1 5.112 5.261 3.659 3.784
X M=0 6.206 6.113 4.155 4.074
1s 2p P, M==x1 5.026 4.793 3.360 3.175

M==+2 1.484 1.528 0.974 0.994
w M=0 25.59 24.22 28.54 26.85
1s 2p 'P, M=x1 5.982 6.204 6.732 6.876

calculations, the relative values of individual sublevel cross
sections remain virtually unchanged (see Figs. 2 and 3) even
for this level. Since the degree of polarization is determined
by the relative difference of upper level’s sublevel popula-
tions, the “2-level” polarization results are essentially the
same regardless of which cross section database is used in
the model.

Our results are summarized in Tables IV and V. The col-
umns labeled “17-level” represent the results obtained from
our full model, while the “2-level” results refer to separate
calculations involving only the two levels of each transition.
The comparison of the “2-level” results obtained from the
two databases reflects the changes in the relative magnitudes
of the direct-excitation sublevel cross sections. These differ-
ences between the two databases are illustrated in the form of
sublevel cross section ratios in Figs. 2 and 3. For example,
the excitation of the 1s 2s S, level is isotropic in the ACE
model while the relativistic calculations [26] predict a tiny
alignment creation in this process. This translates into the

1.2 T T T T T T T T T T T T T T T T T

11s2s%s, 1s2p°P, 1s2p°P, 1s2p'P, |

Cross section ratio

-1 0 +1 -1 0 +1

2-1 0+1+2 -1 0 +1
Magnetic sublevels of upper J-levels

FIG. 2. Ratio of nonrelativistic cross section values over rela-
tivistic cross section values for electron beam energy of 6.8 keV
(Table III) computed with ACE and code of Ref. [26], respectively.

—0.0051 at 6.8 keV and —0.0055 at 8.0 keV ““2-level” polar-
ization result for line z as opposed to the exact O in the ACE
column. The line w has a positive degree of polarization
because the M =0 sublevel of the upper (1s 2p 'P,) level has
a larger cross section than the M=+ 1 sublevels [see Eq. (5)].
This difference in sublevel cross sections is more pro-
nounced in the ACE data, which leads to even more positive
“2-level” polarization result than that based on the fully rela-
tivistic data [26].

It is the difference between the “2-level” and the corre-
sponding “17-level” results that is attributable to cascades.
At 6.8 keV the only line whose polarization is significantly
altered by cascades is the line z. Direct excitation of the
ls 25 38 | level from the ground state is essentially isotropic
as is apparent from the vanishing “two-level” result. Its no-
ticeable negative polarization is attributed to alignment trans-
fer from the ls 2s 3P2 state (polarization goes back to zero,
if this level is excluded from the calculation). This state is
aligned by anisotropic excitation from the ground state that
manifests itself in the polarization of line x, for which

1-2 T T T T T T T T T T T T T T T T T

1s 25381

1s 2p C'P1

Cross section ratio
o
[«)]

10+ 1 041 -2 10 +142
Magnetic sublevels of upper J-levels

FIG. 3. Same as in Fig. 2 but for electron beam energy of
8.0 keV.
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TABLE IV. Polarization degrees of He-like Fe 2-to-1 lines for the electron beam energy of 6.8 keV. Our
original calculated values are compared with experimental data from Table II of Ref. [11].

Experiment Nonrelativistic calculation Relativistic calculation
(EBIT) 2-level 17-1evel 2-level 17-1evel
w (E1) +0.56%0 08 +0.62 +0.62 +0.59 +0.59
x (M2) -0.537093 -0.54 -0.54 -0.52 -0.52
y (E1) -0.227003 -0.17 -0.17 -0.18 -0.18
z (M1) -0.07610 007 0 -0.087 -0.0051 -0.080

Is 2s 3P2 is the upper level. Our results are in agreement
with experimental results of Beiersdorfer ef al. (see Ref. [11]
and Table 1V).

For an electron energy of 8.0 keV radiative cascades from
n=3 singly excited states turn on. Adding more energy levels
to our model is not necessary because this energy is still
below the 8.2 keV threshold for the n=4 singly excited
states. Lines w and x do not undergo any major changes
but lines y and z exhibit interesting properties. Measure-
ments were performed at the Livermore EBIT-II electron
beam ion trap at the beam energy of 8.0 keV using tech-
niques similar to those reported earlier [11]. The results are
listed in Table V. These measurements indicate that the po-
larization of line x actually does change a bit, to the point
that our calculated result falls out of the error bar. We should
note, however, that polarization measurements are generally
very challenging, and the error bars given are purely statis-
tical. Unknown systematic effects, possibly due to inhomo-
geneous crystal reflectivities or inhomogeneous focusing
properties and the like, may alter the results and are very
difficult to detect. On the other hand, because of the inherent
properties of the two-crystal measurement technique used,
the uncertainties are intrinsically smallest for lines with the
most negative polarization (and conversely largest for those
with the most positive polarization). As a result, the measure-
ment of the polarization of line x carries the smallest uncer-
tainty. Good agreement by contrast is found for lines w, y,
and z, albeit near or right at the edge of the respective error
bars.

Since the “two-level” polarization of line z remains zero
at 8.0 keV, and a calculation at this energy with the n=3
states excluded yields a value around —0.08, the significant
increase of polarization up to —0.15 is caused by cascades
from 1s 3/. We pinpointed the most significant feeding chan-
nels of 1s 25 *P, and constructed a five-level model in which
these effects on line z can be illustrated. This five-energy-

level subset is 15> 'S, 1s 2s 3S,, 1s 2p *P,, 1s 2p *P,, and
1s 3p 3P2. Our results (see Table VI) show that the cascade
from 1s 3p 3P2 further enhances the negative polarization
value seen also at 6.8 keV that was attributed to the cascade
from 1s 2p 3P2. The line emission associated with this cas-
cade is itself noticeably polarized (P=+0.29), which dem-
onstrates that alignment transfer from 1s 3p P, to 1s 2s S,
is indeed taking place. On the other hand, these two cascades
compete with the isotropic cascade from ls 2p 3P0 level.
These findings are consistent with earlier calculations of Inal
and Dubau (Ref. [23], p. 4805), who accounted for cascades
by another method (they calculated effective collision
strengths for the 1s>— Ls 2/ excitations at several energies,
of which the one closest to our calculations is 7.9 keV
=582 Ry). Most importantly, this significant enhancement of
the polarization of line z at 8.0 keV in comparison to the
value at 6.8 keV is also observed by our reported experimen-
tal results (see Table V). Figure 4 shows the most dominant
atomic processes in the kinetics of the upper level of line z.
The “population X rate” values are the measure of influence
of a particular atomic process on the population of the
Is 25 S, level. The fact that several feeding channels are of
comparable importance and that the direct excitation from
the ground state is not even the most dominant among them
illustrates the critical importance of considering complex
cascade effect patterns. Hereby presented magnetic-sublevel
kinetic modeling addresses these issues by definition. This is
an improvement with respect to previous efforts that start
with a two-level type modeling and add cascades on a case-
by-case basis.

The two-level result for line y is considerably smaller at
8.0 keV than the corresponding value at 6.8 keV. This is a
consequence of sublevel excitation cross section o being
much more comparable to o at 8.0 keV than at 6.8 keV,
making excitation from the ground state less anisotropic.
Further reduction of polarization seen in the comparison of

TABLE V. Polarization degrees of He-like Fe 2-to-1 lines for the electron beam energy of 8.0 keV.
Original calculated values are compared with new experimental measurements.

Experiment Nonrelativistic calculation Relativistic calculation
(EBIT) 2-level 17-level 2-level 17-level
w (E1) +0.50+0.10 +0.62 +0.59 +0.59 +0.57
x (M2) -0.36+0.05 -0.55 -0.53 -0.52 -0.49
y (E1) +0.02+0.06 -0.036 -0.024 —-0.057 -0.042
z (M1) -0.22+0.07 0 -0.15 -0.0055 -0.14
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TABLE VI. Cascade effects on line z for the electron beam
energy of 8.0 keV.

Polarization

Kinetic model characteristics of line z
Full (17-level) model -0.15
16 levels (1s 3p 3P2 excluded) -0.08
Ground and n=2 levels only -0.08
Ground and n=2 levels only, 1s 2p 3P2 excluded 0
Ground and n=2 levels only, 1s 2p 3P0 excluded -0.12
16 levels (1s 2p P, excluded) -0.18
5-level model -0.16

the 2-level and 17-level models at 8.0 keV is then due to
cascades; however, in this case there are no dominant popu-
lation channels that would allow us to recover the “full”
result with a small number of included levels. Therefore, the
polarization (or, in this case, the lack thereof) of line y at
8.0 keV is indeed a product of complex multilevel sublevel
atomic kinetics, which would otherwise be more difficult to
calculate with more traditional (two-level-based with pos-
sible cascades) models. This theoretical result is also sup-
ported by the experimental observation on EBIT-II.

V. SUMMARY AND CONCLUSIONS

We have developed a model for calculations of polarized
x-ray line emissions. Our method is based on collisional-
radiative atomic kinetic modeling of magnetic sublevel
populations [27], and line polarization is calculated using the
properties of multipole radiation fields [15]. We have bench-
marked our results with EBIT experiments and independent
calculations, and we have discussed in detail the 3-to-2 cas-
cade effects on the 2-to-1 line transitions in He-like Fe. The
highlight of this technique is its capability to include cascade
and other multilevel effects in a straightforward manner. This
makes our approach a good candidate for modeling of polar-
ized line emissions from plasmas (laser-produced, for ex-

133p P, 2.6 x 104 0.23
9 x 1012
P=+0.30
1s2p 3P, 8.5 x 101 0.12
1x10°
P=+029
1s 2p*P, 4.6 x 1010 0.14
3 x108
P=0 .
1s 2s 3Sl 3.3 x 10
3 % 0.066 = 0.20 i"_wso(}";'e 2
(isotropic) T
18215, 1.0 0.20
rate, polarization population  population x rate

FIG. 4. Dominant feeding channels for upper level of line z
(1s 253 S,) for the electron beam energy of 8.0 keV. Collisional
excitation and spontaneous radiative decay rates are in s~!. Level
populations are normalized to the population of the ground state.
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ample) where there are many competing feeding channels
whose relative importance will vary with changing plasma
conditions. As an application of the technique described in
this work, we have carried out a modeling study of polariza-
tion effects in Ly-a satellite lines in laser-produced Si
plasma, which is presented in another publication [14].
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APPENDIX

In this Appendix we derive the expressions for magnetic-
sublevel autoionization rates. We also obtain the rate coeffi-
cients for magnetic-sublevel electron capture process driven
by beam electrons [28,29]. We do this in the context of LS
coupling [30].

1. Autoionization

We label the ionic states with the angular momentum
quantum numbers L, S, J, and M. Because of the spin-orbit
interaction L and S are only approximate quantum numbers
and are typically adopted as state labels from the dominant
pure LS-coupled angular momentum eigenstate in the
make-up of the ionic state. The rate of autoionization (Al) is
given by Fermi’s Golden Rule

2
Al rate = %pf(Ef)|<initial|H' [final)|28(E,— E)), (A1)

where H' is the Hamiltonian for the electrostatic repulsion
between the ion’s electrons, pf(Ef) is the density of final
states, and the delta function represents the energy conserva-
tion requirement. H' is a scalar operator and does not act on
electron spin, which leads to the following properties and
selection rules: (1) the initial and final states must be of the
same parity, (2) the angular momentum quantum numbers L,
S, J, and M; must be the same for both states, and (3) the H’
matrix element in Eq. (A1) is independent of J and M, [30].

The energy levels in an ion are mixtures of pure
LS-coupled states. For the cases studied here the degree of
mixing is small and thus in the following we represent the
final ionic state by its dominant LS-coupled state |L'S'J'M).
This state has to be further coupled with a one-electron con-
tinuum state in order to form the “final” state in Eq. (Al).
The initial (autoionizing) state can be represented in a similar

way by the |Z§JM 7 LS-coupled state. This state is selected
as the one that satisfies the parity conservation requirement
in the autoionization process [30]. Therefore this state is not
always identical to the |LSJM ) state that forms most of the
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initial autoionizing state. In the following we assume that
there is a single dominant open channel associated with the

orbital angular momentum value 1 of the continuum electron
and the (initial) LS-coupled state |[LSJM,) from which the

largest part of the rate (A1) comes. The possible values for ]
are severely restricted by the simultaneous requirements of
(1) parity conservation and (2) total angular momentum con-
servation with low final-state values of J' (typically O or %).
Thus, our single-open-channel approximation is valid for al-
most all cases that we consider in this work. Hence, the
derivation of the magnetic-sublevel formula only requires
angular-momentum recoupling considerations. This approxi-
mation allows us to calculate sublevel rates from J-level
rates (which we assume to be known) using the Clebsch-
Gordan coefficients instead of calculating them “from
scratch.” Ultimately, this leads to the fact that the polariza-
tion degrees of the studied dielectronic satellite lines are ra-
tional numbers [20,22].

We introduce the following notation (only angular mo-
mentum quantum numbers are listed explicitly).

Initial (autoionizing) state:

\LSIM ). (A2)

Final state (in the next higher ionization stage and the ejected
electron):

“uncoupled ™ representation |L'S'J'M}) ® [lmm,),  (A3)

“coupled” representation |Z§JM SJL'S D). (A4)

The L, S, J, and M, quantum numbers for the “coupled”
final state are the same as those for the initial (autoionizing)
state due to the selection rules in Eq. (A1) described above.
The eigenstates in the “uncoupled” and “coupled” represen-
tations (A3) and (A4) are related by
CZ§JM ;

ILSIM(L'S' D))= >, (L'S'DIL'S'J M)

J’M}mlms
J'M}mlms
® |7m,ms>, (A5)
IL'S'TM) @ [lmm)= >, Cﬁ,ﬂ%lm (L's'D
LSIM, e
X|LSIM (L' S'T)), (A6)
where
—~— L,
LSIM 1 ar roar ’ ’ ’ ’ ’
Cornmm L'SD = > (LS My M,-My ) M)
My=-L'

L
x 2 (L' TMpm|L M)
M,=-L

1 -
><<S’ 2 Mj;—M; mg|S M,—ML>

X(LSMy,M;-~M,|J M), (A7)
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are the matrix elements of the unitary transformation opera-
tor associated with the change of angular momentum repre-
sentation. These matrix elements are collections of Clebsch-
Gordan coefficients from which they inherit the unitarity

property

D |CZ§JMJ

gl
J Mjmlms

(L’S’T)|2= E |CLSJM.I (L’S’T)|2=1.

gl
J Mjmlmx

J'M}mlms L:S:JMJ

(A8B)
The sublevel-to-sublevel autoionization rate is given by

A(LSIM; — L'S'J'M))

I
« 2 2 [LSIM|H'|L'S'J' M) © [Imim,)?

] M= 12
(A9)

which is related to the rate A, defined by
A, < {LSIM |H'|LSIM (L' S'D))[? (A10)

through the matrix elements defined in Eq. (A7). The rate
(A10) is independent of M, hence,

A,=A(LSIM;—L'S")
=A(LSJ — L'S")
=2 A(LST = L'S'J).

7

(A11)

The total sublevel depopulation rate due to autoionization is

ALSIM))= > A(LSI—L'S'J)= > A, (Al12)
L's'Jy L's'

which is isotropic (i.e., independent of M,). Sublevel-to-
sublevel rates are

A(LSIM; — L'S'I'M})=A, F(LSIM, — L'S'J'M)),

(A13)
where
! _
F(LSIM; —L'S'TM)= > > |C§?A’},4,j”m (L'S'DP.
Tm=+1/2 S
m=—1""s
(A14)
By defining
1 J J'
FNISI-L'S'T)=—— 2
27+1, -, 7,
J mJ=—J
F(LSIm; — L'S'J'm}) (A15)

we can relate the sublevel and J-level autoionization rates as

F(LSIM; — L'S'J'M))
FN(LSJ —L'S'J")

XA(LSJ]—L'S'J").

A(LSIM,; — L'S'I'M)) =

(A16)
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2. Electron capture driven by a unidirectional
unpolarized electron beam

The cross section for electron capture is given by an ex-
pression analogous to Egs. (A1) and (A9) with one important
modification. In the study of the autoionization process the
direction of propagation of the continuum electron was un-
important, while here the electron is moving along the z axis.
The z component of its orbital angular momentum is zero—
therefore, instead of summing over m;, we set m;=0 in Eqgs.
(A9) and (A7). Also, we average over the continuum elec-
tron’s two spin states. Thus we can define

G(L'S'J'M}, — LSIM,)

1 min(L,L")
= 2 > WS MM-M|J M)
m=st | M=—min(Z,L")

)

- - 1 -
X(L'"IMO |L M)(S’ 2 M)-M mg|S M,—M)

2

X(LSMM;-M|J M, (A17)
and
GN(L'S'J' — LSJ)
1 J' J
=— > X G(L'S'J'm,— LSimy).
27" +1 7 T

mJ=—.I J

(A18)

The sublevel and J-level electron capture cross sections are
related by an expression analogous to Eq. (A16),

o(L'S' )M}, — LSIM,)

G(L'S'J'M)}, — LSIM,)
= ——o(L'S"J — LSJ).
GN(L'S'J' — LSJ)

(A19)

The sublevel electron capture rate coefficient is then given
by (vo), i.e., the average of the electron velocity v and the
electron capture cross section (A19) over the beam distribu-
tion function fz(E). The velocity and Kinetic energy of the

electron are related by
[2E
v=1/—,
m

where m is electron mass.

Electron capture is a resonant process. Thus, if we denote
the kinetic energy of the free electron needed for the capture
as E,, we can write [31]

o(E)=BAE-E,),

(A20)

(A21)

where o(E) represents the dependence of the J-level cross
section from the right-hand side of Eq. (A19) on electron
energy E. As with all J-level atomic data, this cross section is
isotropic, i.e., it is independent of the direction of the elec-
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tron beam. Therefore, the magnitude factor B in Eq. (A21)
can be obtained by evaluating the rate coefficient integral for
a normalized Maxwellian electron distribution function

fMaxw(U > T),

m 3/2 5
fMaxw(v,T) =47T(_) v2e—mv 12kT

A22
2wkT ( )

and comparing it with the expression derived from the
detailed-balance principle (see below). Thus for the rate co-
efficient we obtain

KMaxw(T) = J UU( %mv2>fMaxw(U’ T)dv . (A23)
0

After substituting from Eqgs. (A21) and (A22) we evaluate
the integral (A23) and obtain

8mm

K; TN=B——=>
Maxw( ) (277ka 3/2

E e BT (A24)

This result must be the same as the Saha-equilibrium-based
detailed-balance formula

2ah)3
Kaxw(T) = (—)3,2 8 A(LST— L'S'J)e BT,
2(2mmkT)”"* g,

(A25)

where
g.=2J+1 (A26a)

and

g =2J"+1 (A26b)

are the statistical weights of the two J levels under consid-
eration. The comparison between Egs. (A24) and (A25)
yields the magnitude factor B, which by substituting into
Egs. (A21) and (A19) gives the magnetic-sublevel electron
capture cross section

o(L'S'J' M), — LSIM,)

_G'S'J'M;— LSIM,)
GN(L'S'J' — LSJ)
>h g,
X2 8 A(LST— L'S'J)S[E~E,).
2mE, 8.1
(A27)

Finally, with Eqgs. (A20), (A26a), (A26b), and (A27), the
magnetic-sublevel electron capture rate coefficient (vo) can
be evaluated

G(L,S,J,M}*)ZS;JM‘I) 2h 27+ 1
—~— I B

GN(L'S'J — IS)) \2m’E,2J"+1

XA(LST—L'S'J"),

K:fB(Er)

(A28)

where f(E) is the electron beam distribution normalized ac-
cording to

f me(E)dE =1. (A29)
0
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