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We present the most accurate up-to-date theoretical values of the 2p;,,-2s and 2ps,,-2s transition energies
and the ground-state hyperfine splitting in Sc!8*. All two- and three-electron contributions to the energy values
up to the two-photon level are treated in the framework of bound-state QED without aZ expansion. The
interelectronic interaction beyond the two-photon level is taken into account by means of the large-scale
configuration-interaction Dirac-Fock-Sturm (CI-DFS) method. The relativistic recoil correction is calculated
with many-electron wave functions in order to take into account the electron-correlation effect. The accuracy
of the transition energy values is improved by a factor of 5 compared to the previous calculations. The CI-DFS
calculation of interelectronic-interaction effects and the evaluation of the QED correction in an effective
screening potential provide significant improvement for the 2s hyperfine splitting. The results obtained are in

good agreement with recently published experimental data.
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I. INTRODUCTION

The dielectronic recombination process has proven to be a
useful tool in high-precision measurements of the excitation
energy of low-lying levels in middle-Z lithiumlike systems
[1,2]. By this method the energy of the 2ps,-2s transition in
Sc'¥* was determined to be 44.3107(19) eV [2]. A significant
improvement of the accuracy was announced recently by
Lestinsky et al. [3,4], with the preliminary value of
44.3096(4) eV, and work on further improvement of this
value is in progress [5]. In these experiments the energy of
the Rydberg resonances E,., was measured. The Rydberg
state energy Ey;,q was evaluated by means of relativistic
many-body perturbation theory (RMBPT). Then the excita-
tion energy of the ion was determined as E,,.=E .+ Ep;,q. In
Ref. [2] the theoretical value of E.,. for both 2p,,-2s and
2p3p-2s transitions was obtained by means of RMBPT,
while for the quantum electrodynamic (QED) correction
the result of Ref. [6] was taken into account. The energy
resolution achieved in these experiments also allowed for
resolving the 2s hyperfine structure. As a result, the 2s hy-
perfine splitting of lithiumlike scandium was measured to be
6.21(20) meV [4].

The main goal of the present investigation is to evaluate
the 2p;,-2s and 2ps,-2s transition energies and the ground-
state hyperfine splitting in lithiumlike scandium to the ut-
most accuracy, aiming at a stringent test of the present state-
of-the-art theoretical description of many-electron effects.
Various contributions to the energy of the 2p-2s transitions
are considered in the next section. In order to meet the ex-
perimental accuracy, rigorous quantum electrodynamic cal-
culations of the first two orders of perturbation theory are
combined with large-scale configuration-interaction Dirac-
Fock-Sturm (CI-DFS) calculations of the third- and higher-
order contributions within the Breit approximation. The rela-
tivistic nuclear recoil corrections are calculated as well. The
evaluation of the hyperfine splitting is accomplished in Sec.
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III. The CI-DFS method is employed to obtain correlation
effects of order 1/Z” and higher. The radiative correction to
hyperfine splitting is calculated with an effective local
screening potential.

Relativistic units are used throughout the paper (fi=c
=1).

IL 2p,;5-2s AND 2p3/,-2s TRANSITION ENERGIES

We start with the Furry picture, where in the zeroth-order
approximation noninteracting electrons are bound by the
Coulomb field of the nucleus. The Dirac equation yields
zeroth-order energies of the one-electron states. The
homogeneously-charged-sphere model of the nucleus is em-
ployed with the value of rms radius (r*)'>=3.5443(23) fm
[7].

In leading order of the perturbation theory, diagrams of
self-energy, vacuum polarization, and one-photon exchange
arise. Techniques for the evaluation of these corrections non-
perturbative in aZ have been described in numerous publi-
cations (see, e.g., Ref. [8]). For the self-energy correction we
interpolate the values presented in Ref. [9] for the 2s and
2pi states and those presented in Ref. [10] for the 2ps),
state. The vacuum-polarization and one-photon exchange
corrections are recalculated in the present work with inclu-
sion of finite-nuclear-size effects.

The second-order contributions can be classified as one-
electron two-loop QED corrections, two-electron QED cor-
rections, and two-photon exchange. Rigorous calculation of
all two-loop QED corrections is a challenging problem. To
date, the dominant part of these corrections was calculated in
a wide range of Z=10-92 for the 1s state only (see Ref. [11]
and references therein). Recently, the corresponding results
for 2s, 2py), and 2ps,, states were presented for high-Z ions
[12]. However, since for low values of Z the numerical
evaluation of the second-order self-energy correction be-
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comes rather difficult, so far one has to rely on the aZ ex-
pansion, which reads

AEtwo loop — Wl( 7T>

+ (aZ)2{363L3 + B62L2 + B61L + B60} + - ],
(1)

where L=In[(aZ)~?]. The values of the coefficients for the 2s
state can be found in Appendix A of Ref. [13] and for the
2p1» and 2ps, states in Ref. [14]. Since the convergence of
the expansion in «Z is known to be rather bad, we assume
the uncertainty to be about 50% in our case.

The two-electron QED corrections are represented by the
diagrams of the screened self-energy and the screened
vacuum polarization. Rigorous evaluation of the screened
self-energy in Li-like ions was performed in Ref. [15] for 2s
and 2p,, states and in Ref. [16] for the 2ps, state. The
screened vacuum-polarization correction was calculated in
Ref. [17]. We obtain the corresponding values for Z=21 em-
ploying the procedure presented in these works. In order to
estimate higher-order (in 1/Z) terms of the screened QED
correction, the following approximate scheme is used. The
first-order QED correction is evaluated in an effective
screening potential and the higher-order terms are extracted
by subtracting the zeroth- and first-order terms. The uncer-
tainty of the higher-order screened QED correciton obtained
in this way is assumed to be 100%.

The two-photon exchange correction is evaluated within
the framework of QED, following our previous investiga-
tions [18,19].

In order to evaluate the interelectronic-interaction correc-
tions of third and higher orders we proceed as follows. The
Dirac-Coulomb-Breit equation within the no-pair approxima-
tion is solved by means of the large-scale CI-DFS method
[20,21] yielding the many-electron wave functions and the
energy values. The interelectronic-interaction operator em-
ployed in the Dirac-Coulomb-Breit equation reads

L aa; ()T
VBreit=)\a'E <_ - 7 ‘- 12 3 — s (2)
i\ 2T Tij

)t
( Z3) [B4o + (aZ)Bs

where a scaling parameter N is introduced in order to sepa-
rate terms of different order in 1/Z from the numerical re-
sults with different A. Here i, j enumerate the electrons and «
is a vector incorporating the Dirac matrices. In this way, for
small A, the total energy of the system can be expanded in
powers of \,

oo

E(N)=Ey+E\ + E;N2 + ) ENK, (3)
k=3
where
dk
E = I d)\"E (M)x=0- (4)

The higher-order contribution E-3=3,_;E; is calculated as
E-3=E(\=1)-E,—E,—E,, where the low-order terms E|,
E,, and E, are determined numerically according to Eq. (4).
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Comparison of E; and E, with the corresponding QED re-
sults allows us to conclude that the uncertainty of the higher-
order contribution due to the Breit approximation is less than
0.1%.

The full relativistic theory of the nuclear recoil effect can
be formulated only in the framework of QED [22]. To evalu-
ate the recoil effect within the lowest-order relativistic ap-
proximation one can use the operator (see, e.g., Ref. [22])

e 25 -tz |

where M is the nuclear mass and p; is the momentum opera-
tor acting on the ith electron. The expectation value of H,; on
the many-electron wave function of the system, obtained by
the CI-DFS method, yields the recoil correction to the energy
levels in all orders of 1/Z within the (aZ)*m?/M approxima-
tion. The electron-correlation effects contribute to about 20%
of the total value and have to be taken into account in order
to achieve the desirable accuracy. The one- and two-electron
recoil corrections of higher orders in aZ are taken from Refs.
[23,24]. The recoil correction of the next order in m/M is
negligible in the case under consideration.

All contributions to the transition energies considered
above are collected in Table I. For comparison, previous the-
oretical results and available experimental data are presented
as well. As one can see from the table, the theoretical values
of the transition energies reported in this paper are about five
times more precise than those in Ref. [2] and agree well with
the experiments. Further improvement of the theoretical ac-
curacy can be achieved by more accurate calculations of the
higher-order screened QED effects.

III. HYPERFINE SPLITTING

The ground-state hyperfine splitting of a lithiumlike ion is
conveniently written as

w2+1 1
21 (1 +m/M)*

m
AE, = —a(aZ)3
plu’N

X (A(aZ)(l -0l -¢)

1 1
+ EB(aZ) + ?C(Z, aZ) + xmd>, (6)

where m,, is the mass of the proton, u and [ are the nuclear
magnetic moment and spin, and uy denotes the nuclear mag-
neton. The one-electron relativistic factor A(aZ) can easily
be derived from the Dirac equation utilizing virial relations
[26]. The finite-nuclear-size correction & is evaluated nu-
merically employing the homogeneously-charged-sphere
model for the nuclear-charge distribution. The Bohr-
Weisskopf correction g, arising due to the nonpointlike
nuclear magnetization distribution, is evaluated within the
single-particle nuclear model [27,28].

The first-order interelectronic-interaction correction de-
scribed by the function B(aZ) is evaluated in the rigorous

QED approach [29]. The dual-kinetic-balance (DKB) ap-

012511-2



QED CALCULATION OF THE 2p,/,-2s AND 2p3»-2s ...

PHYSICAL REVIEW A 76, 012511 (2007)

TABLE I. Individual contributions to the 2p;,—2s and 2p3,,—2s transition energies in Li-like scandium,
in eV. For comparison, the theoretical result from Ref. [2] and the experimental values, obtained via optical
spectroscopy [25] and via the dielectronic recombination process [2,3], are presented.

2p1p=2s 2p3;p—2s
Dirac value (extended nucleus) -0.00237 8.93553
One-photon exchange 41.89788 38.90847
Self-energy -0.2871(3) -0.2679(3)
Vacuum polarization 0.01979 0.01989
Two-photon exchange -3.5683(2) —3.2388(2)
Screened QED 0.0387(20) 0.0331(20)
Three- and more-photon exchange —-0.0594(3) -0.0713(3)
Two-loop QED 0.00011(5) 0.00008(4)
Recoil —-0.00991(2) -0.01001(2)
Theory: This work 38.0294(21) 44.3091(21)
S. Kieslich et al. [2] 38.0261(100) 44.3089(100)
Experiment: S. Suckewer et al. [25] 38.02(4) 44.312(35)
S. Kieslich et al. [2] 44.3107(19)
M. Lestinsky et al. [3] 44.3096(4)

proach [30] is employed to construct the complete set of
one-electron wave functions from the B splines. The finite
distributions of the nuclear charge and the nuclear magneti-
zation are taken into account. The latter is introduced via the
replacement of 1/r> with F(r)/r* in the hyperfine interaction
matrix elements. The explicit form of the function F(r) can
be found in Refs. [31,32]. The higher-order correction
C(Z,aZ)!7? is obtained in the framework of the large-scale
CI-DFS method.

The QED correction x,,4 is evaluated in one-loop approxi-
mation with an effective non-Coulomb binding potential Vg,
which partly takes into account the interelectronic-
interaction effects. It is taken in the following form [33,34]:

o

1 81 1/3
Veff(r) = Vnuc(r) + a,[() dr,ZP(r,) _Xa$<327Ter(”)> .

()

Here p is the total electron density, including the (1s)? shell
and the 2s electron. The parameter x, is taken to be x,
=2/3, which corresponds to the Kohn-Sham potential. To
provide a proper asymptotic behavior, the potential Vg
should be corrected at large r [35]. The one-electron spec-
trum of the Dirac equation with Vg is constructed by means
of the DKB method [30]. Since the potential Vg is assumed
to be self-consistent, the standard iteration procedure is em-
ployed. The calculations performed are very similar to our
recent calculations of the one-loop QED corrections to the g
factor of Li-like ions [36]. We mention also that the evalua-
tion of the QED corrections to the hyperfine structure with
an effective screening potential was performed in the past for
the case of lithiumlike bismuth [37].

The individual contributions to the hyperfine splitting in
litiumlike scandium are listed in Table II. For each contribu-
tion the corresponding term in the square brackets in Eq. (6)

is explicitly written. For comparison, the experimental value
from Ref. [4] as well as the previously published results by
Shabaev er al. [38] and by Boucard and Indelicato [39] are
presented. The accuracy of the present result is twice better
than that of Ref. [38] and about two orders of magnitude
higher than the experimental one.

IV. CONCLUSION

In this paper we have presented ab initio QED evaluations
of the 2p,,,-2s and 2p5),-2s transition energies in lithiumlike
scandium, where the most accurate experimental data for
middle-Z lithiumlike ions have been achieved. All presently
available contributions to the transition energies are col-
lected. Except for the one-electron two-loop correction, all
other terms up to the two-photon level are treated within the

TABLE II. Individual contributions to the ground-state hyper-
fine splitting of lithiumlike scandium, in meV. Comparison with the
available theoretical and experimental values in terms of the wave-
length \ is presented.

Dirac value 6.9650
Finite-nuclear-size correction —-0.0224(3)
Bohr-Weisskopf correction —-0.0064(32)
Interelectronic interaction, 1/Z -0.8817
Interelectronic interaction, 1/Z* and higher 0.0150(2)
QED (with screening) —-0.0061(6)
Total theory, this work 6.0633(33)

Wavelength, this work 0.020448(10) cm

Theory:  Shabaev er al. [38] 0.020450(20) cm
Boucard and Indelicato [39] 0.020403 cm
Experiment: Lestinsky et al. [4] 0.0200(7) cm
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framework of bound-state QED to all orders in aZ. The
third- and higher-order interelectronic-interaction effects are
accounted for within the Breit approximation using large-
scale CI-DFS calculations. The relativistic recoil corrections
are evaluated as well. As a result, the total theoretical accu-
racy is improved by a factor of 5 compared to the previous
calculations.

The ground-state hyperfine splitting of lithiumlike scan-
dium has been calculated. The interelectronic-interaction cor-
rection to the first order in 1/Z is evaluated within the frame-
work of QED. The higher-order electron-correlation effects
are calculated using the large-scale CI-DFS method. The
one-loop radiative corrections are calculated with an effec-
tive
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screening potential. The theoretical value of the hyperfine
splitting is improved in comparison with the previous results.
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