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A development of the techniques for solving the quasirelativistic Hartree-Fock equations for quasirelativistic
atomic calculations published earlier �Phys. Rev. A 74, 052501 �2006�� is presented. Trial calculations using
these techniques revealed that the one-electron characteristics and spin-orbit splitting are less precise in the
case of p electrons. To overcome this problem, a different method of averaging the spin-orbit interaction within
the quasirelativistic Hartree-Fock equation is proposed for p electrons. The specific account of the contact
interaction in the case of p electrons is discussed. The technique for calculating the spin-orbit interaction
constant while using the quasirelativistic radial orbitals is presented. Since the pecularities appear on the level
of one-electron interactions, only hydrogenlike ions are investigated. Data revealing how the methods under
discussion influence the results obtained are presented.

DOI: 10.1103/PhysRevA.76.012507 PACS number�s�: 31.30.Jv, 31.15.Ne, 31.15.Ar, 21.10.Ft

I. INTRODUCTION

There are several well-known groups of computer codes
for ab initio calculations of the spectral characteristics of
atoms and ions, taking extensively into account the relativis-
tic and correlation corrections. One of the widely used pro-
gram systems �1� is based on the multiconfiguration Hartree-
Fock approach on the basis of nonrelativistic radial orbitals
within the Breit-Pauli �BP� approximation �2,3�, taking into
account relativistic corrections up to the second order in the
fine-structure constant �. However, the Breit-Pauli approxi-
mation is insufficient for describing the properties of highly
charged ions precisely enough. Moreover, within this ap-
proach it is impossible to take into account the indirect rela-
tivistic effects in heavy atoms. These effects are caused by
the fact that the inner shells of such atoms are strongly rela-
tivistic, and they influence the radial orbitals of the outer
shells, where electrons are comparatively slower, and where
the BP approximation seems to be rather effective. Multicon-
figuration calculations on the basis of Dirac-Fock �DF� func-
tions taking complete account of relativistic effects are often
performed by using the GRASP2 code �4–6�. This computer
code is used to obtain data in the present work. Other rela-
tivistic multiconfiguration or configuration-interaction Dirac-
Fock methods allowing one to determine the QED effects
more precisely are also widely used and successfully applied
for accurate calculations of various physical quantities; see,
for example, �7–10�. However, the employment of double-
component relativistic radial orbitals, causing the splitting of
a shell of equivalent electrons into two subshells according
to the total momentum of the electron, makes the computa-
tions slower and more difficult. A fortunate compromise in
this case is the quasirelativistic approach, where the main
relativistic effects are taken into account already in obtaining
the radial orbitals. These orbitals remain one component and
independent of j. The most popular computer program
implementing this approach is Cowan’s code described in
�11�. However, this program was created a long time ago and

has some drawbacks, which are quite compensated by the
possibility of using different empirical corrections and semi-
empirical fitting. In this context, work was started to improve
the quasirelativistic approach for determination of radial or-
bitals �12–14� and to create a code for solution of the qua-
sirelativistic Hartree-Fock �QRHF� equations. The purpose
of this project is to include this and some other programs into
the program system �1�, which is quite easy to implement
due to its very convenient and flexible modular construction.
As a result, the possibility of high-precision ab initio calcu-
lations of spectral characteristics of highly charged ions and
heavy atoms will be created.

In �14�, a new version of the QRHF equations was intro-
duced. These equations are well consistent with the BP ap-
proach, where the solutions of such equations are used. The
development of this method and the creation of the corre-
sponding computer codes enabled us to perform real calcu-
lations of the spectra of atoms and ions. The great effective-
ness of the used radial orbitals �ROs� was demonstrated,
although some shortcomings became known, too. The main
problem concerns the insufficiently precise spin-orbit split-
ting of the terms while calculating the spectra of np shells of
highly charged ions. The same problem appears when using
the quasirelativistic ROs within the AUTOSTRUCTURE pack-
age �15�. This fact indicates that the insufficient precision of
the behavior of ROs of p electrons is not the feature of the
QRHF equations proposed by the authors in �14�, but rather
their general peculiarity. Already, as in �13�, devoted to the
solution of quasirelativistic equations in the case of hydro-
genlike ions, it was noted that the energy values obtained for
electrons with an orbital quantum number equal to 1 were
distinguished by their lower precision among the solutions
for other electrons. Thus, there is the necessity to refine the
quasirelativistic equations for p electrons so that the descrip-
tion of these electrons would be no less precise than that of
electrons with lower or higher values of the orbital quantum
number.

In the present paper, we will confine ourselves to the in-
vestigation of one-electron ions, since the considered prop-
erties reveal themselves already in hydrogenlike ions, i.e., on
the level of one-electron interactions. In the next section, the
data showing the difference in precision of the results for p*pavlas@itpa.lt
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electrons and others are presented. In Sec. III a different
method of averaging the spin-orbit interaction is described,
and in the fourth section the method of taking into account
the contact interaction in the case of p electrons is discussed.
The data revealing how these methods influence the obtained
ROs are also presented there. In Sec. V, we discuss the tech-
niques of calculation of the spin-orbit interaction constant
with the quasirelativistic ROs and the influence of the de-
scribed approaches on its value. The main results of the pa-
per are summarized in the Conclusion.

II. THE PECULIARITIES OF QUASIRELATIVISTIC
RESULTS FOR p ELECTRONS

While solving the quasirelativistic equations for hydro-
genlike ions �14�, it was concluded that, in the case of s
electrons, the one-electron energies and other characteristics
of ROs are in good agreement with the solutions of the DF
equations. The parameters of radial orbitals with l�2 are
also in relatively good coincidence with the values of
j-averaged relativistic characteristics,

x�nl� =
�2j− + 1�x�nlj−� + �2j+ + 1�x�nlj+�

4l + 2
, �2.1�

where

j± = l ± 1/2. �2.2�

At the same time, the good coincidence is absent in the case
of the quasirelativistic orbitals of p electrons. This fact is
demonstrated in Table I. The table contains the one-electron
energies and the averaged distances from the origin obtained
by solving the DF equations and quasirelativistic equations
for hydrogenlike ions. Hereinafter, the solutions of the Dirac
equations obtained using the computer code �6�, taking into
account the finite size of the nucleus, are treated as DF re-
sults. They are denoted in bold in the table for the conve-
nience of comparison. The QR results are meant to be the
solutions of the following equations �here and everywhere,
atomic units are used�:

� d2

dr2 −
l�l + 1�

r2 − U�r� − �nl�P�nl�r� +
�2

4
��nl + U�r��2P�nl�r�

+ ��l,0�
�2

4
�1 −

�2

4
��nl + U�r���−1dU�r�

dr
� d

dr
−

1

r
�

�P�nl�r� = 0, �2.3�

i.e., equations averaged over the total momentum of the elec-
trons and taking into account the contact interaction only in
the case of s electrons. These equations conform to Eq. 3
from �16�. The only difference between these equations is
that the finite-size nucleus is taken into account while solv-
ing Eq. �2.3�:

U�r� = �
1

16

Z

rnuc
	− 63 + 42� r

rnuc
�2

− 18� r

rnuc
�6

+ 7� r

rnuc
�8
 , r � rnuc,

−
2Z

r
, r � rnuc.� �2.4�

This potential of the finite-size nucleus was created in �12�
especially for solving the QRHF equations. The methods de-
veloped for the numerical solution of the usual Hartree-Fock
equations �17� and described in �18� were used to solve Eq.
�2.3�.

As is seen from Table I, the one-electron energies of s
electrons are in very good coincidence with the DF values.
The results for d and f electrons are a little less accurate;
however, the coincidence is rather good even in the case of
Z=100. The one-electron energies of p electrons are inferior
to the other electrons in accuracy by one order of magnitude,
or even more when the charge of the nucleus and principal
quantum number are the same. A similar phenomenon also
appears in the case of other characteristics of the ROs, as is
seen from the averaged distances from the origin presented
in Table I. For these characteristics, the differences in devia-
tions are slightly smaller than those of one-electron energies.
This indirectly indicates that the deviations appear because
of an insufficiently precise account of the relativistic effects
while solving the equations for p electrons. The one-electron

energies obtained by solving the quasirelativistic equations
with full account of the contact interaction �QR+C�, i.e.,
without ��l ,0� in Eq. �2.3�, are also presented in Table I to
ensure that the above problems are not caused by neglecting
the contact interaction for electrons with l�0. Nevertheless,
it is clearly seen from Table I that such inclusion of the
contact interaction substantially worsens the results for all
electrons with l�0 when solving Eq. �2.3�.

The quasirelativistic equation �2.3� before averaging over
j appears as

� d2

dr2 −
l�l + 1�

r2 − U�r� − �nlj�P�nlj�r� +
�2

4
��nlj + U�r��2

�P�nlj�r� +
�2

4
�1 −

�2

4
��nlj + U�r���−1

�
dU�r�

dr
� d

dr
−

Xlj + 1

r
�P�nlj�r� = 0. �2.5�

The spin-orbit interaction parameter
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Xlj = j�j + 1� − l�l + 1� − s�s + 1� �2.6�

depends only on total, orbital, and spin momenta of an elec-
tron, and ensures inclusion of the spin-orbit interaction in the
equation. The solutions of these quasirelativistic equations
for the states corresponding to particular values of the total
momentum j of an electron are in very good agreement with
the results of the solutions of DF equations even in the case
of p electrons. This is clearly seen from Table II, where the
one-electron energies obtained by solving Eqs. �2.5� are
compared with the data of solutions of DF equations. There,
perfect coincidence of the results is observed. This fact re-
veals that, in the case of p electrons, the traditional averaging
of the equations over j, i.e., the conversion of Eq. �2.5� into

Eq. �2.3�, causes great deviations. The deviation is less
meaningful for other electrons, as Eqs. �2.3� and �2.5� coin-
cide in the case of s electrons, and the neglect of contact
interaction is quite justified for electrons with l�2, as fol-
lows from Table I.

III. SPIN-ORBIT INTERACTION AVERAGING
FOR p ELECTRONS

The problem of p electrons was noted in �13�, but it was
not solved there. In that paper, it is mentioned that the effect
might be related to inaccuracy of the averaging of the spin-
orbit interaction for p electrons. Indeed, in the case of p
electrons, the spin-orbit interaction, which is missing for s
electrons, plays an important role, as the operator describing
this interaction contains r−3—the same as the operator of the
contact interaction. This is clearly seen from Eq. �2.5�.

In the case of s electrons, the parameter Xlj is equal to 0.
The averaging of this parameter using the formula �2.1� for
electrons with l�0 also leads to zero value. As a result, Eq.
�2.3� and its solutions become independent of the total mo-
mentum of an electron. But the employment of the expres-
sion �2.1� for averaging of the spin-orbit interaction implies
that the radial orbitals P�nlj �r� do not depend, or only
slightly depend, on the total momentum j. Even though this
is true for ROs with l�2, it is not true for p electrons. Thus
it is necessary to take into account the properties of the cor-
responding ROs while averaging the Xlj. In the present paper,
it is proposed to take into account not only the statistical
weight of the averaged state 2j+1, but also the value of the
radial integral �nlj�r−3�nlj, while averaging the Xlj. In this
case, the expression for the averaged value of the parameter
under discussion appears as follows:

Xnl =
�2j− + 1��nlj−�r−3�nlj−Xlj−

+ �2j+ + 1��nlj+�r−3�nlj+Xlj+

�2j− + 1��nlj−�r−3�nlj− + �2j+ + 1��nlj+�r−3�nlj+
. �3.1�

TABLE I. One-electron energies and averaged distances from
the origin for hydrogenlike ions �a.u.�.

Z nl

� r̄

DF QR QR+C DF QR

50 1s 1294.5535 1294.5567 0.028623 0.028623

2s 326.4846 326.4839 0.114027 0.114524

2p 318.9277 318.7653 319.26 0.097113 0.097643

3s 143.8268 143.8269 0.259805 0.260396

3p 141.5818 141.5399 141.59 0.244120 0.245130

3d 139.8270 139.8238 140.03 0.207711 0.208084

4s 80.3690 80.3691 0.465640 0.466264

4p 79.4248 79.4085 79.47 0.451304 0.452493

4d 78.6851 78.6839 78.77 0.415879 0.416674

4f 78.3821 78.3818 78.41 0.357969 0.358261

5p 50.7151 50.7073 50.73 0.718538 0.719820

5d 50.3372 50.3366 50.38 0.684168 0.685159

5f 50.1818 50.1817 50.20 0.626631 0.627297

100 1s 5923.1255 5922.5997 0.011879 0.011877

2s 1545.3448 1545.2371 0.046869 0.047844

2p 1379.1376 1361.5083 1403.9 0.043755 0.045103

3s 656.9509 656.9182 0.112312 0.113493

3p 607.3498 602.6785 615.1 0.112341 0.114834

3d 571.2711 571.0407 574.5 0.100349 0.101117

4s 357.5520 357.5386 0.207843 0.209097

4p 336.9588 335.1581 340.2 0.211246 0.214289

4d 321.8571 321.7689 323.2 0.201638 0.203258

4f 316.6696 316.6797 317.2 0.175908 0.176497

5p 213.2670 212.4059 214.9 0.340248 0.343668

5d 205.6191 205.5771 206.3 0.333159 0.335179

5f 202.9678 202.9600 203.2 0.308218 0.309559

TABLE II. One-electron energies for particular values of j
�a.u.�.

Z nl

j=1/2 j=3/2

DF QR DF QR

50 2p 326.4945 326.4945 315.1444 315.1443

3p 143.8297 143.8297 140.4579 140.4579

4p 80.3703 80.3703 78.9521 78.9521

5p 51.1977 51.1977 50.4739 50.4739

100 2p 1548.1447 1548.1441 1294.6262 1294.6261

3p 657.7659 657.7657 582.1391 582.1390

4p 357.8845 357.8844 326.4948 326.4945

5p 223.8153 223.8152 207.9967 207.9967
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The analytical expression of the integrals �nlj�r−3�nlj might
also be used to obtain the averaged parameter. The paper
�19� might serve this purpose. There, the analytical expres-
sions of all integrals calculated on the basis of Dirac func-
tions are presented. However, as is noted in �19� and follows
from the expressions proposed there, the corresponding inte-
gral is indeterminate in the case of pj− electrons. Infinity
appears already in the quadratic term of the series expansion
of �nlj�r−3�nlj from �19� in powers of the fine-structure con-
stant �. This is one additional factor sustaining the special
matter of the spin-orbit interaction and the necessity of the
correct averaging in the case of p electrons. Infinities do not
appear in these integrals when solving Eq. �2.5�, since the
equations are solved with account of the finite size of the
nucleus. This fact enables one to perform the averaging of Xlj
using the numerical values of the integrals.

It is necessary to obtain the value of the averaged param-
eter accurate only up to second order of the fine-structure
constant �. For this purpose the integral �nlj�r−3�nlj is ex-
pressed as a power series,

�nlj�r−3�nlj = �nl�r−3�nl0 + �2�nlj�r−3�nlj2 + O��4� .

�3.2�

The first term represents an integral calculated on the basis of
the usual nonrelativistic ROs. A simple analytical expression
exists for this integral:

�nl�r−3�nl0 =
Z3

n3

2

l�l + 1��2l + 1�
. �3.3�

Substitution of �3.2� into �3.1�, taking into account �2.2� and
the properties of Xlj,

Xlj−
= − �l + 1� and Xlj+

= l , �3.4�

leads to the following expression:

Xnl = �2 l�l + 1���nlj+�r−3�nlj+2 − �nlj−�r−3�nlj−2�
�2l + 1��nl�r−3�nl0

+ O��4� .

�3.5�

The numerical computations of integrals �nlj�r−3�nlj on the
basis of the quasirelativistic functions obtained by solving
Eq. �2.5� for different values of the nucleus charge and for a
series of values of the principal quantum number enabled us
to obtain the following approximate numerical formula:

Xnp = �2Z2�−
37

30
−

5

9n
+

2

3n2� . �3.6�

This formula entirely coincides in its structure and depen-
dence on Z, �, and n with the expressions obtained for l
�2 by substituting the analytical expression of the
�nlj�r−3�nlj integrals from �19� into �3.1�.

Expression �3.6� needs to be introduced into Eq. �2.5�
instead of Xlj. Thus, a quasirelativistic equation containing
more precise averaging by j appears �for the case of p elec-
trons�. At the same time, the correction obtained can no
longer be related to the spin-orbit interaction, as it does not
depend on j, i.e., it does not satisfy the main property of this

interaction. This correction must be interpreted as a correc-
tion to the contact interaction, which arises from the spin-
orbit interaction in the same manner as the contact interac-
tion itself originates from the electrostatic interaction with a
nucleus.

As the parameter Xnp contains �2, the fourth order of the
fine-structure constant correction appears within the equa-
tion. This should not result in an excess of accuracy for the
following reasons. First, Eq. �2.5� is obtained from the Dirac
equations without elimination of the terms of higher order in
�. �The terms of �4 and higher orders are omitted only when
obtaining the QRHF equations, i.e., only the terms contain-
ing two-electron relativistic interactions are omitted when
obtaining the equations.� Second, Eq. �2.5� includes �2 in the
denominator, and that conforms to the presence of all powers
of � when the corresponding power expansion is applied.
Third, the concept of an expansion in powers of � is not fully
justified when considering Eq. �2.5�, since the terms contain-
ing high powers of the fine-structure constant might strongly
influence the total potential and consequently the behavior of
radial orbitals in the vicinity of the origin. This radically
distinguishes the properties of the one-electron relativistic
corrections from the properties of the two-electron ones
where the potentials near the origin are small.

IV. CONTACT INTERACTION ADJUSTMENT
FOR p ELECTRONS

In the previous section, the term specifying the contact
interaction for p electrons was obtained. However, it is
known that the one-electron contact interaction is taken into
account only for s electrons within the BP approach, whereas
it is considered negligible for other electrons. In this connec-
tion, the delta symbol ��l ,0� is included in the contact term
of the QRHF equations �11,14�, as in Eq. �2.3�. This property
of the contact interaction is quite correct if nonrelativistic
radial orbitals are used. But in a relativistic approach one
must talk about electrons with j=1/2 and not about s elec-
trons. Some of the p electrons belong to the same group. The
distinctive feature of electrons with j=1/2 is rather high
density of the probability in the vicinity of the origin, and a
strong influence of the relativistic effects correspondingly.
The solutions of Eq. �2.5� for particular values of j possess
the same properties.

Let us consider the influence of the contact interaction
within �2.5� in the case of j±= l±1/2. For this purpose, the
radial orbital and its derivative in the vicinity of the origin
must be presented as an expansion in a series of powers of
the radial variable,

P�nl�r� = a0rl+1�1 + O�r��,
dP�nl�r�

dr
= �l + 1�a0rl�1 + O�r�� .

�4.1�

The derivative of the potential U�r� �2.4� outside the nucleus
is proportional to r−2. Substituting �4.1� into the numerator of
the contact and spin-orbit potential, one may obtain the fol-
lowing dependence:
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d�− 2Z/r�
dr

� d

dr
−

Xlj + 1

r
�P�nlj�r� = brl−2�l − Xlj� + O�rl−1� .

�4.2�

In the case of j= l+1/2, by taking into account the corre-
sponding value of Xlj from �3.4�, one might obtain that the
first term of �4.2� disappears, and the contact potential in the
equation cannot contain negative powers of a radial variable
for all electrons with l�0. The first term does not disappear
when j= l−1/2. In this case, for p electrons the negative
power of a radial variable appears in �4.2�, which leads to
high values of the contact potential in the vicinity of the
nucleus. In the case of s electrons, where Xsj =0, the first
term of �4.2� also disappears, but the main term of the con-
tact potential remains r−1—the same as in the case of p elec-
trons with j= l−1/2. Thus, it is clear that one must take into
account the contact interaction for pj− electrons, just as for s
electrons.

Hence, besides the delta symbol ��l ,0� in the equation for
s electrons, it is necessary to find a way to take into account
the contact interaction for p electrons. The statistical weight
of the p electrons with j= l−1/2, when account of the con-
tact interaction is essential, is equal to 2. The statistical
weight of nonrelativistic p electrons is equal to 6. Thus, the
coefficient allowing one to average the contact interaction
for electrons with l=1 appears to be equal to 1/3. Now the
adjusted quasirelativistic equation �2.3�, independent of the
total momentum of an electron, is written down as follows
for any type of electron:

� d2

dr2 −
l�l + 1�

r2 − U�r� − �nl�P�nl�r� +
�2

4
��nl + U�r��2P�nl�r�

+ ���l,0� +
1

3
��l,1���2

4
�1 −

�2

4
��nl + U�r���−1

�
dU�r�

dr
� d

dr
−

��l,1�Xnp + 1

r
�P�nl�r� = 0. �4.3�

In this way, the equation remains the same both for s elec-
trons and for electrons with l�2. The results of solving this
equation are presented in Table III. The table contains the
one-electron energies and the averaged distances from the

origin for p electrons. The data of two kinds of calculations
are presented: Set A are the results of solving Eq. �4.3�; set B
are the results of solving Eq. �4.3� without the spin-orbit
correction of the contact term, i.e., when Xnp=0. Comparison
of data presented in Table III with the corresponding data of
DF calculations from Table I reveals that the solutions of Eq.
�4.3� provide more accurate energy values �set A� than those
of Eq. �2.3� without the contact interaction for p electrons. At
the same time, the rejection of spin-orbit correction �set B�
causes noticeable deviations in determining the one-electron
energies. The deviations of the averaged distances are similar
to those for the energies. The improvement of other RO pa-
rameters is also observed, including the spin-orbit interaction
constant discussed in the next section.

V. CALCULATION OF SPIN-ORBIT INTERACTION
ON THE BASIS OF QUASIRELATIVISTIC

RADIAL ORBITALS

Before investigating the influence of the proposed ap-
proach on the accuracy of calculations of the mentioned cor-
rection, it is worthwhile to discuss the methods of calculation
of the spin-orbit interaction in the case of quasirelativistic
ROs. In the case of nonrelativistic ROs, the one-electron part
of the spin-orbit interaction is defined in terms of a radial
integral as follows:

�nr�nl� =
�2

8
�

0

	

P�nl�r�
1

r

d�− 2Z/r�
dr

P�nl�r�dr . �5.1�

Since the finite-size nucleus potential is used while solving
the quasirelativistic equations, it is necessary to replace the
pointlike nucleus potential −2Z /r by the potential U�r� �2.4�
when applying the quasirelativistic ROs:

�0�nl� =
�2

8
�

0

	

P�nl�r�
1

r

dU�r�
dr

P�nl�r�dr . �5.2�

That is not all, though. In Eq. �2.5�, the term describing
the spin-orbit interaction �Xlj� contains the same denomina-
tor as does the contact interaction. Thus, there is the possi-
bility of presenting an alternative expression of the integral
under investigation,

�1�nl� =
�2

8
�

0

	 P�nl�r�
1

r

dU�r�
dr

P�nl�r�

�1 −
�2

4
��nl + U�r��� dr . �5.3�

In this form �5.3� is in better agreement with the contact
interaction integral calculated on the basis of quasirelativistic
orbitals.

The only criterion in selecting the type of the integral is a
comparison of the corresponding quantities with the value of
the spin-orbit interaction constant that is obtained using the
solutions of the Dirac equations, taking into account the fi-
nite size of a nucleus. This value is determined using the
corresponding one-electron energies as follows:

TABLE III. One-electron energies and averaged distances from
the origin for p electrons �a.u.�.

Z nl

� r̄

A B A B

50 2p 318.9422 319.9489 0.097469 0.097100

3p 141.5913 141.8906 0.244863 0.244306

4p 79.4297 79.5559 0.452175 0.451427

5p 50.7179 50.7825 0.719462 0.718523

100 2p 1375.7769 1382.8277 0.044324 0.044051

3p 606.9138 609.0367 0.113640 0.113213

4p 336.8957 337.8046 0.212765 0.212170

5p 213.2727 213.7429 0.341842 0.341071
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�DF�nl� =
�nlj+

− �nlj−

2l + 1
�5.4�

These results for d and f electrons are presented in Table IV.
The table contains the values of nonrelativistic integrals �nr
calculated by applying the formula �5.1� together with the
expression �3.3�, the results of calculations using formulas
�5.2� and �5.3�, based on the quasirelativistic functions, and
an “exact” value �DF. As is seen from the table, employment
of the spin-orbit interaction integral containing a denomina-
tor enables one to obtain appreciably more accurate values
while integrating the quasirelativistic ROs. At the same time,
the employment of expression �5.2� often results in devia-
tions, the absolute values of which are comparable with
those obtained using the nonrelativistic ROs.

The effect of a transfer from the solutions of Eq. �2.3� to
the solutions of Eq. �4.3� is obvious from Table V. There are
given the values of the integrals �0 and �1 calculated by
employing two types of quasirelativistic RO: the solution of
Eq. �2.3� and that of �4.3�. The data presented in Table V
clearly show that, in the case of p electrons, the complete
corrected Eq. �4.3� and the calculation of the integral with
the denominator �5.3� �these values are in italics� enable one

to obtain results that are in good agreement with the solu-
tions of the DF equations in all cases examined.

VI. CONCLUSION

The results presented in this paper unambiguously show
that it is necessary to take into account the contact interac-
tion with the nucleus in a specific way while solving the
quasirelativistic equations for p electrons. This is because the
contact interaction is essentially important for electrons with
j=1/2. It is better to eliminate this interaction for electrons
with j�1/2. The correct averaging of the spin-orbit poten-
tial over the total momenta of the p electrons when taking
into account the contact interaction is also required. Only
such an approach enables one to obtain quasirelativistic
equations with solutions in good coincidence for different
parameters with the data obtained by employing the exact
relativistic equations. Employment of a spin-orbit interaction
integral containing a denominator enables one to obtain ap-
preciably more accurate values when integrating the quasire-
lativistic radial orbitals.
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TABLE IV. Spin-orbit interaction constant for d and f electrons
�a.u.�.

Z nl �nr �0 �1 �DF

50 3d 0.2054 0.2133 0.2110 0.2103

4d 0.0867 0.0903 0.0890 0.0890

5d 0.0444 0.0462 0.0455 0.0456

4f 0.0310 0.0315 0.0314 0.0313

5f 0.0158 0.0162 0.0161 0.0160

100 3d 3.287 3.841 3.668 3.623

4d 1.387 1.641 1.545 1.546

5d 0.710 0.842 0.787 0.793

4f 0.495 0.534 0.524 0.517

5f 0.254 0.275 0.268 0.267

TABLE V. Spin-orbit interaction constant for p electrons
�a.u.�.

Z nl

Eq. �2.3� Eq. �4.3�
DF
�DF�0 �1 �0 �1

50 2p 3.89 3.69 3.97 3.75 3.78

3p 1.16 1.09 1.19 1.11 1.12

4p 0.489 0.456 0.502 0.467 0.473

5p 0.250 0.233 0.257 0.238 0.241

100 2p 92.94 74.60 107.95 83.78 84.51

3p 28.23 21.62 33.50 24.72 25.21

4p 11.83 8.92 14.11 10.24 10.46

5p 6.00 4.49 7.17 5.16 5.27
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