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We consider a system trapped in a resonance state, whose decay at zero scattering angle can be related,
through the optical theorem, to the total cross section �TCS�. We show that for the resonance to contribute to
the TCS a peak structure the resonance conditions must be satisfied: �i� Several rotations of the complex �the
Regge trajectory—viz., imaginary part versus the real part of the complex angular momentum—stays close to
the real axis� and �ii� coherent addition of forward-scattering subamplitudes �the real part of the Regge pole is
close to an integer�. We exploit the recent complex angular momentum approach of Macek et al. �Phys. Rev.
Lett. 93, 183203 �2004��, used to analyze low-energy oscillations observed in the elastic TCS for proton-H
scattering, for a detailed analysis of Regge trajectories and their contributions to the TCS in electron-atom
scattering for the case of Z=75 using the model Thomas-Fermi potential. We conclude by demonstrating
through comparison with existing theory and measurements that the Thomas-Fermi potential when used with
the appropriate parameters captures the essential physics �Ramsauer-Townsend minima and the Wigner thresh-
old law� in the near-threshold e-Ar and e-Kr elastic scattering.
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I. INTRODUCTION

Quantum mechanical resonances may affect the outcome
of a collision in several ways. In a direct collision, where no
resonance is present, the colliding particles part quickly after
a brief encounter. If the resonance mechanism plays an im-
portant role, the collision partners may form an intermediate
complex �diatomic or triatomic, in atom-atom or atom-
diatom scattering, or a negative ion if an electron is scattered
off a neutral atom�, which exists for a certain time before
breaking up into its constituent parts. The presence of such a
complex can affect both the differential cross section �DCS�
and the total cross-section �TCS�. A resonant angular distri-
bution results, typically, from the interference between the
direct scattering amplitude �which, semiclassically, can be
imagined as coming from direct scattering trajectories� and
the resonance component produced by the rotation of the
decaying intermediate complex. The latter can, therefore be
represented by an exponential decaying with the angle � by
which the complex has rotated.

Regge poles—singularities of the S matrix in the complex
angular momentum �CAM� plane, which rigorously define
scattering resonances—have been studied considerably over
the years �1,2� in a variety of fields including atomic and
molecular theory, and methods have been developed for their
accurate calculations. The fact that, at a given energy E, only
the angular momenta in a certain narrow range �L around,
say, some Lres lead to the formation of the complex suggests
that the S-matrix element, considered a function of the total
angular momentum L at a fixed energy E, must have a reso-
nance Regge pole at L=L0�E� in the first quadrant of the
complex L plane, with a real part close to Lres and an imagi-
nary part proportional to �L. It is convenient, therefore, to
formulate the theory of resonance angular scattering in terms
of the Regge poles, as has been done—for example, for

atom-diatom collisions �3�, while applications of the ap-
proach to simple cases of potential scattering can be found in
�4�. Whereas interference between the two mechanisms is
likely to produce oscillatory patterns in the DCS, these may
or may not cancel when summed over all scattering angles.
For this reason, the effect a resonance may produce in the
TCS requires a further analysis. Such analysis has been re-
cently conducted by Macek et al. �5�, who related the low-
energy oscillations, experimentally observed in scattering of
H+ on H, to the behavior of the resonance Regge poles aris-
ing from the bound states supported by the interatomic po-
tential. Macek et al. applied Regge pole analysis directly to
the partial wave sum for the TCS, giving for the latter a
simple decomposition, similar to the one previously derived,
in a different context, by Mulholland �6�.

The analysis in Ref. �5� is in terms of Regge
trajectories—viz., the graphs of Im�L0�E�� vs Re�L0�E��.
These are easily understood for negative energies, E�0.
Mathematically, the pole of the S matrix occurs at L=L0 such
that the solution of the Schrödinger equation, regular at the
origin, contains as r→� only the outgoing wave exp�ikr�,
k��2mE�1/2, with m being the mass. For E�0 the exponen-
tial decays and the regular solution is essentially a bound
state. Now, for an arbitrary E one may adjust the real value
of L and, therefore, the centrifugal potential L�L+1� /r2 so
that the bound state labeled nth in the original �L=0� poten-
tial has now precisely the energy E. The value of L thus
found is the required pole position. The centrifugal term
tends to make the effective potential well shallower, so the
larger �but still negative� energies require larger L’s and the
nth Regge trajectory moves along the real L axis towards
greater L’s. For E�0 the analysis is similar, if less intuitive.
As the energy becomes positive, the nthe Regge pole does
not disappear, but acquires a positive imaginary part, so that
the complex-valued effective potential emits particles, as re-
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quired by the boundary condition, in which exp�ikr� now
represents a traveling wave. Thus, the Regge trajectory
leaves the real L axis and veers into the first quadrant of the
complex L plane. Macek et al. observed that a structure in
the TCS, ��E�, appears at those energies where at least one
Regge trajectory passes in the vicinity of the real integer L
value, Re Ln�E��0,1 ,2 , . . . , Im Ln�E��1. With each Regge
trajectory studied in Ref. �5� passing near an integer value
only once and at well-separated energies, the total number of
oscillations observed in the � vs E graph equals that of the
bound states in the interatomic potential.

It is natural to ask whether this simple and elegant analy-
sis can be applied to predict and explain low-energy structure
in the TCS for light particle collisions, such as the scattering
of an electron by a neutral atom or an ion. One expects
certain similarities between the two cases. For an electron,
the source of the bound states giving rise to Regge trajecto-
ries is the attractive Coulomb well it experiences near the
nucleus. By adding the centrifugal term to the well one
would “squeeze” these states into the continuum in much the
same way as happens for the interatomic potential studied in
Ref. �5�. The regularity with which the Regge trajectories
pass near real integer L’s and, therefore, the pattern observed
in the TCS are likely, however, to be different.

The purpose of this paper is to provide a simple and de-
tailed illustration of the use of the Regge pole analysis in
general. Specifically, we analyze, within the simplest ap-
proximation, the low-energy behavior of the TCS for a
Thomas-Fermi potential �7� designed to mimic the interac-
tion between an electron and a neutral atom. The rest of the
paper is organized as follows. In Sec. II we rederive the
Mulholland formula used in �5� and show that the “passing-
near-an-integer” condition, necessary for a Regge trajectory
to contribute to the total scattering cross section, amounts to
the requirement that the forward-scattering subamplitudes re-
sulting from multiple rotations of the resonance complex add
constructively. In Sec. III we analyze in detail the behavior
of the Regge trajectories and their contributions to the TCS
for a particular system for the purpose of illustrating the
method. Sections IV and V contain the dependence of Regge
trajectories on nuclear charge and the summary and conclu-
sions, respectively.

II. MULHOLLAND FORMULA AND MULTIPLE
ROTATIONS OF THE RESONANCE COMPLEX

We are interested in the total scattering cross section ob-
tained by summing partial cross sections over all �integer�
values of the angular momentum �atomic units are used
throughout the paper�:

�tot = 2�k−2�
L=0

�

�L + 1/2��1 − S�E��2. �1�

Consider next a system trapped in a resonance state formed
by the collision partners. The intermediate complex must ro-
tate in order to preserve its angular momentum, this rotation
being accompanied by a decay. The effect of this decay on
the scattering amplitude f�	� at the zero scattering angle 	

=0, which is related to the total cross section �tot through the
optical theorem �8�

�tot = 4�k−1 Im�f�0�� . �2�

If the complex has a long �angular� life, it will return to the
forward direction many times. This does not, however, guar-
antee that its decay would produce a significant contribution
to �tot as the subamplitudes corresponding to different num-
bers of complete rotations may add destructively and cancel
one another. The contribution will, nonetheless, be signifi-
cant if the subamplitudes corresponding to all multiple rota-
tions add constructively—i.e., if the phase acquired in one
rotation is close to 2�. This suggests that to see a resonance
peak in the dependence of �tot on E requires that �i� the
complex be able to complete several rotations before it
breaks up and �ii� there be a coherent addition of forward-
scattering subamplitudes.

A mathematical justification for the above can be obtained
by applying the Poisson sum formula �9� directly to the
right-hand side of Eq. �2�, where the forward-scattering am-
plitude can be written as a partial-wave sum

f�	� = �ki�−1�
L=0

�

�L + 1/2��1 − SL�E��PL„cos�	�… , �3�

with PL(cos�0�)=1 for all L’s. To replace the summation in
Eq. �3� by integration we write

�
L=−�

�


�� − L − 1/2� = �
m=−�

�

exp�im��2� + 1�� , �4�

where 
�z� is the delta function, and insert it into Eq. �2�,
which yields

�tot = 2�k−2 �
m=−�

� 	
0

�

d���1 − S����exp�im��2� + 1�� .

�5�

In Eq. �5� the m=0 term corresponds to replacing the sum in
Eq. �2� by an integral and will be left in its present form. For
the m�0 and m�0 terms, the contour of integration can be
transformed to run along an arc of large radius in the first and
fourth quadrants of the � plane and then return to the origin
down and up the imaginary � axis, respectively. Since the S
matrix has Regge poles at �n=Ln+1/2 in the first quadrant,
closing the contour of integration for the m�0 terms will
also produce the residue contributions

fn,m � − 4�2k−2�n ResnS exp�im��2�n + 1��, m = 1,2, . . . ,

�6�

where ResnS is the residue of the S-matrix element at the nth
pole. The subamplitudes fn,m have the standard interpreta-
tion, at least for the resonance poles located close to the real
axis �4�. They describe the decay, in the forward direction, of
the intermediate complex associated with the nth resonance
poles after completing m full rotations since it has been
formed. The real part of the exponent ��2�n+1� determines
the relative phases of individual contributions, while its
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imaginary part sets the rate of the angular decay of the
complex.

Finally, using the geometrical progression formula to
evaluate the sum over multiple rotations,

�
m=1

�

exp�im��2� + 1�� = − 1/�exp�− i2��� + 1� , �7�

and taking the imaginary part of the forward-scattering am-
plitude, we arrive at the Mulholland formula �6� employed
in �5�:

�tot�E� = 4�k−2	
0

�

Re�1 − S�����d�

− 8�2k−2�
n

Im
�n ResnS

1 + exp�− 2�i�n�
+ I�E� , �8�

where I�E� contains the contributions from the integrals
along the imaginary � axis. After some algebra, it may be
cast in the form

I�E� = − 4�/k2 Re	
0

i� ��2 − S��� − S�− ���
1 + exp�− 2�i��

d� . �9�

Equation �8� still differs from Eq. �2� of Ref. �5� in that it
involves �1−S���� in place of the squared magnitude of the T
matrix, T2��1−S����2. It is, however, easy to demonstrate
that the two forms are equivalent. Indeed, from the unitarity
of the S matrix on the real � axis, S���=exp�i
����, it fol-
lows that

Re�1 − S� = �1 − S�2/2,

which establishes the equivalence of the two integral terms.
Further, Eq. �2� of �5� uses the residue of the quantity which
on the real � axis is �1−S�2. Analytical continuation of
�T����2 is given by �1−S�����1−S*��*��. As S��� has a zero
at �=�n

*, its Hermitian conjugate S*��*� has a zero at �=�n

so that

Resn
�1 − S�����1 − S*��*��� = Resn
1 − S���� = − ResnS

which shows that the two residue terms are also identical.
In the following we will assume I�E� to be small due to

the rapid decrease of the integrand for large ��� and will omit
it from further discussion. Of the two remaining terms in Eq.
�8� the first one is the smooth impact parameter-type contri-
bution, one that is obtained by replacing the summation in
Eq. �1� by an integration �5�. The second term describes ad-
ditional resonance contributions to the first smooth term,
which may arise from the poles in the first quadrant of the
complex � plane. From the above discussion it is readily
seen that a contribution from the nth pole would be signifi-
cant if there is a sufficiently large number of subamplitudes
in Eq. �5�—i.e., if the complex exists long enough to return
to the forward direction many times, which, in turn, requires

Im �n � 1. �10�

It is also necessary for these contributions to add
constructively—i.e., in phase—so that

Re �n � 1/2,3/2,5/2, . . . . �11�

Thus, as was shown by Macek et al., a resonance is likely to
affect the total elastic cross section when its Regge pole po-
sition is close to a real integer.

Note the similarity between this condition and the one for
the existence of a bound state. Indeed, at a negative energy, a
bound state requires L=0,1 ,2 , . . . , so that the angular part of
the wave function retains its value after increasing the value
of the azimuthal angle by 2� �10�. Thus, for E�0 a true
bound state is found each time a Regge trajectory passes
through an integer L �half-integer ��. At positive energies,
the passage of a Regge trajectory near an integer point pro-
vides an additional condition for the corresponding long-
lived resonance to affect the total scattering cross section.
One can say that the resonance effect is observed when a
particle is trapped in a quasibound state which resembles,
both in its radial and angular dependence, a true bound state
of the system. In the next section we apply the Mulholland
formula in Eq. �8� to elastic scattering by an electron by the
Thomas-Fermi �TF� potential �7�.

III. RESONANCES AND REGGE TRAJECTORIES
FOR A THOMAS-FERMI POTENTIAL

The Thomas-Fermi potential is defined through the solu-
tion of the TF equation �7�, a delicate nonlinear problem with
unusual boundary conditions �11�. The importance of the TF
theory, considered as one of the cornerstones of atomic phys-
ics �12�, is its exactness for atoms, molecules, and solids in
the Z→� limit �13� and that all neutral atoms can be de-
scribed within the TF model by the universal TF function
�14�. Lieb and Simon �12�, �13� have investigated exten-
sively the TF theory, including its approach to quantum
theory as the number of electrons approaches infinity. The
TF potential has been used also to predict reliably �10� the
appearance of electrons in the p, d, and f subshells at Z of 5,
21, and 58, respectively as well as to calculate the scattering
length for low-energy elastic electron scattering by atoms
using an approximate TF potential �15�, similar to the one
used here, which is taken from Ref. �16�.

In order to describe, in the simplest approximation, scat-
tering of an electron by a neutral atom, we employ the one-
particle Thomas-Fermi potential of the form �16�

U�r� =
− Z

r�1 + aZ1/3r��1 + bZ2/3r2�
, �12�

where Z is the nuclear charge and a and b are adjustable
parameters. For small r’s, the potential describes the Cou-
lomb attraction between an electron and a nucleus, V�r��
−Z /r, while at large distances it mimics the polarization po-
tential, V�r��−1/ �abr4�. For illustrational purposes we have
chosen the parameters

Z = 75, a = 0.25, b = 0.06. �13�

The effective potential

V�r� = U�r� + L�L + 1�/r2 �14�

is shown in the three-dimenisonal plot in Fig. 1 versus r and
L, considered here a continuous variable. For L=0, V�r� is a
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potential well which, due to its short-ranged, �1/r4,
asymptotic behavior supports a finite number �eight� of
bound states, shown in Fig. 2. Figure 1 can be used to illus-
trate the evolution of bound states supported by the effective
potential V�r� as the centrifugal barrier is added to U�r�. As
L increases, the well becomes shallower; the bound states
move upwards and are, eventually, squeezed into the con-
tinuum. For larger L’s the effective potential develops a bar-
rier. Thus, a bound state which crosses the threshold E=0 in
this region may continue to be separated by a barrier—i.e.,
becomes a long-lived metastable state and continuing that

way until it passes the barrier top. Finally, for even larger L,
V�r� becomes purely repulsive and no longer supports nar-
row resonances.

We will, however, consider the diagram Fig. 1 from a
different perspective; i.e., we fix the value of the energy E
and ask for the value of the angular momentum Ln�E� re-
quired to make the energy of the nth state, En�L�, equal to E.
For E�0, the value of Ln required to “tune” En�L� to E is
real while for positive energies it is complex valued. Note
that one must have Im Ln�0 so that the complex-valued
centrifugal barrier emits particles, as the Regge states contain

FIG. 1. �Color online� Effective potential
V�r�=U�r�+L�L+1� /r2 versus r and L. The bars
show the positions of the Regge states with n
=2 and n=5.
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FIG. 2. The eight bound states supported by
the Thomas-Fermi potential for Z=75. A logarith-
mic scale is used to allow for better viewing.
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for large r’s an outgoing traveling wave. For positive ener-
gies below the top of the effective barrier Im Ln should re-
main small for the corresponding metastable states. As the
energy increases above the barrier top, all �in our case 8� Ln
acquire significant imaginary parts and there are no more
resonances. Plotting Im Ln versus Re Ln rather that Im Ln and
Re Ln versus E, one obtains Regge trajectories �5,17�. Thus,
a typical trajectory associated with the nth bound state of
U�r� runs along the real L axis for as long as the energy
remains negative and, for E�0, departs from the real axis,
slowly or more rapidly, depending on the effective potential
encountered by the bound state emerging from the well. The
condition that all the Regge trajectories will have left the real
L axis sets the energy range within which the total cross
section can be influenced by the resonances.

The eight Regge trajectories originating from the bound
states in Fig. 1 are shown in Fig. 3�a�, with the rightmost one
corresponding to the ground state of U�r�. Note that the mag-
nitudes of the residues steadily increase with energy. The
pole positions and residues were obtained by the method

similar to that of Burke and Tate �18�—i.e., by numerically
integrating the radial Schrödinger equation for complex val-
ues of the total angular momentum and searching for the
zeros of the coefficient multiplying the incoming wave. An
alternative semiclassical approach to calculating Regge tra-
jectories for the TF potential can be found in Ref. �16�.

Like the Regge trajectories reported in Ref. �5�, those in
Fig. 3�a� are almost uniformly spaced along the real L axis.
The spacing is, however, not an integer, so that only the n
=2 and n=5 trajectories pass near integer values of L=4 and
L=2, respectively. The n=2 trajectory does so at an energy
E=0.193 Ry with Im L=0.000 165, while one expects the
n=5 trajectory with Im L=0.0813 to be responsible for a
broader resonance at E=0.061 Ry. Thus, if the potential cor-
rectly describes an electron-atom collision, Fig. 3�a� predicts
the creation of a negative ion in metastable states with L
=4 and L=2 at E=0.0061 Ry and E=0.193 Ry, respectively.
The six remaining trajectories, which do not approach inte-
ger values, are expected to have much smaller effect on
�tot�E�. The transversal dashed lines in Fig. 3�a� connect the
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FIG. 3. �Color online� �a� Regge trajectories
associated with the L=0 bound states shown in
Fig. 2. The dashed lines indicate the respective
Regge poles positions at a given value of E �Ry�.
�b� Residue trajectories �17� Im�ResnS� versus
Re�ResnS� for n=0,1 , . . . ,8.
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positions of the Regge poles for the same E�0. Note that for
the trajectories associated with the lower bound states of
U�r�, Im Ln�E� remains small even for relatively large E.
This behavior is consistent with the observation that for large
L’s, V�r� develops a barrier which continues to support long-
lived metastable states after a bound state crosses the thresh-
old E=0. We will return to this matter shortly. Figure 3�b�
shows the “residue trajectories” �17�, graphs Im�ResnS� ver-
sus Re�ResnS� in the same energy range. Note that the mag-
nitude of a residue steadily increases with energy E and van-
ishes at E=0. Mathematically, this is expressed by the fact
that unitarity of the S matrix at the real L axis requires that
each Regge pole in the first quadrant of the complex L plane
be complemented by a Regge zero located symmetrically in
its fourth quadrant. Thus, for a narrow resonance, the residue
is necessarily small and for a bound state, which cannot be
accessed with a positive energy, ResnS is zero.

The total scattering cross section is shown in Fig. 4 in the
range 0�E�0.5 Ry, whereas the differential cross section
��	 ,E� is shown in the three-dimensional plot in Fig. 5. In
both plots one notices the sharp peak at E=0.193 Ry associ-
ated with the n=2 Regge trajectory. A much broader peak,
attributed to the n=5 trajectory, is clearly visible near E
�0.061 Ry. The peak is slightly shifted towards smaller en-
ergies, as its position is determined by the number of terms
in the geometric progression, Eq. �7�, which is larger for
smaller energies, as well as the coherence between the
phases of individual terms. The contributions of individual
Regge states to the sum Eq. �8� in the Mulholland formula
are shown in Fig. 4. Note that the trajectories associated with
the sixth and seventh excited states �n=6 and n=7�, which
do not approach integer values, provide considerable nega-
tive contributions responsible for the dip in the total cross
section at E�0.01 Ry due to the amplifying effect the factor
k−2 has for small energies.

Finally, one may expect at least the sharp peak at E
=0.193 Ry to be associated with a narrow shape resonance

supported by the potential barrier in the effective potential.
However, a more detailed analysis shows that this is not the
case. The positions of the two �n=2 and n=5� resonances, in
both r and L, are shown in Fig. 1 by white bars. It is readily
seen that both energies lie above their respective barrier tops.
A better view is provided by Fig. 6�a� which shows the ef-
fective potentials, energies, and the corresponding Regge
states. The n=2 Regge state is large in the well region of
V�r� and has a relatively small outgoing wave for large r.
This is consistent with the picture of a particle spending a
long time in the well before finally escaping. As its energy is
well above the barrier, one has to assume that its confinement
is caused by the reflection above the steep wall of the poten-
tial well. The n=5 Regge state in Fig. 6�b� shows no such
increase of the density in the well region and, therefore, must
be emptied almost immediately after the particles are created
by the complex-valued centrifugal potential. Interestingly,
for the parameters in Eq. �13� we have found no shape reso-
nances attributable to the effective barrier.

IV. DEPENDENCE OF REGGE TRAJECTORIES
ON NUCLEAR CHARGE

A brief discussion of the dependence of the Regge trajec-
tories and total cross sections on the nuclear charge Z is
appropriate. For this purpose, we have selected the values
Z=18, 36, and 54 �Fig. 7�, corresponding to Ar, Kr, and Xe,
respectively. As the charge Z increases, the L=0 potential
well becomes deeper and one expects it to support more
bound states giving rise to more Regge trajectories. Indeed,
for Z=18 we find six such trajectories, while for Z=36 their
number increases to 7 and for Z=54 it becomes 8, as shown
in Figs. 8�a�, 8�b�, and 8�c�. As in Fig. 3�a� the trajectories
are labeled according to the number of the bound state that
they are associated with, with the furthermost on the right
coming from the ground state n=0. The corresponding Mull-
holland contributions to the Z=18, 36, and 54 total cross
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FIG. 4. �Color online� The
total elastic cross-section �solid
line� versus E �Ry�. The indi-
vidual Mulholland contributions
�crosses� and the smooth back-
ground �dashed� corresponding to
the first term in Eq. �8� are also
shown.
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sections are shown in Figs. 8�a�, 8�b�, and 8�c�. We note that,
in general, the nearly equal spacings between the trajectories
are not equal to integers, so that not all trajectories contribute
to the structure in the total cross section. The latter may,
therefore, have or not have sharp resonances as well as

broader features associated with the Regge poles. Note also
that none of the trajectories approach more than one integer
value of L so that none of the Mulholland contributions con-
tain more than one maximum, as is the case, for example, for
elastic scattering of protons by neutral atoms.

We have also carried out a careful investigation of the
near-threshold behavior of the elastic scattering cross sec-
tions with respect to the variation of the parameters of the TF
potential for e-Ar and e-Kr scattering to assess the robust-
ness of the Thomas-Fermi potential. We focused specifically
upon the position and magnitude of the Ramsauer-Townsend
�RT� minima and the Wigner threshold behavior, comparing
the former results with those of the recent careful theoretical
investigations of Savukov �22� and the attendant measure-
ments �23,24�. One reason for our investigation is that Ar
�Z=18� appears to be on the low side for the applicability of
the TF model, while the other is that the Savukov calcula-
tions used the many-body perturbation theory �MBPT�
method to calculate the energies for the Ar− and Kr− ions and
obtained accurate elastic scattering cross sections for both
e-Ar and e-Kr beyond Hartree-Fock using the Brueckner-
orbital approximation. Comparison of our calculated data
with those of Savukov and others may indicate the impor-
tance or unimportance of many-body effects.

In Fig. 9�a� we show the variation of �tot with E �eV� for
e-Ar scattering for values of b=0.04, 0.045, and 0.046 to
determine the robustness of �tot with respect to the polariza-
tion potential. The figure shows the sensitivity of the �tot

FIG. 5. �Color online� The dif-
ferential crosssection ��	 ,E� ver-
sus 	 �deg� and E �Ry�.
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with respect to the variation in the TF potential. Clearly the
optimal value for the parameter corresponds to 0.045, yield-
ing the desired RT minimum; note that the value of 0.046
leads to spurious behavior in the elastic cross section. The
values we obtained for the position and magnitude of the
minimum are about 0.45 eV and 0.3�10−20 m2, respec-
tively. These values compare well with those read from the
Savukov paper: 0.36 eV and 0.3�10−20 m2, respectively.
Because of the close agreement between our values of the
position and the magnitude of the minimum and those of
Savukov and the measurements �23,24�, we may infer
that many-body effects are not as important as the polariza-
tion effects at near-threshold impact energies in the e-Ar
scattering.

Similarly, we also investigated the effect of the variation
of the b parameter on the RT minimum in the e-Kr elastic
scattering cross section. Figure 9�b� compares the elastic to-
tal cross section �tot, corresponding to the values of b
=0.0285, 0.029, 0.031, 0.032, and 0.033. We found the RT
minimum to be between 0.35 and 0.55 eV and its value to be
between 0.4 and 0.9�10−20 m2 when we used the values of
b between 0.0285 and 0.032. Those values are within the
range of the theoretical data �22,25� and the experimental
values �23,26,27�, lying between the 0.6 and 0.9 eV range
with the value of the minimum lying between 0.4 and
0.7�10−20 m2.

Our main aim in these paragraphs was to demonstrate
that the TF potential, with appropriate parameters, captures
the essential physics �RT minima—their positions and
values—as well as the Wigner threshold law� in the near-
threshold e-Ar and e-Kr elastic scattering. In both e-Ar and
e-Kr scattering an s-wave Wigner threshold law is followed,

consistent with the expected behavior and the finding of
Savukov.

The Regge trajectories, obtained within the complex an-
gular momentum representation of scattering and presented
in this paper, have been employed recently for a fundamental
understanding of the near-threshold electron attachment in
e−-Fr and e−-Cs collisions �19�, capturing, with considerably
less effort and unambiguously, the essential results of the
Dirac R matrix �20� and predicting new manifestations. The
present method has also been employed to provide insight
into developing resonances and Regge oscillations in
the state-to-state integral cross sections of the F+H2
reaction �21�.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented a complex angular mo-
mentum analysis of low-energy electron-atom scattering con-
sidered within the Thomas-Fermi approximation. As in the
case of ion-atom collision studied in �5�, we found the total
cross section �tot�E� to be affected by the Regge trajectories
associated with the L=0 bound states of the negative ion.
However, whereas for the proton impact on hydrogen the
structure produced in the total cross section is regular, with
each trajectory responsible for just one oscillation, the
electron-atom case is more complicated. Even though the
trajectories in Fig. 3�a� appear to have regular spacings, only
a few of them satisfy the “resonance” condition of “passing
near an integer” and produce sharp peaks in �tot�E�. The rest
either contribute very little or produce broad overlapping
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peaks or dips. The resulting irregular structure can be ana-
lyzed by considering individual resonance contributions su-
perimposed against a smooth background described by the
first term of the Mulholland formula, Eq. �8�. It is interesting
to note that the sharp resonance peaks observed in �tot�E� are
not associated with the shape of the barrier top resonances of
the effective potential. Rather, we found them located well
above the barrier top and, most likely, supported by the re-
flection over the edge of the potential well. While we believe
our general conclusions to be accurate, further progress can
be made by optimizing the effective one-electron potential
and comparing the results with those from the more sophis-
ticated multichannel R-matrix calculations �28�.

We conclude by noting that the strength of our method is
that it allows for a close scrutiny of the elastic threshold

energy region, as well as the identification without ambiguity
of the angular momenta responsible for the various structures
in the total elastic cross section, limited only by the nature of
the interaction chosen. We are currently working on refining
our potential so that it would reflect certain measurable quan-
tities for a given atomic system �e.g., the parameters a and b
optimized to yield the dipole polarizability of the atom in the
limit r→��. The next step will be to extend the Regge ap-
proach to the interesting and challenging multichannel case.
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