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We show that the entanglement witnesses based on local orthogonal observables, which were introduced by
Yu and Liu [Phys. Rev. Lett. 95, 150504 (2005)] and Giihne et al. [Phys. Rev. A 74, 010301(R) (2006)] in
linear and nonlinear forms, respectively, can be optimized. As applications, we use our method to calculate the
optimal nonlinear witnesses of pure bipartite states and to show a lower bound on the / concurrence of bipartite

higher-dimensional systems.
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I. INTRODUCTION

Entanglement is one of the most fascinating features of
quantum mechanics, and has recently been recognized as a
basic resource in quantum-information processing such as
teleportation, dense coding, and quantum key distribution
[1,2]. Thus, it becomes particularly important to detect and
quantify entanglement [3]. Despite a great deal of effort in
recent years, many things are still unclear to us in this field
(see the reviews [4—6] and references therein). Nevertheless,
on the one hand, several sufficient conditions for detection of
entanglement have been found, such as the famous Peres-
Horodecki positive partial transpose (PPT) criterion [7,8],
the realignment criterion [9], entanglement witnesses (EWs)
[10], local uncertainty relations (LURs) [11,12], Bell-type
inequalities [13-15], etc. The PPT criterion is necessary and
sufficient for 2 X 2 and 2 X 3 systems, but only necessary for
higher-dimensional cases [8]. It is believed that the realign-
ment criterion complements the PPT criterion, since it can
detect many entangled states which the PPT criterion cannot
detect. It is easier to detect entanglement experimentally
using EWs, which have recently been generalized to nonlin-
ear EWs [16,17]. On the other hand, a considerable amount
of effort has also been spent on quantification of entangle-
ment. For instance, Wootters has analytically derived a per-
fect measure of two qubits [18], the so-called concurrence.
Furthermore, generalized concurrence in bipartite higher-
dimensional cases [19,20], such as I concurrence [20], has
been pointed out as well. Unfortunately, the / concurrence of
mixed states is given as a convex roof for all possible en-
semble realizations. Therefore, it is generally difficult to cal-
culate. Lately, lower bounds on the I concurrence have at-
tracted much interest [21-24]; they are easier to obtain than
I concurrence itself.

Recently, Yu and Liu introduced an entanglement witness
[Eq. (3)] based on local orthogonal observables (LOOs) in
Ref. [25]. Moreover, Giihne et al. generalized the witness to
the nonlinear form [Eq. (4)] via local uncertainty relations
[26]. Both the witnesses have the common property that each
set of LOOs in the witnesses can be replaced by any other
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complete set of LOOs; thus one does not know which set of
LOOs is the best one for the witnesses. Actually, witnesses
using different sets of LOOs can obtain distinct results. For
example, the Bell state (|00)+|11))/2 can be detected as
entangled states by the linear witness under the set of LOOs
{o,,00,0,,1}*1\2, {o-x,—oy,az,I}B/\s"Z,_but cannot be de-
tected under the LOOs {0, 0,,0..I}* /72, {0, 0y, O'Z,I}B/\E.
Therefore, it is necessary to determine the optimal case. In
this paper, the optimal witnesses for the linear and nonlinear
forms will be presented. As applications, we will calculate
the optimal witnesses of pure bipartite states, and show a
lower bound on the I concurrence of bipartite higher-
dimensional systems.

The paper is organized as follows. Section II presents the
optimal witnesses in linear and nonlinear forms, which are
constructed using LOOs. In Sec. III we calculate the optimal
nonlinear witnesses of pure bipartite states based on our
method. Moreover, we obtain a lower bound on the / con-
currence in bipartite systems. Section IV discusses what hap-
pens if the dimensions of the subsystems A and B are not the
same.

II. OPTIMAL WITNESSES BASED ON LOOS

For convenience, we consider a dXd bipartite system,
just as Refs. [25,26] did (in Sec. IV, we will discuss the
situation when the dimensions of subsystems A and B are not
the same). Each subsystem has a complete set of local or-
thogonal bases {G/,?} and {Gf}, which are the so-called LOOs.
Such a basis consists of > observables and satisfies

Tr(G{G}) = Tr(GYG}) = &y (1)

Any other complete set of LOOs are related to the original
one by an orthogonal d? X d* real matrix, i.e.,

Gi=>, 0,Gt, GP=2 0,GP, ()
1 1

where 00"=0T0=0'0'"=0"70"=1.

In Ref. [25], a linear witness was introduced as follows
(for convenience, the witness has been written in an equiva-
lent form introduced in [26]):
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W=1-2G; e Gy, (3)
k

where {G{} and {G?} are arbitrary complete sets of LOOs for
subsystems A and B. Later, Ref. [26] provided a nonlinear
form,

Flp)=1-2(G ® Gf>—%2 (GLeI-1 G’ (4)
k k

For every separable state p, it must satisfy Tr Wp=0 and
F(p)=0. Conversely, if any state violates one of the two
inequalities, it is indeed entangled.

In Refs. [25,26], there is a little mention of how to choose
a set of LOOs so that Tr Wp or F(p) attains its minimum;
obviously, the minimum value means the optimal one, since
one can obtain distinct results by using different sets of
LOOs. Consider the simple example |¢*)=(|00)+|11))/v2
introduced in _Sec. I Under_ the set of LOOs
{a’x,ay,ch,I}A/\eE {ov, 0,0, 1132, TrOV|y)(¢*])=0 and
F(l¢*)y*)=0, which does not allow one to conclude that
[yt is entangled. However, under the set of LOOs
{oy, 00,01} N2, {oy,—0 I}B/\Z TrOV| () =-1
and .7-'(|¢//+><1,b+|):—1. This suggests that |¢/*) has entangle-
ment. Therefore, it is important to look for the minimal val-
ues. In the following, we will show that the minimum is
invariant under local unitary (LU) transformations, and ob-
tain an analytical formula for the minimum.

Lemma 1. For a given state p, the minimum of Tr Wp
[F(p)] is LU invariant.

Proof. (Reductio ad absurdum.) For a given state p, sup-
pose that, under the set of LOOs {M’,i‘}, {MP}, Tr Wp [F(p)]
attains its minimum Ll We operate an arbltrary LU transfor-
mation on p, i.e., p'=U,® UBpUA® UB For the state p’,

suppose that, under the set of LOOs {MA} {MB b, Tt Wp
[F(p)] attains its minimum L.

Case (i). L, >L2 For the state p, under the set of LOOs
{UTMAUA} {UBMk Ug}, Tr Wp [F(p)] is equal to L,. This
contradicts the statement that L; is the minimum of Tr Wp
[F(p)].

Case (ii). L, <L,. For the state p’, under the set of LOOs
{UMLUY, {UpMBULY, Tr Wp' [F(p')] is equal to L,. This
contradicts the statement that L, is the minimum of Tr Wp'
[F(p")].

In a word, if L; # L,, a contradiction is derived immedi-
ately. Therefore, L;=L, always holds, and the minimum of
Tr Wp [F(p)] is LU invariant. [ |

Remark. From an experimental point of view, it is valu-
able for the minimum to satisfy the LU-invariant condition,
since a shared spatial reference frame is no longer needed
when one makes a measure of the minimum [27].

Theorem 1. The minimum of TrWp is equal to
1-204(w), where o;(u) stands for the kth singular value of
a real matrix u which is defined as w;,,=Tr(pG! ® G%).

Proof. Before embarking on our proof, it is worth noticing
that a similar result to Theorem 1 has also been pointed out
in [25]. However, for convenience in understanding Theorem
2, we provide a complete proof. For a given state p, we
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choose an arbitrary complete set of LOOs {G%}, {G}. We
define

i =Tr(pG}' ® G}), (5)

and the density matrix can be written as

p=2 wnG' ® Gh. (6)

I.m

According to Eq. (2), any other complete set of LOOs {G},
{G?} can be written as G{=3,U,G?, G¥=2,V,,,G5, where

m’

U and V are d*>Xd* real orthogonal matrices, i.e., UU”
=UTU=VVT=VTV=I. Therefore,
min Tr(Wp) = 1 —max >, (G ® GP)
k
=1-max X > UyV,(G) ® Go)
k Im
=1 —max 2 2 UkZVkmlu“lm
k Im
=1-max > [UuV' ]y
k
=1 -max Tr(UuV?). (7)

Moreover,

max Tr(UuV?) = max Tr(uV'U) = 2 o(w), (8)
k

where we have used the following theorem [28].

Let AeM, be a given matrix, and let A=VEW' be a
singular value decomposition of A. Then the problem
max{Re tr AU:U € M,, is unitary} has the solution U=WV?,
and the value of the maximum is o(A)+---+0,(A), where
{o(A)} is the set of singular values of A.

Notice that wu is a real matrix and its singular value de-
composition can be written as ,u=Z/lTEV, where U, V are real
orthogonal matrices and 2 =diag{o;(u),o>(),...,o2(w)}.
When U=l and V=V, Tr(UuV?) attains its maximum
20 (w). In other words, under the new complete set of
LOOs {gl]?}’ {gf}a where g}?=zluleA7 g]l(?:zmvkaﬁ,
Ww=1 —Ekgﬁ ® gf, Tr W attains its minimum 1-2,03(x).H

Remark. In fact, this is equivalent to the realignment cri-
terion when Tr Wp gets its minimum [25]. Note that, under
the new complete set of LOOs {Qf}, {g‘,‘f}, the density matrix
can be written in its operator—Schmidt decomposition form
[29]:

p=2 ol(wWG ® Gy )
k

The realignment criterion states that, if p is separable, the
sum of all o3(w) is smaller than 1. Tt is equivalent to
min Tr Wp=0. Hence, it is concluded that any entangled
state detected by a witness of Eq. (3) must violate the
realignment criterion.

Example. Let us consider the noisy singlet state intro-
duced in Ref. [26]. p=p|¢}(ih|+(1=p)py, where [ys)
stands for the singlet state (J01)—|10))/+2, and the separable

012334-2



OPTIMAL ENTANGLEMENT WITNESSES BASED ON LOCAL...

noise is pg,,=2/3/00)(00|+1/3|01){01|. Actually, the state is
entangled for any p>0 [26] Under the complete set of
LOOs {-o o, I} 2, {0, o.,1}8/\2, the witness
of Eq. (3) can detect the entanglement for all p>0.4. How-
ever, the optimal witness using Theorem 1 can detect the
entanglement for all p>0.292, which is equivalent to the
realignment criterion.

Theorem 2. The minimum of F(p) is equal to
1-200(7)—(Tr p§+Tr plzg)/2, where o(7) stands for
the kth singular value of matrix 7 defined as 7,
=(G!'®Gh)~(G} ® II® Gh).

Proof. For a given state p, we choose an arbitrary com-
plete sets of LOOs {G’,j}, {Gf}, and calculate the real matrix

7 according to the definition
T =(G ® GBY (G @ INI ® GB). (10)

S1m1larly to Theorem 1, any other complete set of LOOs

{GA} {GB} can be written as Gk—E U, G2, Gf—E VinGE s
where U and V are d”Xd* real orthogonal matrices, i.e.,
UU"=U"U=VV'=V"V=]I. Therefore,

min<1—E<GA®Gk>— S {clel- 1®Gf>2)
k
~ o~ 1 —~ ~
=l—max(E(Gﬁ‘®Gf>+52(Gf®I—I®Gf>2).
k k
Moreover,
S {GTeI-18GH =3 (Gl e n*+{ e Gy
k k

~2(GT & (12 'GP,

where Ek(G’,: ®I)? and SI® Gf )2 are invariant under LOO
transformations, i.e.,

2 (GFe1?=3 X UGl o

ko

IXG), ®I)

=2 [UTUL/(G} @ IXG), ® I)
i

=D (Gr eIy
1

=Trpj,

where p, is the reduced density matrix after tracing over
subsystem B. Without loss of generality, substituting Eq. (11)
into =(G? ®1I)?, one can obtain the final result Trp;. Simi-
larly, S(I® GEY2=3(I® GP)2=Trp}, holds.

s

1
E(|m><n| +

G =1

L
——umpun
Sl

(11)
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Gy =(G)", (12)

where {|m),} and {|m),} are the standard complete bases.
Thus,

ax(E T oGl + = 2<GA®1 1®Gf>2>
k
%2 [(GF® 1+ GPY]
k
" max(E (GE oGl - (Gl eI ®'GT?>>)
k

N | =

(Trpi + Trp%) +max 2, > UitVinTim
k Im

—

= —(Trp3 + Trp3) + max 2 [UTVT ]

P—‘N

= (Trpj + Trpy) + E (7). (13)

2

In other words, minF(p)=1-3,0,(7) = (Trpi+Trp3)/2. M
Example. Bennett et al. introduced a 3 X3 bound en-

tangled state constructed from unextendible product bases in
Ref. [30]:

[0 = =100(0) — (1)), ) = ~=((0) — [1)]2).
\2 V2

) = =21~ [20), ) = ~=((1) — [20)]0).
V2 V2

)= 300)+ 1)+ 2)(10) +[1+ 2,

2 (14)

4
1
p= _<I— 2 |¢i><¢i|)'
i=0
Let us consider a mixture of this state with white noise,

plp)=pp+(1-p)3. (15)
Using the realignment criterion, one finds that the state
p(p) still has entanglement when p>0.8897. In Ref. [26],
it is found that the state p(p) must be entangled for
P> p.,-=0.8885, using the nonlinear witness Eq. (4) (but not
the optimal one). According to Theorem 2, one can obtain
an optimal witness of Eq. (4), and find that when
P> Pop=0.8822 the state is still entangled. Obviously, the
optimal witness is stronger than the one in Ref. [26]. In ad-
dition, in Sec. III we will present a lower bound on the 7
concurrence for the state based on Theorem 2 (see Fig. 1).
From the figure, it is worth noticing that the bound is posi-
tive when p>p,,=0.8822.
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FIG. 1. Two lower bounds of I concurrence for the state p(p).
One is the lower bound based on the realignment criterion (dashed
line), the other is obtained from L,,,, (solid line).

II1. APPLICATIONS

In this section, the optimal nonlinear witnesses of pure
bipartite states will be obtained using Theorem 2. Moreover,
we will show a lower bound on the / concurrence of
bipartite systems by means of our method. Before
embarking on our investigation, we first define that
L=13(GL@I-1® GEY+2 (Gl ® GP), and obviously L,
=3,0(7)+(Tr p3+Tr p3)/2, according to Theorem 2.

A. Optimal witnesses of bipartite pure states

Let us calculate £,,,, of a bipartite pure state |y with its
Schmidt decomposition |¢)=3 w/|ii).

Since Schmidt decomposition of a pure state is a LU
transformation, £,,,(|¢)) remains invariant after the trans-
formation according to Lemma 1. Therefore, we can directly
use the Schmidt decomposition form for convenience. We
choose a complete set of LOOs Egs. (11) and (12) for the A
and B subsystems, respectively (obviously any other com-
plete set of LOOs can be chosen, and it does not affect the
final result).

According to Theorem 2,

Tim={(G{ ® GE) (G} @ I ® GE)=[D & D & T},

(16)
where D=diag{\”M1M2’ coe s Vs - 5N o Mg} and
= M= - it
2
T= M-1,U«2 M2 ] M ,U«‘zl’«d (17)
— Mg T MMy Ma— :%21
Therefore,
2 0-Ic(q-) =2 2 V’Mlﬂ/“’n +2 E MomMns (1 8)
k m<n m<n
1
S(Trpa+ T pp) = 2 e, (19)
—\2
['max(ldl» = <2 Vlﬂi) . (20)
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Note that Eq. (20) has also been derived with another
totally different method in Ref. [23], and it completely ac-
cords with our result. Compared with the method in Ref.
[23], Theorem 2 in this paper is more general, i.e., it suits not
only bipartite pure states but also any bipartite mixed state.

B. Lower bound on the I concurrence

The I concurrence of a bipartite pure state is given by
C(ly))=2(1-Tr pi), where the reduced density matrix p,
is obtained by tracing over the subsystem B. It can be ex-
tended to mixed states p by the convex roof,

C(p) ={ H\g)} 2 piC(|'/’i>)’ p= 2 pi|l/li><§[ji|’ (21)

for all possible decompositions into pure states, where
p;=0 and Z;p;=1.

Several bounds have already been derived [21-24], e.g.,
an analytical lower bound based on the PPT criterion and the
realignment criterion has been shown by Chen et al.:

2
C(p) = 4/ m[maX(HPTA|

where T4, R, and ||| stand for the partial transpose, realign-
ment, and the trace norm (i.e., the sum of the singular val-
ues), respectively. In Ref. [23], another bound based on
LOOs has been obtained, which used Eq. (20) and the fact
that ;L0 |)) = Zp: LA90) = LEpi|i)ih]) (for con-
venience, the lower bound has been rewritten in an equiva-

lent form):
2
Clp) = 4/ m(ﬁ— 1). (23)

Notice that Eq. (23) holds for arbitrary sets of LOOs, includ-
ing the optimal one. Therefore, a tighter form of Eq. (23) can
be obtained according to Theorem 2,

/ 2
C(P) = M(ﬁmax - 1), (24)

where L,,,,==0(7)+(Tr p3+Tr p3)/2. Since the entangle-
ment criteria based on LURs are strictly stronger than the
realignment criterion [26], the following inequality can be

stated:
(p) = \/—{ (o
C(p) = ( T max[||p’

For example, reconsider the bound entangled state Eq. (14).
Because it belongs to a PPT entangled state, the lower
bound based on the PPT criterion is unhelpful. One can ob-
tain that C(p)=0.050 via the realignment criterion, and
C(p) =0.052 was obtained in Ref. [23] by using Eq. (23). In
fact, £,,,(p) can be directly calculated, and it suggests that
C(p)=0.055 via Eq. (24), which is better than the bound in
Ref. [23]. Furthermore, one can consider the bound
entangled state with white noise, i.e., Eq. (15). The lower
bounds of I concurrence for p(p) are shown in Fig. I; the

RpIh-11,  (22)

b}

’ Emax(p)] - 1} (25)
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lower bound based on L,,,, has been strictly improved com-
pared with the one based on the realignment criterion, and it
provides a tighter form of Eq. (23).

IV. DISCUSSION AND CONCLUSION

In the last two sections, we considered a simple situation:
the d X d bipartite system for convenience. However, if the
dimensions of the Hilbert spaces H, and Hp are not the
same, what will happen? Actually, it does not affect any one
of the conclusions in Secs. II and III.

Without loss of generality, suppose that m=dim(H,) <n
=dim(Hp). There are m?> elements in a complete set of LOOs
{G?}, and n® elements in {G7}. Therefore, we need to recon-
sider Egs. (8) and (13) in Theorems 1 and 2, respectively:

max > > Uy Viguty, = max Tr(Up V"), (26)
k Im

max >, > Uy Vi Tim = max Tr(UTVT), (27)
k Im

where U is an m? X m? real orthogonal matrix; w and 7 are
m? X n® real matrices; V belongs to n?Xn” real orthogonal
matrices. The two equations have the same form, so we just
need to consider Eq. (27), for instance.

As in Ref. [26], one can define G{=0 for
k=m?+1,...,n*>. Thus, the matrix 7 is changed into
an n? X n? real matrix, i.e.,

() e
7= ,
0

where 0 stands for an (n?>-m?) X n> matrix with every ele-
ment being equal to 0.

Define U'=U&]I, where I is an (n>—m?) X (n>*~m?) iden-
tity matrix. It is easy to see that U’ is an n” X n” real orthogo-
nal matrix since U belongs to m?>Xm? real orthogonal
matrices.

Notice that (I=n>-m?)

<Um2><m2 0 )(Tm2><n2>(vr ) ([UTVT]szn2>
VlZ }12 = 2
0 I[><1 Ol><n2 . 0l><n2

which means that Tr(U' 7' VT)=Tr(U7VT). Therefore,
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max Tr(U7VT) = max Tr(U' 7' V)
=max Tr(7' VIU")

=E o (7). (29)
k

Since 7' 7' T=(77)®0,4;, 77T and 77" have the same non-
zero eigenvalues. Hence,

E Uk(T')=E oy (7). (30)
k k

Consequently, Egs. (29) and (30) suggest that Theorems 1
and 2 still hold, even if the dimensions of subsystems A and
B are not the same, and the applications in Sec. III that used
Theorem 2 can also be extended to this case.

In conclusion, we have optimized the linear and nonlinear
entanglement witnesses based on local orthogonal observ-
ables, which were introduced by Yu and Liu and Giihne et
al., respectively, and several examples have been given as
well. Moreover, we have obtained the optimal witnesses
based on LOOs in pure bipartite systems, and a lower bound
on the I concurrence of bipartite systems as applications of
our method. In fact, Theorem 2 presents a separability crite-
rion with Ky Fan norm of 7, the covariance term defined in
[27]. Similarly, another separability criterion with Ky Fan
norm of correlation matrix has been shown in [31]. Tt is
worth investigating a deeper relation between these two cri-
teria. In addition, the term “optimal” in this paper is used in
the sense of choosing the best complete set of LOOs such
that the witness attains its minimum, which has little relation
to traditional optimal EWs [32].

Note added. Recently, a similar result has been shown in
[33], which is based on the covariance matrix criterion. In-
terestingly, Proposition 3 in [33] can be optimized to a simi-
lar form as Theorem 2 in this paper.
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