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The long-range quadrupole-quadrupole ��R−5� and leading dispersion ��R−6� interactions between all pairs
of excited Hg�6s6p� 3P0, 3P1, 3P2, and 3P1 atoms are determined. The quadrupole moments are calculated
using the ab initio relativistic configuration-interaction method coupled with many-body perturbation theory.
The van der Waals coefficients are approximated using previously calculated static polarizabilities and expres-
sions for the dispersion energy that are validated with similar systems. The long-range interactions are critical
for associative ionization in thermal and cold collisions, and are found to be quite different for different pairs
of interacting states. Based on this knowledge and the short-range parts of previously calculated potential
curves, improved estimates of the chemi-ionization cross sections are obtained.
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I. INTRODUCTION

Potential-energy curves for the interaction of two mercury
atoms in their lowest excited configuration �6s6p� have pre-
viously been calculated and used to estimate the chemi-
ionization cross sections for collisions of two such atoms �1�.
However, those potential curves were not accurate at dis-
tances beyond the valence region, which are of great impor-
tance in thermal and cold collisions. Reactions at such ener-
gies are pertinent to modeling of fluorescent lamps as well as
recent considerations of mercury as a candidate for an atomic
clock �2�. In the present work, the long-range interactions are
calculated and combined with the short-range parts of the
previously calculated potential curves �1� in order to provide
better estimates of the chemi-ionization cross sections.

Chemi-ionization is allowed if the potential energy
of the two interacting Hg atoms lies higher than the potential
energy of the ground-state Hg2

+ at any internuclear distance
R. For Hg�3P0�+Hg�3P0�, Hg�3P1�+Hg�3P0�, Hg�3P1�
+Hg�3P1�, Hg�3P2�+Hg�3P0�, and Hg�3P2�+Hg�3P1�, only
associative ionization

Hg��6s6p� + Hg��6s6p� → Hg2
+ + e−, �1�

utilizing the attractive interaction energy between Hg+ and
ground-state Hg, is possible at very low energies since
their total excitation energies are smaller than the ionization
potential of Hg. However, as discussed in Ref. �1�, based
on the potential-energy curves of Hg2

� and Hg2
+, essentially

all chemi-ionization in mercury at very low collision ener-
gies, even for the other reactant pairs, Hg�3P2�+Hg�3P2�,
Hg�1P1�+Hg�3P0�, Hg�1P1�+Hg�3P1�, Hg�3P2�+Hg�1P1�,
and Hg�1P1�+Hg�1P1�, can be expected to be of the associa-
tive type and will be referred to as associative ionization �AI�
henceforth.

For nonsymmetric atomic states �i.e., both atoms having
J�0�, the leading term in the long-range interaction is gen-
erally of the form C5 /R5, where C5 can be positive or nega-
tive. However, we will show that J�0 is neither a necessary
nor sufficient condition for C5�0. If C5 is positive and suf-
ficiently large, then reactions such as AI, which occur at
short range, are precluded. In all cases there is also an attrac-
tive van der Waals interaction of the form C6 /R6.

For the 10 possible combinations of the 3P0, 3P1, 3P2, and
1P1 states that may react, there is a total of 90 potential-
energy curves describing the interactions. The AI cross sec-
tion of only one of these pairs—Hg�3P1�+Hg�3P0�—has
been measured experimentally �although one experiment ap-
parently misidentified these reactants as Hg�3P0�+Hg�3P0��.
This experimental value is particularly useful in validating
the present cross sections since the autoionization width has
not yet been calculated, but is assumed to be large. The ex-
perimental cross section, combined with the theoretical po-
tential curves, suggests that the autoionization width is in-
deed sufficiently large to saturate ionization when the
continuum is penetrated at short range.

II. QUADRUPOLE MOMENTS OF ATOMS AND
MOLECULAR C5 COEFFICIENTS

The quadrupole moments of the mercury atom in its 6s6p
3P1, 3P2, and 1P1 states �the quadrupole moment of the 3P0
atom vanishes by symmetry�, as well as the off-diagonal ma-
trix elements, are calculated using the ab initio relativistic
valence configuration-interaction �CI� method based on the
Brueckner orbitals �3�, which effectively includes core polar-
ization. In addition, the random-phase-approximation �RPA�
chain of diagrams is included. This method expands the two-
particle basis functions as

���,J,M� = �
k�l

ck,l�k,l��,J,M� , �2�

where � is the parity of the state � and J and M are the total
angular momentum and its projection. The weights ck,l are

*cohen@lanl.gov
†andrei@unr.edu

PHYSICAL REVIEW A 76, 012706 �2007�

1050-2947/2007/76�1�/012706�10� ©2007 The American Physical Society012706-1

http://dx.doi.org/10.1103/PhysRevA.76.012706


determined by solving the eigenvalue problem based on the
Hamiltonian in the model space spanned by the basis func-
tions defined in the subspace of virtual orbitals,

�k,l��,J,M� = �k,l �
mk,ml

cjk,mk;jl,ml

J,M a�nk,�k,mk�
† a�nl,�l,ml�

† 	0core
 .

�3�

Here the sets �n ,� ,m� enumerate quantum numbers, the �k,l

are normalization factors, the a† are creation operators, and
the quasivacuum state 	0core
 corresponds to a closed-shell
core containing 78 of the 80 electrons of the Hg atom. The
one-particle orbitals �k are determined by solving a Dirac
equation

�h0 + VDHF + 	��k = 
k�k. �4�

Here h0 includes the rest mass term, kinetic energy, and the
Coulomb interaction with the nucleus. VDHF is the Dirac-
Hartree-Fock �DHF� potential due to core electrons. 	 is the
self-energy operator computed in the second-order approxi-
mation �see, e.g., Ref. �4��. Qualitatively, this correction de-
scribes a response of a valence electron to polarization of
the core by the electron’s own field and is the dominant
correlation effect. The resulting one-particle orbitals are usu-
ally referred to as Brueckner orbitals. Once the Brueckner
orbitals are computed, we solve the CI problem in the model
space. The model space Hamiltonian includes the Coulomb
interaction between valence electrons. We do not include the
so-called screening corrections to the Hamiltonian. As dem-
onstrated �4�, these corrections, although computationally
expensive, are relatively insignificant for divalent atoms.

With the determined CI wave functions we form a matrix
element of the quadrupole operator. The associated one-
particle reduced quadrupole matrix elements are given by

��i�Q�� j
 = ��i�C�2��� j


0

�

r2�Gi�r�Gj�r� + Fi�r�Fj�r��dr ,

�5�

where C�2� is the normalized spherical harmonic �5�, and G
and F are the large and small radial components of the rela-
tivistic wave function. Further we employ the RPA approxi-
mation �6�, which accounts for shielding of an externally
applied field by the core electrons and substitutes dressed
matrix elements for the bare one-particle matrix elements.

The quadrupole-quadrupole interaction between two at-
oms is expressed by �7–9�

VQQ =
1

R5 �
�=−2

2

w����Q��I�Q−��II, �6�

where

w��� =
4!

�2 − �� ! �2 + ��!
. �7�

The quadrupole spherical tensor is defined by1

Q� = − �
i

ri
2C�

�2��r̂i�, �8�

where the sum goes over all atomic electrons �though in the
case of Hg�6s6p� only the unpaired 6p electron contributes�.
The quadrupole moments Q�2S+1PJ� are defined, as conven-
tional, by the component in the “stretched” M =J state,

Q�2S+1PJ� = 2�2S+1PJ,J	Q0	2S+1PJ,J
 �9�

�note the factor of 2; some definitions do not include this
factor �10�� and is related to the reduced matrix element,
given by Eq. �5�, by a factor derived from the Wigner-Eckart
theorem �11�,

cWE�J� = � J 2 J

− J 0 J
� , �10�

so that

Q�2S+1PJ� = 2cWE�J��2S+1PJ		Q		2S+1PJ
 . �11�

Both the reduced matrix elements and the conventional
quadrupole moments are given in Table I. The accuracy of
these moments is expected to be a few percent �for example,
we find that the RPA shielding reduces the CI values for
quadrupole moments by less than 3%�. We also note that
nonrelativistically the ratio is Q�3P2� /Q�3P1�=−2, while in
our calculations this ratio is −2.45. This deviation reflects the
importance of relativistic corrections for the heavy mercury
atom.

For a particular pair of atomic states 2Sa+1PJa
and 2Sb+1PJb

,
the Hamiltonian H for the reduced quadrupole moment can
be obtained in a double atomic basis. For two atoms in the
same state, 
= 	Sa ,La ,Ja ,Ma
	Sa ,La ,Ja ,Mb
 and 
�
= 	Sa ,La ,Ja ,Ma�
	Sa ,La ,Ja ,Mb�
 for the initial and final state,
respectively. For the two like atoms in different states,
�Sa ,La ,Ja�� �Sb ,Lb ,Jb�, symmetric and antisymmetric linear
combinations of the functions on centers I and II must be
formed,

1Atomic units are used except where explicitly indicated
otherwise.

TABLE I. Quadrupole matrix elements of the excited mercury
atom �Hg 6s6p� in atomic units.

3P0
3P1

3P2
1P1

�a� Reduced matrix elements
3P0 0 0 −10.22 0
3P1 0 8.218 −15.78 3.131
3P2 −10.22 15.78 −15.38 2.860
1P1 0 3.131 −2.860 −29.67

�b� Conventional quadrupole moments

0 3.00 −7.35 −10.83
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 = 2−1/2�	Sa,La,Ja,Ma
I	Sb,Lb,Jb,Mb
II

± 	Sa,La,Ja,Ma
II	Sb,Lb,Jb,Mb
I� �12�

and


� = 2−1/2�	Sa,La,Ja,Ma�
I	Sb,Lb,Jb,Mb�
II

± 	Sa,La,Ja,Ma�
II	Sb,Lb,Jb,Mb�
I� . �13�

The quadrupole-quadrupole interaction energy is then given
by

�
	VQQ	
�
 = R−5��
�

w����− 1�Ja−Ma�− 1�Jb−Mb� Ja 2 Ja

− Ma � Ma�
�� Jb 2 Jb

− Mb − � Mb�
��a�Q�a
�b�Q�b


± �1 − �a,b��
�

w����− 1�Ja−Ma�− 1�Jb−Mb� Ja 2 Jb

− Ma � Mb�
�� Jb 2 Ja

− Mb − � Ma�
��a�Q�b
�b�Q�a
� �14�

in terms of the Wigner 3j symbols and the reduced matrix elements, which satisfy �a�Q�b
= �−1�Ja−Jb�b�Q�a
. By the prop-
erties of the 3j symbols, we can get two selection rules: �i� the first �diagonal� term vanishes if Ja�2 or if Jb�2 and �ii� the
second �off-diagonal� term vanishes if 	Ja+Jb	�2. Thus the Hg�3P0�+Hg�3P2� collision possesses a long-range C5 /R5 inter-
action even though the Hg�3P0� atom has no quadrupole moment. Using the conditions Ma+Mb=Ma�+Mb�=�, where � is the
total angular momentum projection and a good molecular quantum number, we get the matrix elements

HMa,Ma�
�Sa,Sb,Ja,Jb,��

= �− 1��R−5� 24

�2 − Ma + Ma�� ! �2 + Ma − Ma��!
�− 1�Ja+Jb� Ja 2 Ja

− Ma Ma − Ma� Ma�
�� Jb 2 Jb

Ma − � − �Ma − Ma�� � − Ma�
�

��a�Q�a
�b�Q�b
 ± �1 − �a,b�
24

�2 − Ma − Ma� + �� ! �2 + Ma + Ma� − ��!
� Ja 2 Jb

− Ma Ma + Ma� − � � − Ma�
�

�� Jb 2 Ja

Ma − � − �Ma + Ma� − �� Ma�
�	�a�Q�b
	2� , �15�

where the dimensions of the matrix are given by
max��−Jb ,−Ja��Ma�min��+Jb ,Ja� and max��−Jb ,
−Ja��Ma��min��+Jb ,Ja�.

The C5 coefficients are given by the eigenvalues
of this matrix. The eigenvectors can be used to
complete identification of the molecular state
S= �Sa ,Ja ,Sb ,Jb ,� ,� ,R , i� where 0���4, �=g or u,
R=+ or −, and i distinguishes different states of the same
symmetry. In a few cases of double zero eigenvalues it was
necessary to take the symmetric and antisymmetric linear
combinations of the degenerate eigenvectors.

The resulting C5 coefficients are given in Table II. It can
be seen that of the total of 90 distinct molecular states, 37
have positive �repulsive� C5 coefficients, 32 have negative
�attractive� C5 coefficients, and 21 have zero C5 coefficients.
Of the 21 states with zero C5 coefficients, 12 are “nonobliga-
tory” in the sense that nonzero values would be allowed by
the selection rules.

III. POLARIZABILITIES OF ATOMS AND MOLECULAR
C6 COEFFICIENTS

The dispersive van der Waals interaction between two at-
oms, C6 /R6 can be accurately calculated in terms of the dy-
namic polarizabilities of the two atoms. It can be approxi-
mately calculated in terms of the static polarizabilities of the

two atoms, �a and �b. Only the latter are available for ex-
cited mercury atoms. The most frequently used approxima-
tion �12� for the C6 coefficient in terms of the static polariz-
abilities is the Slater-Kirkwood formula �13�

C6 =
3

2

�a�b

��a/na + ��b/nb

, �16�

where na and nb are the numbers of electrons in the outer
shells of the two atoms. However, there exists relatively little
experience with excited states. To validate the approximation
and get some idea of its accuracy we sought similar systems
where both accurate static polarizabilities and accurate van
der Waals coefficients are available. Two apropos systems
were found: �1� rare-gas dimers with both atoms in excited
3P2 states and �2� zinc dimers with one atom excited �43P or
41P� and the other atom in the ground state. In both cases the
C6 coefficients were calculated using the exact Casimir-
Polder formula �14� in terms of the frequency-dependent po-
larizabilities. The comparison of the Slater-Kirkwood and
Casimir-Polder results in Table III suggests an accuracy of
�20%.

The ab initio values obtained by Rosenkrantz et al. �17�
for the static polarizabilities of the mercury atom in its 6s6p
3P and 1P states with 	�ML=0� and ��ML=1� projections,
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TABLE II. Long-range interaction potentials for Hg�6s6p�+Hg�6s6p� with spin-orbit coupling �Hund’s case c�, in atomic units.

3P2+ 3P2

0g
+ 0g

+ 0g
+ 0u

− 0u
− 1g

+ 154.3
R5 − 704

R6 + 71.4
R5 − 1074

R6 − 22.9
R5 − 768

R6 + 131.2
R5 − 600

R6 − 50.1
R5 − 816

R6 − 66.8
R5 − 777

R6

1g 1u 1u 2g 2g 2u

+ 53.3
R5 − 971

R6 + 56.9
R5 − 1040

R6 − 43.4
R5 − 714

R6 − 87.9
R5 − 814

R6 + 40.6
R5 − 932

R6 − 94.6
R5 − 787

R6

3g 3u 4g

− 121.7
R5 − 705

R6 + 40.6
R5 − 705

R6 + 81.1
R5 − 478

R6

3P2+ 3P1

0g
+ 0g

− 0g
− 0u

+ 0u
− 0u

−

+ 199.1
R5 − 972

R6 − 212.9
R5 − 932

R6 + 13.9
R5 − 893

R6 − 132.9
R5 − 972

R6 + 146.7
R5 − 966

R6 − 80.0
R5 − 849

R6

1g 1g 1g 1u 1u 1u

− 132.7
R5 − 896

R6 − 53.7
R5 − 809

R6 + 20.6
R5 − 827

R6 + 188.0
R5 − 971

R6 − 107.6
R5 − 750

R6 + 19.3
R5 − 820

R6

2g 2g 2u 2u 3g 3u

+ 232.2
R5 − 822

R6 + 33.2
R5 − 678

R6 − 132.9
R5 − 972

R6 + 33.0
R5 − 544

R6 − 99.5
R5 − 681

R6 + 33.3
R5 − 681

R6

3P2+ 3P0

0g
+ 0u

+ 1g 1u 2g 2u

+ 125.3
R5 − 947

R6 − 125.3
R5 − 947

R6 − 83.6
R5 − 869

R6 + 83.6
R5 − 869

R6 + 20.9
R5 − 611

R6 − 20.9
R5 − 611

R6

3P1+ 3P1

0g
+ 0g

+ 0u
− 1g 1u 2g

+ 81.0
R5 − 736

R6 − 857
R6 − 984

R6 − 54.0
R5 − 796

R6 − 796
R6 + 13.5

R5 − 984
R6

3P1+ 3P0

0g
− 0u

− 1g 1u

− 699
R6 − 699

R6 − 879
R6 − 879

R6

3P0+ 3P0

0g
+

− 787
R6

1P1+ 3P2

0g
+ 0g

− 0g
− 0u

+ 0u
− 0u

−

− 114.0
R5 − 1401

R6 + 271.6
R5 − 3309

R6 − 37.0
R5 − 1655

R6 − 124.9
R5 − 1401

R6 + 276.0
R5 − 3282

R6 − 32.6
R5 − 1688

R6

1g 1g 1g 1u 1u 1u

+ 289.1
R5 − 2032

R6 − 179.5
R5 − 1812

R6 + 5.5
R5 − 1917

R6 + 288.9
R5 − 2044

R6 − 170.8
R5 − 1821

R6 + 5.7
R5 − 1896

R6

2g 2g 2u 2u 3g 3u

− 337.2
R5 − 2124

R6 + 44.5
R5 − 1800

R6 − 344.1
R5 − 2121

R6 + 39.4
R5 − 1813

R6 + 117.3
R5 − 967

R6 + 121.7
R5 − 967

R6

1P1+ 3P1

0g
+ 0g

+ 0g
− 0u

+ 0u
+ 0u

−

− 280.8
R5 − 2304

R6 − 1969
R6 − 1419

R6 − 304.4
R5 − 2304

R6 − 1969
R6 − 1419

R6

1g 1g 1u 1u 2g 2u

+ 187.2
R5 − 2159

R6 − 2159
R6 + 202.9

R5 − 2159
R6 − 2159

R6 − 46.8
R5 − 1419

R6 − 50.7
R5 − 1419

R6

1P1+ 3P0

0g
− 0u

− 1g 1u

− 2843
R6 − 2843

R6 − 1262
R6 − 1262

R6

1P1+ 1P1

0g
+ 0g

+ 0u
− 1g 1u 2g

+ 1056.4
R5 − 8477

R6 − 4920
R6 − 2077

R6 − 704.2
R5 − 6618

R6 − 6618
R6 + 176.1

R5 − 2077
R6
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neglecting spin-orbit coupling, are given in Table V. These
values have been transformed to the J-MJ representation us-
ing the transformation matrix given in their paper, which was
determined by fitting the experimental atomic term values
�18�. This transformation assumes that the radial functions of
states with the same L ,S but different J ,MJ are essentially
the same. No experimental values are available for the ex-
cited states, but their values for the ground state of mercury,
�=36.2 calculated with a two-electron relativistic effective
core potential �ECP� and 34.3 calculated with a 12-electron
relativistic ECP, can be compared with the experimental
value, �=33.91±0.34 �19�. The excited-state polarizabilities
that we use for the triplet states were calculated with the
12-electron relativistic ECP, but the singlet excited states
were calculated only with the two-electron relativistic ECP.

Rosenkrantz et al. �17� also did a similar calculation of
the static polarizabilities of the excited zinc atom with a rela-
tivistic two-electron ECP. We may get some additional idea
of the accuracy of the mercury polarizabilities by comparing

these results with those of Ellingsen et al. �20� for zinc,
given in Table III. The results of Ellingsen et al. presumably
should be of higher accuracy since they account for core
polarization; also, their value for the ground-state polariz-
ability is in excellent agreement with the experimental value.
This comparison is shown in Table IV. The triplet and singlet
excited-state polarizabilities of Rosenkrantz et al. are �11%
and �78% larger, respectively, than those of Ellingsen et al.
This agreement is quite satisfactory for the triplet states, but
less so for the singlet states.

These comparisons suggest that the uncertainty in the C6
coefficients, which we present below, arises more from the
static polarizabilities themselves than from use of the Slater-
Kirkwood approximation.

The eigenvectors x of Eq. �15� were used to calculate the
polarizabilities for the atomic states forming each molecular
state

�i = xT�S�Ax�S� , �17�

where A is a diagonal matrix containing the polarizabilities
of part �b� of Table V on the diagonal. The corresponding C6
coefficient is then obtained using Eq. �16�. These eigenvec-
tors, which were obtained for the leading asymptotic interac-
tion, are expected to still be a reasonable approximation
when higher-order terms are included. The resulting C6 co-
efficients are given in Table III. They can be seen to vary
significantly among the various states, with the interactions
involving the singlet atom generally being the larger because
of its greater polarizability. However, the comparison in
Table IV suggests that the Rosenkrantz et al. polarizabilities
for the singlet states may be significantly too large. If these
polarizabilities are reduced by the same factor, 0.56, as for
zinc, the C6 coefficients would be reduced by a factor of
about 0.66 for the molecular states arising from a 1P1 atom
interacting with a 3PJ atom and a factor of about 0.42 for the
molecular states arising from the interaction of two 1P1 at-
oms. At least for zinc, the uncertainty in the triplet atomic
polarizabilities appears to be much smaller—the values of
Ellingsen et al. being only 10% smaller than those of
Rosenkrantz et al. Similar changes for mercury would reduce
the C6 coefficients by about a factor of 0.86 for molecular
states formed from two triplet atoms and by about a factor of
0.92 for molecular states formed from a singlet and a triplet
atom. With both changes simultaneously, the effect on the C6
coefficients for a singlet and triplet pair are approximately
multiplicative.

TABLE III. Comparison of C6 coefficients calculated by the
exact Casimir-Polder �CP� formula using the dynamic polarizabil-
ities with those approximated by the Slater-Kirkwood �SK� formula
�Eq. �16�� using only the static polarizabilities �. These results are
presented to validate the SK formula for excited states.

�a� Rare-gas dimers �na=nb=1 in the SK formula�
�a

a �b
a C6

CPb SK

Ne�3s , 3P2,2�+Ne�3s , 3P2,2� ,4g 180.2 180.2 1877 1814

Ar�4s , 3P2,2�+Ar�4s , 3P2,2� ,4g 301.7 301.7 4417 3930

Kr�5s , 3P2,2�+Kr�5s , 3P2,2� ,4g 315.8 315.8 4994 4209

Xe�6s , 3P2,2�+Xe�6s , 3P2,2� ,4g 387.4 387.4 7138 5719

�b� Zinc dimers �na=nb=2 in the SK formula�
�a

c �b
c C6

CPc SK

Zn�4s2,1S�+Zn�4s2,1S�,1	 39.12 39.12 282 260

Zn�4s2,1S�+Zn�4s2,3P�,3	 39.12 89.08 435 471

Zn�4s2,1S�+Zn�4s2,3P�,3� 39.12 55.21 370 335

Zn�4s2,1S�+Zn�4s2,1P�,1	 39.12 396.74 1139 1258

Zn�4s2,1S�+Zn�4s2,1P�,1� 39.12 116.51 674 567

aFrom Ref. �15�.
bFrom Ref. �16�; dynamic polarizabilities were adjusted to agree
with Ref. �15� in the static limit.
cFrom Ref. �20�.

TABLE IV. Comparison of static polarizabilities.

Polarizability

Ellingsen et al. �20� Rosenkrantz et al. �17� Experimental �21�
Zn�4s2,1S� 39.12 35.1 38.8±0.8

Zn�4s2,3P	� 89.08 99.37

Zn�4s2,3P�� 55.21 61.37

Zn�4s2,1P	� 396.74 705.45

Zn�4s2,1P�� 116.51 207.42
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IV. ASSOCIATIVE IONIZATION CROSS SECTIONS

The long-range potentials are very important, even domi-
nant, for AI in low-energy collisions of two excited mercury
atoms. For the present estimates of the cross sections, we
adopt a model similar to that used in Ref. �1�; i.e., ionization
is assumed to occur if the trajectory on the quantum-
mechanical potential curve has a classical turning point
smaller than both the black-sphere distance Rs and the cross-
ing distance Rx �if any� of the potential curve with the Hg2

+

potential curve. The choice of Rs=4 Å is discussed in Ref.
�1�. The sensitivity to this choice will be examined below.
The relevant data characterizing the short-range potentials,
from Ref. �1�, is given in Table VI.2 For each potential curve,
the AI cross section is taken to be

� = ��min�bs,bx,bo��2. �18�

The first two impact parameters depend only on the short-
range potential. The largest impact parameter accessing the
black-sphere distance is

bs = �1 −
V�Rs�

E
�1/2

Rs �19�

and the largest impact parameter accessing the crossing into
the continuum is

bx = �1 −
V�Rx�

E
�1/2

Rx, �20�

assuming the collision energy E exceeds the potential ener-
gies V�R� at these points. The value of bo, determined by the
long-range potential, is given by �see the Appendix�

bo = � Ro
3

2E

dV�Ro�
dR

�1/2

, �21�

where Ro is obtained by numerically solving

Ro

2

dV�Ro�
dR

+ V�Ro� = E , �22�

with

V�R� =
C5

R5 +
C6

R6 �23�

for its largest real root.
It can be seen in Table VI that most of the contributions to

the AI cross sections at a collision energy of 0.000 95 a.u.
are limited by the long-range potentials, which determine the
classical orbiting impact parameter. However, it should be
kept in mind that the potential energy at the curve crossing
�if any� and the black-sphere distance provide a necessary
condition. For AI to occur, the collision energy must exceed
the potential energy at these distances. Thus, without tunnel-
ing, which can be expected to be negligible except possibly
in ultracold collisions, the cross section will vanish at suffi-
ciently low energies if the interatomic potential energy is
positive at either of these distances. At the collision energy
of 0.000 95 a.u., 47 of the 90 potential curves do not con-
tribute to AI for this reason. At still lower collision energies,
the contributions that are energetically allowed are
increasingly determined by the long-range potentials. At
E�2�10−5 a.u., the nonzero contributions are entirely de-
termined by the long-range potentials.

We now examine the sensitivity of the cross sections to
the parameters, in particular C6 and Rs, which are most un-
certain. The classical orbiting cross section is simply ob-
tained for pure power-law potential energy curves �see the
Appendix�: for V�R�=C5 /R5 it is �orb�5�=

5�
3

� −3C5

2E
�2/5

, and for

V�R�=C6 /R6 it is �orb�6�=3�� −C6

4E
�1/3

. With the dependence
C6

1/3, a reduction in C6 by a factor of 0.66 would decrease the
cross section by only a factor of 0.87, so the sensitivity is not
too great. The uncertainty due to the parameters associated
with the short-range potentials, in particular whether Vs and
Vx are positive or negative, is greater than this.

For low-energy collisions, there is little uncertainty due to
Rs, which is more-or-less arbitrarily chosen �see Ref. �1��.
This does not necessarily mean that the magnitude of the
autoionization width, which is presently unknown, is unim-
portant. It does mean that, accepting the black-sphere model,
the value taken for Rs is not critical. If the width is large
enough to saturate ionization in the energetically allowed
region, its exact magnitude will be unimportant. If not satu-
rated, the width will reduce the size of the cross section by a
factor that approaches a constant at low energies.

The total AI cross sections are given by statistically
weighted sums over all the potential curves arising from the

pair of atomic reactants i� 2S+1PJ and i�� 2S�+1PJ�,

2A clarification may be helpful. In Ref. �1� the cross sections
ignoring the barriers in the ab initio potential curves �labeled “nb”
there� were calculated neglecting the potential only at R�5 Å. In
the present calculations, the short-range potential is taken to be
completely characterized by the values of Rs, Vs, Rx, and Vx in Table
VI �interactions not listed in this table have potential curves too
repulsive for the AI reaction to occur�. Also, note two typographical
errors in Ref. �1�: �1� In Table II, 3P1+ 3P0 has only one state of 0g

−

symmetry, and �2� in the caption of Fig. 3, 0u
−=dash dot.

TABLE V. Excited mercury atom �Hg 6s6p� dipole polarizabil-
ities in atomic units.

�a� Ab initio calculation in L-S representation �from Ref. �17��
	 �

3P 128.38 58.77
1P 532.58 158.08

�b� Transformed to J-MJ representation

MJ=0 MJ=1 MJ=2
3P0 81.97
3P1 70.03 95.11
3P2 105.18 93.58 58.77
1P1 521.31 156.55
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TABLE VI. Distances R �in Å� and potential energies V �in a.u.� of the black-sphere radius �subscript s�, the crossing with the
molecular-ion potential curve if any �subscript x�, and classical orbiting �subscript o�. The corresponding impact parameters b �in Å� are
given for a collision energy 0.000 95 a.u. Only the potential curves contributing to AI cross sections at this collision energy are listed. The
cross section is determined by the smallest b �shown as boldface type�.

Black sphere Continuum crossing Classical orbiting

Reaction Symm-
etry

Rs Vs bs Rx Vx bx Ro Vo bo

3P0+ 3P0
a 0g

+ 4.00 −0.00954 13.29 2.97 −0.00620 8.15 5.76 −0.000475 7.05
3P1+ 3P0 0g

− 4.00 −0.0169 17.33 2.96 −0.0139 11.70 5.64 −0.000475 6.91

1g 4.00 −0.00831 12.49 3.20 −0.0116 11.65 5.86 −0.000475 7.18

0u
− 4.00 −0.000195 4.39 3.70 −0.000712 4.89 5.64 −0.000475 6.91

3P1+ 3P1 0g
+ 4.00 −0.00820 12.41 2.97 −0.0223 14.69 5.84 −0.000475 7.15

1g 4.00 +0.000269 3.39 4.12 0.000203 3.65 6.24 −0.000534 7.80

2g 4.00 −0.00637 11.10 3.64 −0.0103 12.54 5.86 −0.000455 7.12
3P2+ 3P0 2g 4.00 −0.00178 6.78 5.26 −0.00421 6.31

2u 4.00 −0.00475 9.79 5.75 −0.000509 7.13
3P2+ 3P1 1g 4.00 +0.000897 0.95 6.82 −0.000568 8.62

3g 4.00 −0.0148 16.29 6.47 −0.000566 8.18

1u 4.00 −0.00129 6.14 6.58 −0.000566 8.31

2u 4.00 −0.00355 8.70 6.87 −0.000565 8.67
3P2+ 3P2 0g

+ 4.00 −0.00134 6.22 5.95 −0.000507 7.37

3g 4.00 −0.000478 4.90 6.64 −0.000573 8.40

4g 4.00 −0.0222 19.76 3.69 +0.000762 1.64

0u
− 4.00 −0.000567 5.05 6.22 −0.000531 7.77

1P1+ 3P0 0g
− 4.00 −0.0174 17.56 7.13 −0.000475 8.73

1g 4.00 −0.000319 4.62 6.23 −0.000475 7.63

0u
− 4.00 −0.000759 5.37 7.13 −0.000475 8.73

1u 4.00 −0.000800 5.43 6.23 −0.000475 7.63
1P1+ 3P1 0g

+ 4.00 −0.0141 15.92 7.95 −0.000567 10.05

0g
+ 4.00 −0.00522 10.19 6.71 −0.000475 8.21

0g
− 4.00 −0.00174 6.73 6.35 −0.000475 7.78

1g 4.00 −0.00454 9.61 6.81 −0.000475 8.34

2g 4.00 −0.00228 7.37 6.64 −0.000513 8.24

0u
+ 4.00 −0.0219 19.62 8.02 −0.000570 10.15

0u
+ 4.00 −0.0209 19.20 6.71 −0.000475 8.21

1u 4.00 −0.00764 12.02 6.81 −0.000475 8.34

1u 4.00 −0.00513 10.12 5.48 −0.000048 5.61
1P1+ 3P2 0g

+ 4.00 −0.0118 14.67 6.99 −0.000546 8.78

1g 4.00 −0.0143 16.00 7.45 −0.000556 9.38

1g 4.00 +0.000060 3.87 6.65 −0.000471 8.13

2g 4.00 −0.0214 19.39 8.07 −0.000577 10.23

1u 4.00 −0.0254 21.05 7.42 −0.000554 9.34

1u 4.00 +0.000823 1.46 6.63 −0.00047 8.11

2u 4.00 −0.0211 19.26 8.09 −0.000578 10.26

3u 4.00 −0.00608 10.88 4.53 +0.0001883 4.05
1P1+ 1P1 0g

+ 4.00 −0.0257 21.18 7.81 −0.000475 9.57

0g
+ 4.00 −0.00580 10.66 5.33 +0.00207 0

1g 4.00 −0.00384 8.98 9.52 −0.000568 12.04

2g 4.00 −0.00820 12.41 5.61 −0.000147 6.03

0u
− 4.00 −0.0157 16.76 6.77 −0.000475 8.29

aWith curve crossing taken into account.
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FIG. 1. Associative ionization cross sections for collisions of two mercury atoms in the indicated states. The solid curves take into
account the long-range and short-range potentials �Eq. �18��. The dashed curves take into account only the long-range potentials �Eq. �26��.
The cross section for Hg�3P0�+Hg�3P0� is shown as a dotted curve for a special case �see text�.
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�i+i� = �2Ji + 1�−1�2Ji� + 1�−1�2 − �i,i��
−1�

��
r

�2 − ��,0��i+i�
���

r �,

�24�

where � is the Kronecker delta and the sum goes over the
molecular states listed in Table II for each reaction. This sum
reflects the double degeneracy of the ��0 states and the
pairing of g-u states in the cases of nonidentical states.

The resulting cross sections are shown in Fig. 1. These
cross sections are expected to be valid down to energies
where the scattering is predominantly s-wave. The maximum
contributing angular momentum is roughly

Lmax = �2�E�1/2bo, �25�

where � is the reduced mass and the impact parameter bo is
given in the Appendix. For an attractive C5 /R5 potential,
Lmax�847�−C5�1/5E3/10, and for a C6 /R6 potential, Lmax

�831�−C6�1/6E1/3 for Hg�+Hg� collisions. Thus the semi-
classical description, which requires Lmax�1, should be
valid above collision energies of �5�10−12 a .u. �tempera-
ture of �2 �K� with typical C5 coefficients and above
�5�10−11 a .u. �temperature of �20 �K� when all C5 co-
efficients vanish.

Given the uncertainty in the short-range potentials, it is of
interest to consider another approximation to the AI cross
sections that might have validity at very low collision ener-
gies. Such an approximation can be obtained by considering
only the long-range potentials, i.e.,

�LR = �bo
2 �26�

instead of Eq. �18�. This approximation neglects any reduc-
tion due to repulsion in the short-range potential. These cross
sections are shown as dashed curves in Fig. 1.

At very low energies the dependence of the cross section
on energy tends to be a power law: E−2/5 in cases with con-
tributing attractive C5 /R5 potentials and E−1/3 otherwise. At
sufficiently low energies, potential curves with positive C5
coefficients will cease to contribute to the cross section, and
potential curves with negative C5 coefficients will have this
contribution dominate over any contribution from the C6 po-
tential. The thermal average

�̄�T� =
1

�kT�2

0

�

��E�Ee−E/kTdE �27�

is particularly easy to obtain for a cross section having
power-law dependence. For

��E� = cEn, �28�

�̄�T� = ��n + 2���kT� , �29�

where � is the Euler gamma function, with pertinent values
��− 1

3 +2�=0.9027 and ��− 2
5 +2�=0.8935.

The cross section for AI in the 3P0+ 3P0 collision is dis-
played as a dotted curve because it is a special case, subject
to additional uncertainty. This cross section is presented as
an upper bound, as are all the black-sphere cross sections,
but, unlike the other cases, the true cross section is expected

to be considerably smaller. In order for this reaction to occur
at all in cold collisions, the Hg�3P0�+Hg�3P0� asymptote
must be above the minimum in the Hg2

+ well. Though not all
previous work has agreed on the sufficiency of the binding
energy of Hg2

+, the most reliable experimental and theoreti-
cal results now agree that this well depth is greater than the
required 1.10 eV �see Ref. �1� for discussion of this point�.
However, the single potential curve coming from the
Hg�3P0�+Hg�3P0� asymptote does not cross the Hg2

+ curve,
so adiabatically AI still would not occur. The reason AI is
nonetheless possible is that there is an avoided crossing of
this curve with another curve of 0g

+ symmetry coming from
the Hg�3P1�+Hg�3P1� asymptote. Their diabatic crossing
probability is �0.33, only weakly dependent on the collision
energy as long as E is small compared with the potential
energy of 0.013 a.u. at the crossing. An important point here
is that the state corresponding to this potential curve has 93%
quintet character and quintet states do not couple to the ion-
ization continuum �only singlet and triplet states can be
formed by coupling Hg2

+ to an electron, and the relevant
coupling matrix element conserves spin�. Thus the autoion-
ization width is reduced by a factor of �14. Even if the
black-body model is valid for the other reactions, it is much
less likely to be valid with an autoionization width this small.

V. CONCLUSIONS

The uncertainty of long-range barriers, which affected the
results in Ref. �1�, has been resolved. The long-range 1/R5

interactions, which may be attractive or repulsive, have been
accurately calculated. The 1/R6 interactions, which are gen-
erally attractive, have been determined less accurately, but
still sufficient for useful estimates of the AI cross sections.

The only AI cross section for mercury that has been ex-
perimentally measured is for Hg�3P1�+Hg�3P0�. The most
reliable values are 99 Å2 and 64 Å2, with error bars of
25 Å2, which come from two different analyses of the same
experiment �22� �see footnote 5 of Ref. �1��, although there is
an older reported experimental value �23� of 460 Å2. The
present thermally averaged value for temperature 300 K is
83 Å2, in agreement with the most recent experiment. This
agreement tends to validate the black-sphere model, which,
in principle, provides an upper limit on the cross sections.
Another experimental value �24� of 160±40 Å2 has been
presented for the Hg�3P0�+Hg�3P0� reaction, but has been
generally repudiated on experimental grounds �22,25,26� and
is inconsistent with the present upper limit on the cross sec-
tion for this reaction.

The cross section for AI in the Hg�3P0�+Hg�3P0� colli-
sions deserves attention because of the proposed use of 3P0
as an atomic clock state, even if the discussion is necessarily
speculative. Compared with the other reaction pairs, the
“strength” of this reaction may be reduced by three factors: a
factor of �0.33 due to the required curve hopping, a factor
of �0.07 due to the nonionizing quintet component, and a
factor due to the time spent in the continuum being fairly
short. Only the first factor has been taken into account in the
cross section displayed as a dotted line in Fig. 1. The other
two factors could easily reduce the cross section by another
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order of magnitude or more. Better theoretical estimates will
require determination of the relevant autoionization widths.
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APPENDIX: CLASSICAL ORBITING CROSS
SECTIONS

The classical orbiting distance Ro and impact parameter
bo at collision energy E are given by the solutions of the
simultaneous equations,

Veff�R� = E �A1a�

and

dVeff�R�
dR

= 0, �A1b�

where

Veff�R� = V�R� +
b2E

R2 , �A2�

for R and b. The corresponding cross section is

�orb = �bo
2. �A3�

For

V�R� =
Cn

Rn , �A4�

�orb�n� =
�n

n − 2
�− �n − 2�Cn

2E
�2/n

, �A5�

so �orb�5�=
5�
3

� −3C5

2E
�2/5

and �orb�6�=3�� −C6

4E
�1/3

. For

V�R� =
C5

R5 +
C6

R6 , �A6�

Eqs. �A1� can be solved numerically. The largest positive
real root, assuming such exists, gives the pertinent result;
otherwise, classical orbiting does not occur.
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