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Security formulas of quantum key distribution �QKD� with imperfect resources are obtained for finite-length
code when the decoy method is applied. This analysis is useful for guaranteeing the security of implemented
QKD systems. Our formulas take into account the effect of the vacuum state and dark counts in the detector.
We compare the asymptotic key generation rate in the presence of dark counts to that without the presence of
dark counts.
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I. INTRODUCTION

The BB84 protocol proposed by Bennett and Brassard �1�
in 1984 attracts attention as an alternative to modern cryp-
tography based on complexity theory. Many efforts are de-
voted to searching for implementations of quantum commu-
nication channels for this purpose. The security of the
original BB84 protocol can be trivially proved only when the
quantum communication channel is noiseless. Since there is
noise in any implemented quantum channel, it is needed to
prove the security with the noisy channel, which has been
proved by Mayers �2�. After his proof, many different proofs
were reported. However, any implemented quantum channel,
besides loss, also suffers imperfections in generating a single
photon. That is, the sent pulse is given as a mixture of the
vacuum state, the single-photon state, and the multiphoton
state, and it is impossible for the sender �Alice� and the re-
ceiver �Bob� to identify the number of photons. In order to
guarantee the security in such a case, the decoy method has
been proposed �3–6�, in which different kinds of pulses are
transmitted. However, these preceding researches did not
provide security with the finite-length code, which is a basic
requirement in practical settings. That is, there is no estab-
lished method to evaluate quantitatively the security of an
implementable quantum key distribution �QKD� system.

On the other hand, modern cryptographic methods are
required to evaluate its security quantitatively. Hence, for the
practical use of QKD, a theoretical analysis is needed in
order to present quantitative criteria for security and to es-
tablish the method to guarantee this criteria for the imple-
mented QKD system. If nothing in this direction is done,
QKD systems cannot be developed for practical use.

In a usual QKD protocol, the final key is generated via
classical error correction and privacy amplification after the
initial key �raw key� is generated by the quantum communi-
cation. In the classical error correction part, it is sufficient to
choose our classical error correction code based on the de-
tected error rate. Privacy amplification, on the other hand,
sacrifices several keys in order to guarantee the security
against the eavesdropper. The upper bound of eavesdropper
�Eve�’s information for the final key is closely related to the
amount of sacrifice bits.

Since Eve’s information for the final key is the measure of
the possibility of eavesdropping, its quantitative evaluation is
required. In order to decrease Eve’s information sufficiently,
we need a sufficient amount of sacrifice bits, which is given
by the product between the length of our code and the rate of
sacrifice bits. A larger size of our code requires larger com-
plexity of the privacy amplification, and a larger rate of sac-
rifice bits decreases the generation rate of the final key.
Hence, it is required to derive the formula to calculate the
upper bound of Eve’s information for the final key for a
given length of the code and a given rate of sacrifice bits,
under the realizable quantum communication channel.

Our problems can be divided into three categories: The
first is the evaluation of Eve’s information for the given
length of our code and the given rate of sacrifice bits. Since
any implemented QKD system has a finite-length code, any
asymptotic security theory cannot guarantee the security of
an implemented QKD system. The second is the security
analysis for imperfect resource �e.g., phase-randomized co-
herent light� that consists of mixtures of the vacuum state,
single-photon state, and multiphoton state. Many practical
QKD systems are equipped not with single-photon but with
weak phase-randomized coherent signals. These systems re-
quire a security analysis with an imperfect resource. Further,
even if a QKD system is approximately equipped with
single-photon signals, it nonetheless needs a security analy-
sis for an imperfect resource because only a perfect single-
photon resource allows the security analysis for the single-
photon case. The third is the identification of the relative
ratio among the vacuum state, the single-photon state, and
the multiphoton state in the detected pulses. Many imple-
mented quantum communication channels are so lossy that
Alice and Bob cannot identify this ratio in the detected
pulses even though they know this ratio in the transmitted
pulses. Thus, they need a method to estimate this ratio. Each
of these three problems has been solved only separately,
however, an implemented QKD system requires a unified
solution for these three problems, which cannot be obtained
by a simple combination of separate solutions.

Concerning the first problem, many papers treated only
the asymptotic key generation �AKG� rate. Only the papers,
Mayers �2�, Inamori-Lütkenhaus-Mayers �ILM� �7�,
Watanabe-Matsumoto-Uyematsu �WMU� �8�, Renner-Gisin-
Kraus �RGK� �9�, and Hayashi �10� discussed the security of
the finite-length code with a low complexity protocol. In
particular, only ILM �7� takes into account the second prob-*Electronic address: masahito@qci.jst.go.jp
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lem among them, and the other papers treat only the single-
photon case. Extending the method of Mayers �2�, ILM �7�
provided an evaluation of the security with imperfect re-
sources for the finite-length code. Unfortunately, their for-
mula for the security evaluation is so complicated that a sim-
pler security bound is needed. They also obtained the AKG
rate with imperfect resources. Extending the method of Shor-
Preskill �11�, Gottesman-Lo-Lütkenhaus-Preskill �GLLP�
�12� also obtained this rate. In order to solve the third prob-
lem, Hwang �3� developed the decoy method, in which we
estimate the ratio by changing the intensity of the transmitted
phase-randomized coherent light randomly. After this break-
through, applying the asymptotic formula by GLLP �12�,
Wang �6�, and Lo et al. �4,5� analyzed this method deeply,
but did not treat the security of the finite-length code. Hence,
there are not enough results to treat the security with the
decoy method for the finite-length code.

Further, there is a possibility for an improvement of the
AKG rate by ILM �7� and GLLP �12�. Taking into account
the effect of the vacuum state, Lo �13� conjectured an im-
proved AKG rate. Considering the effect of the dark counts
in the detector, Boileau-Batuwantudawe-Laflamme �BBL�
�14� conjectured a further improvement of the AKG rate con-
jectured by Lo �13�. They pointed out that the AKG rate with
the forward error correction is different from that with the
reverse error correction.

In this paper, in order to evaluate eavesdropper’s perfor-
mances, we focus on the average of Eve’s information, the
average of the maximum of trace norm between Eve’s states
corresponding to different final keys, and the probability that
Eve can correctly detect the final key. We derive useful upper
bounds of these quantities for the protocol given in Sec. II in
the finite-length code by use of mixing different imperfect
resources. Based on this bound, we obtain an AKG rate. In
particular, due to the consideration of the effect of the dark
counts, our bound improves that by ILM �7�, and it yields the
AKG rate that coincides with that conjectured by BBL �14�.
We should mention here that our description for quantum
communication channel is given as a TP-CP map on the
two-mode bosonic system. Since our results can be applied
to the general imperfect sources, it provides security with an
approximate single-photon source. However, further statisti-
cal analysis is required for the numerical bound of Eve’s
information for the implemented QKD system with the
finite-length code. Such an analysis is presented in another
paper �15�. Also, the analysis of the AKG rate in the case of
phase-randomized coherent light will be presented in another
paper �16�.

The paper is organized as follows. In Sec. II, as a modi-
fication of the BB84 protocol, we present our protocol, in
which we clarify the measuring data deciding the size of
sacrifice bits in the privacy amplification. In Sec. III, we
derive upper bounds of the averages of Eve’s information
about the final key and of the trace norm of the maximum
between Eve’s states corresponding to different final keys
under the protocol given in Sec. II. In Sec. IV, we character-
ize the AKG rate based on our bounds, and apply it to the
case of mixture of the vacuum and the single photon and the
case of the approximate single photon. In Sec. V, the quan-
tum communication channel is treated as a general TP-CP

map on the two-mode bosonic system. It is proved that such
a general case can be reduced to the case given in Sec. III.

II. MODIFIED BB84 PROTOCOL
WITH DECOY STATE

We consider BB84 protocol based on � basis, �↑�, �↓� and
� basis, �+ �ª 1

�2
��↑ �+ �↓ ��, �−�ª 1

�2
��↑ �− �↓ ��. If we realize

this protocol by using photon �or bosonic particle�, we have
to generate the single-photon in the two-mode system and
transmit it with no loss. However, it is impossible to imple-
ment this protocol perfectly; any realized quantum commu-
nication system can send only an imperfect photon �or ap-
proximately single photon�. Hence, we have to treat the
bosonic system more carefully. Let us give its mathematical
description. The two-mode bosonic system is described by
Hª�n=0

� Hn, where the n-photon system Hn is the Hilbert
space spanned by �0,n� , �1,n−1� , . . . , �n−1,1�, and �n ,0�.
For example, �j ,n− j� is the state consisting of j photons with
the state �↑� and n− j photons with the state �↓�. Also the
vector � j=0

n �� n
j
�� 1

2
�n�j ,n− j� �� j=0

n �� n
j
�� 1

2
�n�−1�n−j� j ,n− j��

corresponds to the state of n photons with the state ��� �����.
That is, the system Hn is equivalent with the nth symmetric
subspace of the two-dimensional system. We also denote the
state of j photons with the state ��� and n− j photons with
the state ��� by �j ,n− j , � �.

When we would generate the state �↑� in the two-
dimensional system with the coherent pulse, the generated
state is described by the state �n=0

� e−���2/2 �n

�n!
�n ,0� in the two-

mode bosonic system. However, if we implement our system
so that each phase factor � of the complex amplitude �
=��ei� is completely random, our state can be regarded as
the mixed state e−��n=0

� �n

n! �n ,0�	n ,0�, which depends only on
the intensity �. In the following, we consider a more general
case, in which the pulse sent by the sender �Alice� is given
by �0,+

	
ª�n=0

� 	�n��n ,0�	n ,0�, �1,+
	

ª�n=0
� 	�n��0,n�	0,0�,

�0,�
	

ª�n=0
� 	�n��n ,0 , � �	n ,0 , � �, �1,�

	
ª�n=0

� 	�n��0,n ,
� �	0,n , � �, where 	 is an arbitrary distribution.

Since our communication channel is lossy, the receiver
�Bob� cannot necessarily detect all of the sent pulses. If the
breakdown of the detected pulses �the ratio among the
vacuum state, the single-photon state, the n-photon state, and
so on� is known, we can guarantee the security of the BB84
protocol based on the discussion in Sec. III B. However,
since the usual quantum communication channel is lossy,
there is a possibility that Eve can control the loss depending
on the number of the photons. Hence, it is impossible to
identify the loss of each number of the photons if Alice sends
the pulse by using one distribution 	. One solution is the
decoy method �3,4,6�, in which Alice randomly chooses the
distribution 	 and estimates the loss and the error probabili-
ties of each number state. It is effective to choose the
vacuum pulse �0�	0�.

In the following, we describe our protocol. First, we fix
the following: the size N of our code, the maximum number

N̄ and the minimum number N� of final key size, the number
N� of sent pulses, the k distributions 	1 , . . . ,	k of the gener-
ated number of photons, and the distribution 	i0

, whose pulse
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generates the raw keys. Since the vacuum pulse and two
bases are available, Alice sends 2k+1 kinds of pulses, where
the zeroth kind of pulse means the vacuum pulse, the ith kind
of pulse means the pulse with the � basis generated by the
distribution 	i, and the i+kth kind of pulse means the pulse
with the � basis generated by the distribution 	i for i
=1, . . . ,k. For this purpose, they fix the probabilities
p̄0 , . . . , p̄2k, and Alice generates the ith kind of pulse with the
probability p̄i for i=0, . . . ,2k. The probabilities p̄i0

and p̄k+i0
should be larger because these generate the pulses producing
the raw keys. In this paper, we use the bold style for describ-
ing the vector concerning the index i representing the kind of
pulse as p̄= �p̄0 , . . . , p̄2k�.

Before the quantum communication, they check the prob-
ability pD of dark counts in the detector, and the probability
pS of errors of the � basis occurring in the detector or the
generator, which can be measured by the error probability
when the quantum communication channel has no error.
Similarly, they measure the probability p̃S of errors of the �
basis occurring in the detector or the generator.

�1� Alice sends the N� pulses, where each pulse is chosen
among 2k+1 kinds of pulses. She denotes the number of the
ith kind of pulses by Ai ��i=0

2k+1Ai=N��.
�2� After sending N� pulses, Alice announces the kind of

each pulse �the basis and the distribution 	i� by using public
channel.

�3� Bob records the numbers C0 , . . . ,C2k of detected
pulses and the numbers E1 , . . . ,E2k of detected pulses with
the common basis for each kind of i=0, . . . ,2k pulses. Bob
announces the positions of pulses with the common basis and
the above numbers by using public channel.

�4� Alice chooses Ei0
−N bits among i0th pulses with the

common basis and Ei0+k−N bits among the i0+kth pulses
with the common basis, and announces these positions and
their bit by using public channel. Bob records the number of
errors as Hi0

,Hi0+k and announces them by using public
channel. If Ei0


N or Ei0+k
N, they stop their protocol and
return to the first step.

�5� Alice and Bob announce their bit of the remaining
kinds i�0, i0 , i0+k of pulses, and record the number of error
by Hi.

�6� Using this information, they decide the rates �� Hi0+k

Ei0+k−N�
and �� Hi0

Ei0
−N� of error correction and the sizes of sacrifice bits

m�Di ,De� and m̃�D̃i ,De� in the privacy amplification for the
remaining i0th kind of pulses and the i0+kth kind of pulses,
respectively, where we abbreviate the initial data
�A ,� , pS , pD� and �A ,� , p̃S , pD� and the experimental data

�C ,E ,H� to Di, D̃i, and De. If N�� Hi0+k

Ei0+k−N�−m�Di ,De��N� or

N�� Hi0

Ei0
−N�− m̃�D̃i ,De��N� , they stop their protocol and re-

turn to the first step. Further, if N̄�N�� Hi0+k

Ei0+k−N�−m�Di ,De�,

they replace m�Di ,De� by N�� Hi0+k

Ei0+k−N�− N̄. Similarly, if N̄

�N�� Hi0

Ei0
−N�− m̃�D̃i ,De�, they replace m̃�D̃i ,De� by

N�� Hi0

Ei0
−N�− N̄.

�7� They perform N bits error correction for + basis, and

generate N�� Hi0+k

Ei0+k−N� bits.

�8� They perform privacy amplification for the + basis,

and generate N�� Hi0+k

Ei0+k−N�−m�Di ,De� bits.

�9� They perform N bits error correction for the � basis,

and generate N�� Hi0

Ei0
−N� bits.

�10� They perform privacy amplification for the � basis,

and generate N�� Hi0

Ei0
−N�− m̃�D̃i ,De� bits.

If Bob detects both events �0� and �1� in the measurement
of the + basis, he decides one event with the probability 1

2 . In
the following, this measurement is described by the POVM

M� ,M0 ,M1�.

Error correction ��7�, �9��. In steps �7� and �9�, Alice and
Bob generate l+m bits with negligible errors from N bits X
and X� by using one of the following protocols. �For ex-

ample, l and m are chosen as l+m=N�� Hi0+k

Ei0+k−N� and m

=m�Di ,De�.�
Forward error correction. They share N� �l+m� binary

matrix Me. Alice generates other l+m bits random number Z,
and sends MeZ+X to Bob. Bob applies the decoding of the
code Me to the bits MeZ+X−X� to extract Z and obtain Z�.

Reverse error correction. Bob generates other l+m bits
random number Z, and sends MeZ+X� to Alice. Alice applies
the decoding of the code Me to the bits MeZ+X�−X to ex-
tract Z and obtain Z�.

As mentioned later, since this error correction corresponds
to a part of the twirling operation, their channel can be re-
garded as a Pauli channel from Alice to Bob in the forward
case �from Bob to Alice in the reverse case�.

Privacy amplification ��8�, �10��. In steps �8� and �10�,
Alice and Bob generate l bits from l+m bits Z by using the
following protocol. First, they generate the same l� �l+m�
binary matrix Mp with the following condition:

Pr
Z � Im Mp
T� 
 2−m �1�

for any nonzero l+m bit sequence Z. Next, they generate l
bits MpZ from l+m bits Z.

Hence, combining the above error correction and the
above privacy amplification, Alice can be regarded to send
information by the code Im Me /Me�Ker Mp�.

The preceding researches �2,7,8� analyze the security
when the binary matrix Mp for privacy amplification is cho-
sen completely randomly. If we choose the binary matrix Mp
by the Toeplitz matrix �17,18�, we need a less random num-
ber. This is because the Toeplitz matrix requires only l+m
−1 bits random number while completely random binary ma-
trix Mp does �l+m�l bits random number. An l� �l+m� bi-
nary matrix �X , I� is called Toeplitz matrix �17,18� when its
element X= �Xi,j� is given by l+m−1 random variables
Y1 , . . . ,Yl+m−1 as

Xi,j ª Yi+j−1.

Theorem 1. The Toeplitz matrix satisfies condition �1� for
any element Z�0�F2

l+m.
For a proof, see Appendix A.
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III. EVALUATION OF EVE’S INFORMATION
CONCERNING FINAL KEY

A. Formulation of channel

In this section, we assume a simplified Eve’s attack, and
evaluate the security against Eve’s attack. In Sec. V, we will
treat the general case of Eve’s attack, and prove that the
general case can be reduced to the case of this section.

First, we assume that Eve can distinguish the four states
�n ,0�, and �0,n� in � basis and �n ,0 , � � , �0,n , � � in �
basis. Hence, the input system can be described by the Nth
tensor product system H�N of HªH0 � H1 � ��n
2Hn,+�
� ��n
2Hn,��, where H0 is the one-dimensional space
spanned by �0,0�, H1 is the two-dimensional space spanned
by �0,1� and �1,0�, Hn,+ is the two-dimensional space spanned
by �n ,0� and �0,n�, and Hn,� is the two-dimensional space
spanned by �n ,0 , � � and �0,n , � �. The output system is
described by the Nth tensor product space H�N of H0 � H1.

Then, the quantum communication channel from Alice to
Bob is given by

�
n�
�

e�
Pn��e���� i=1

N Eei�ni
���� , �2�

where Pn��e�� is the distribution of e� when n� is fixed. Such a
channel is called the Pauli channel. Here, n� and e� are given

as follows: Each element ni of n� = �n1 , . . . ,nN� is chosen
among 0,1 , �2, + � , �2, � � , . . . . Each element ei of e�
= �e1 , . . . ,eN� is chosen as v or s when ni is 0. It is chosen
among v , �0,0� , �0,1� , �1,0� , �1,1� when ni is 1. Otherwise,
it is chosen among v , 0 , 1. When ni is 0 or 1, the channel
Eei�ni

is defined as

Eei�0
��� ª �	0,0���0,0��0,0�	0,0� if ei = v

	0,0���0,0��mix,1 if ei = s ,



Eei�1
��� ª ��0,0�	0,0�Tr PH1

�PH1
if ei = v

WeiPH1
�PH1

�Wei�† otherwise,



where

�mix,1 ª
1

2
��0,1�	0,1� + �1,0�	1,0�� ,

W�x,z�
ª XxZz,

X�0,1� = �1,0�, X�1,0� = �0,1� ,

Z�0,1� = − �0,1�, Z�1,0� = �1,0� .

When ni is not 0 or 1, the channel Eei�ni
is defined as

Eei�ni
��� ª ��0,0�	0,0�Tr �PHni

if ei = v

	0,ni���0,ni��0,ni�	0,ni� + 	1,ni���1,ni��1,ni�	1,ni� if ei = 0

	0,ni���0,ni��1,ni�	1,ni� + 	1,ni���1,ni��0,ni�	0,ni� if ei = 1.
�

The raw key is generated from detected pulses, which
belong to the system H1 on Bob’s side. Thus, we focus only
on the pulse whose measurement value is not v. In the fol-
lowing, we consider the security from the final key distilled
from raw keys of the � basis. Hence, the generated state can
be restricted to H0 � H1 � ��n
2Hn,+�. Thus, it can be as-
sumed that our channel �n��e�Pn��e���� i=1

N Eei�ni
� satisfies that

each element ei of e� = �e1 , . . . ,eN� is not v.

B. Security of known channel: No dark count case

Assume that the input state belongs to the subsystem
Hn�ªHn1

� ¯ � HnN
labeled by n� = �n1 , . . . ,nN�. Now, we

classify the N input subsystems into three parts: zeroth part:
K0�n��ª # 
i �ni=0�; first part: K1�n��ª # 
i �ni=1�; second
part: K2�n��ª # 
i �ni
2�.

In the zeroth part, Eve can obtain no information. That is,
Eve’s information of our channel is equal to Eve’s informa-
tion when Alice’s information is sent by the � basis via the
qubit channel as follows:

Es�0� ��� ª
1

2
�X0��X0�† + X1��X1�†� .

In the second part, Eve can obtain all of Alice’s information
by the following method: Eve receives a two-photon state.
She sends one qubit system to Bob, and keeps the other
qubit. After the announcement of the basis, Eve measures her
system with the correct basis. Thus, Eve’s information of our
channel is equal to Eve’s information when Alice’s informa-
tion is sent by the � basis via the phase-damping qubit chan-
nel �pinching channel� as follows:

Eei��n,+�� ��� ª
1

2
�Z0��Z0�† + Z1��Z1�†�

for n
2. This is because the channel is given by Eei��n,+�� in
the single-photon case when Eve measures the system with
the correct basis. Here, the presence or the absence of the
error X is not so important for Eve’s information. This is
because the probabilities concerning the action Z is essential,
as is discussed in Appendix C. Therefore, Eve’s information
concerning total N bits is equal to Eve’s information when
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the N bits information x1 , . . . ,xN is sent by �x1 , . . . ,xN�
� �C2��N via the following qubit channel:

�
e�

Pn��e���� i=1
N Eei�ni

� � . �3�

There is a relation between the error probability in the �
basis and the security.

Theorem 2. Define Pph�Mp

Pn� as the error probability by an
arbitrary decoding when an information sent by the code
(Me�Ker Mp�)� / �Im Me�� with the � basis via the qubit
channel �e�Pn��e���� i=1

N Eei�ni
� ����, where n�ª �n1 , . . . ,nN�. When

Alice sends l bits information with the code
Im Me /Me�Ker Mp� in the � basis via the same channel, the
following relations hold.

Define ��Z��Mp

E as the final Eve’s state when Alice’s infor-
mation is �Z�=MpZ. Then, Eve’s information IE�Mp

Pn� is given
as the quantum mutual information as follows:

IE�Mp

Pn�
ª

1

2l�
�Z�

D���Z��Mp

E ��̄Mp

E � ,

D������ ª Tr ��log2 � − log2 ��� ,

�̄Mp

E
ª �

�Z�

1

2l��Z��Mp

E .

The quantum mutual information IE�Mp

Pn� satisfies that

IE�Mp

Pn� 
 h̄�Pph�Mp

Pn� � + lPph�Mp

Pn� , �4�

where h̄�x� is defined as

h̄�x� ª �− x log2 x − �1 − x�log2�1 − x� if 0 
 x 
 1/2

1 if 1/2 � x 
 1.



Hence, Eve’s information per one bit is evaluated as

IE�Mp

Pn�

l



h̄�Pph�Mp

Pn� �

l
+ Pph�Mp

Pn� . �5�

We also obtain the following:

min
�Z���Z��

F���Z��Mp

E ,��Z���Mp

E � 
 1 − 2Pph�Mp

Pn� , �6�

max
�Z���Z��

���Z��Mp

E − ��Z���Mp

E �1 
 4Pph�Mp

Pn� , �7�

min
�Z�

F���Z��Mp

E , �̄Mp

E � 
 1 − Pph�Mp

Pn� , �8�

max
�Z�

���Z��Mp

E − �̄Mp

E �1 
 2Pph�Mp

Pn� , �9�

where F�� ,���ªTr��������. Define Psucc�Mp

Pn� as the prob-
ability of successfully detecting Alice’s information �Z�.
Then, the inequality

Psucc�Mp

Pn� 
 ��Pph�Mp

Pn� �1 − 2−l + �1 − Pph�Mp

Pn� �2−l�2 �10�

holds.

Further, the concavity of h̄ implies that

EMp

Pn� IE�Mp

Pn� 
 h̄�EMp

Pn� Pph�Mp

Pn� � + lEMp

Pn� Pph�Mp

Pn� , �11�

EMp

Pn�
IE�Mp

Pn�

l



h̄�EMp

Pn� Pph�Mp

Pn� �

l
+ EMp

Pn� Pph�Mp

Pn� . �12�

The concavity of the left-hand side of Eq. �10� holds con-
cerning Pph�Mp

Pn� . Thus,

EMp

Pn� Psucc�Mp

Pn� 
 ��EMp

Pn� Pph�Mp

Pn� �1 − 2−l + �1 − EMp

Pn� Pph�Mp

Pn� �2−l�2.

For a proof, see Appendix C. As shown in Sec. V, sending l
bits information with the code Im Me /Me�Ker Mp� is equiva-
lent with the combination of sending random number and
forward error correction by Im Me and privacy amplification
by Me�Ker Mp�.

Next, we focus on the average error probability Pph,min�Mp

Pn�

with the minimum length decoding when information sent by
the code (Me�Ker Mp�)� / �Im Me�� with the � basis via the
qubit channel ����=�e�Pn��e���� i=1

N Eei�ni
� ����. This value is de-

scribed as

Pph,min�Mp

Pn� =
1

��Im Me��� �
z��Im Me��

�
z�:�13�

	z��Pn���z�	z���z�� ,

where we take the summand concerning z� satisfying the
following condition �13�:

argmin
z��„Me�Ker Mp�…�

D�z�,z�� � �Im Me��, �13�

and D�z� ,z�� is the Hamming distance between z� and z�. In
order to analyze the error probability Pph,min�Mp

Pn̄ , we introduce

the number t�e� ,n�� as follows:

t�e�,n�� ª #
i�ni = 1, ei = �0,1� or �1,1�� .

Theorem 3. Assume that the binary matrix Mp satisfies the
condition �1�. If the distribution Pn� takes positive probabili-
ties only in the set 
e� � t�e� ,n��= t�, then we obtain

EMp
Pph,min�Mp

Pn� 
 2K1�n��h̄�t/K1�n���+K2�n��−m.

Further, if the stochastic behavior of the random variable t
= t�e� ,n�� on the distribution Pn� is described by the distribution
p� t

K1�n�� �, then the inequality

EMp
Pph,min�Mp

Pn� 
 �
t=0

K1�n��

p� t

K1�n��
�min
2K1�n��h̄�k/K1�n���+K2�n��−m,1�

holds. That is, the upper bound can be characterized by K� �n��
and t.

For a proof, see Appendix D.
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C. Security of known channel: Dark count case

Next, we take into account the effect of dark count in the
detector. In this case, in order to characterize the presence or
absence of dark count, we add c or d to the label ni of
the input system. That is, the label ni is chosen among
�0,c� , �0,d� , �1,c�, �1,d� , �2, + ,c�, �2, + ,d� , �2, � ,c� , �2, �,
d� , . . . etc., where �*,d� expresses dark count and �*,c� does
the normal count. Then, we can classify detected pulses to
the following six parts:

o=0, J0�n��. The number of detected pulses except for
dark count whose initial �Alice’s� state is the vacuum state.

o=1, J1�n��. The number of detected pulses except for
dark count whose initial �Alice’s� state is the single-photon
state.

o=2, J2�n��. The number of detected pulses except for
dark count whose initial �Alice’s� state is the multiphoton
state.

o=3, J3�n��. The number of pulses detected by dark count
whose initial �Alice’s� state is the vacuum state.

o=4, J4�n��. The number of pulses detected by dark count
whose initial �Alice’s� state is the single-photon state.

o=5, J5�n��. The number of detected pulses except for
dark count whose initial �Alice’s� state is the multiphoton
state.

Now, we consider the following protocol: First, Alice
sends the random number with the � basis via �e�Pn��e��
��� i=1

N Eei�ni
����, where for the dark counts ni= �*,d�, ei takes

only d, and the map Ed�ni
is given by Ed�ni

���= 1 � 2 ��0,1�
�	0,1 � + �1,0�	1,0 � �. Second, they apply the forward or re-
verse error correction by the code Im Me, and finally perform
privacy amplification by Mp, where Mp is assumed to satisfy
Eq. �1�. In this case, we obtain the same argument as Theo-
rem 2. Thus, in order to discuss the security, we need to
characterize the average error probability in the � basis.

Now, we consider the forward error correction case.
In the event o=0,3, Eve cannot obtain any information
of Alice’s raw key. Also, in the event o=2,4 ,5, Eve can
obtain all information of Alice’s raw key. Thus, our situa-
tion is the same as the case of K1=J1 and K2=J2+J4+J5

of Theorem 3. Similar to the above subsection, we de-
fine the average error probability Pph,min,→�Mp

Pn� of the code
(Me�Ker Mp�)� / �Im Me�� concerning the � basis with the
channel �e�Pn��e���� i=1

N Eei�ni
� ����, where we define the map

Eei�ni
� for dark count ni= �*,d� as follows: Ed��*,d�� is the same

as Ed�* and

Ed��0,d�� ��� ª
1

2
�X0��X0�† + X1��X1�†� ,

Ed��*,d�� ��� ª
1

2
�Z0��Z0�† + Z1��Z1�†�

for *�0. The distribution p� t
J1�n�� � is defined as the distribu-

tion describing the random variable t= t�e� ,n�� under the dis-
tribution Pn�, and define t�e� ,n�� by

t�e�,n�� ª # 
i�ni = �1,c�,ei = �0,1� or �1,1�� .

Then, we obtain

EMp
Pph,min,→�Mp

Pn� 
 �
t=0

J1

p� t

J1�min
2J1h̄�t/J1�+J2+J4+J5−m,1� .

�14�

Next, we consider the reverse error correction case. We
assume that the bits detected by dark count cannot be con-
trolled by Eve. That is, in the event o=3,4 ,5, Eve cannot
obtain any information of Bob’s raw key. Also, in the event
o=0,2, Eve can obtain all information of Bob’s raw key. �In
the case of o=0, Eve can obtain Bob’s information by the
following: Eve generates an entangled pair, and sends
Bob a part of it. After announcing the basis, Eve mea-
sures the remaining part based on the correct basis.� Hence,
our situation is the same as the case of K1=J1 and K2=J0

+J2 of Theorem 3. Similar to the above subsection, we de-
fine the average error probability Pph,min,←�Mp

Pn� of the code
(Me�Ker Mp�)� / �Im Me�� concerning the � basis with the
channel �e�Pn��e���� i=1

N Eei�ni
� �, where we define the map Eei�ni

� as
follows:

Ed��·,d���� ª
1

2
�X0��X0�† + X1��X1�†� ,

Eei��1,c�� ��� ª Wei��Wei�†,

Eei��*,c�� ��� ª
1

2
�Z0��Z0�† + Z1��Z1�†�

for *�1.
Note that the definition of Eei�ni

� for dark count ni= �*,d� is
different from the forward case. Here x=← expresses the
reverse case. Then, we obtain

EMp
Pph,min,←�Mp

Pn� 
 �
t=0

J1

p� t

J1�min
2J1h̄�t/J1�+J0+J2−m,1� .

�15�

D. Security of unknown channel: Dark count case

Now, we return to the original setting. Since the numbers
J0 , . . . ,J5 and the ratio r1

ª

t
J1 are unknown, the size of sac-

rifice bits is chosen as the function m�Di ,De� of the random
variable De. For simplicity, we abbreviate m�Di ,De� and

�� Hi0+k

Ei0+k−N� to m and �.

Now, we give general security formulas for the given
function m of De. The random variable n� is known by Eve,
but cannot be decided by Eve. Hence, Eve’s information is
measured by the conditional expectations IE�Mp,De,POS

P of IE�Mp

Pn�

concerning the random variable n� when the random variables
Mp , De, and POS are fixed, where POS is the random vari-
able describing the position of the check bits and each kind
of pulse. We define Pph,min,x�Mp,De,POS

P as the conditional ex-
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pectations of P
ph,min,x�Mp,J�
Pn� concerning n� when the random

variables De and POS are fixed. Then, we obtain

EMp,De,POS
P IE�Mp,De,POS

P

 EDe,POS

P h̄�Pph,min,x�De,POS
P �

+ EDe,POS
P �N� − m�Pph,min,x�De,POS

P


 Pph,av,x
P �N̄ + log2e − log2 Pph,av,x

P � ,

�16�

where EMp,De,POS
P �EDe,POS

P � denotes the expectation concern-
ing the random variables Mp , De, and POS �De and POS�.
The inequality �16� is proved in Appendix E. Hence, Eve’s
information per one bit can be evaluated as

EDe,POS
P

IE�De,POS
P

N� − m

 EDe,POS

P
h̄�Pph�De,POS

P �

N� − m
+ Pph,av,x

P



h̄�Pph,av,x

P �
N�

+ Pph,av,x
P .

Similarly, Eve’s state can be given as the conditional average
of Eve’s state ��Z��Mp,De,POS

E with the final key �Z� when the
random variables Mp , De, and POS are fixed. Then,

EMp,De,POS
P min

�Z���Z��
F���Z�

E ,��Z���Mp,De,POS
E � 
 1 − 2Pph,av,x

P ,

EMp,De,POS
P max

�Z���Z��
���Z��Mp,De,POS

E − ��Z���Mp,De,POS
E �1 
 4Pph,av,x

P ,

EMp,De,POS
P min

�Z�
F���Z��Mp,De,POS

E , �̄Mp,De,POS
E � 
 1 − Pph,av,x

P ,

EMp,De,POS
P max

�Z�
���Z��Mp,De,POS

E − �̄Mp,De,POS
E �1 
 2Pph,av,x

P ,

where �̄Mp,De,POS
E is the average state of ��Z��Mp,De,POS

E con-
cerning �Z�, and Pph,av,x

P
ªEDe,POS

P Pph�De,POS
P . We can evaluate

the probability Psucc,x�Mp,De,POS
P that Eve successfully detects

the final key �Z� as follows:

EMp,De,POS
P Psucc,x�Mp

P


 EMp,De,POS
P ��Pph,min,x�Mp,De,POS

P �1 − 2−��N−m�

+ �1 − Pph,min,x�Mp,De,POS
P �2−��N−m��2 �17�


��Pph,av,x
P �1 − 2−N� + �1 − Pph,av,x

P �2−N� �2, �18�

where Eq. �18� follows from the concavity of the left-hand
side of Eq. �10�.

In order to guarantee the security, it is sufficient to show
that the probability Pph,av,x

P is quite small for any P. Since the
quantity Pph,av,x

P has the linear form concerning P, it is
enough to treat Pph,av,x

P when P is an extremal point. That is,
the relation

max
P:any conditional distribution

Pph,av,x
P = max

P�EP
Pph,av,x

P

holds, where EP is the set of extremal points concerning the
set of conditional distributions. From Eqs. �14� and �15�,
these values are evaluated as follows:

max
P�EP

Pph,av,→
P 
 max

P�EP
E

J�,t,De,POS

P
min
2J1h̄�t/J1�+J2+J4+J5−m,1� ,

�19�

max
P�EP

Pph,av,←
P 
 max

P�EP
E

J�,t,De,POS

P
min
2J1h̄�t/J1�+J0+J2−m,1� ,

�20�

where t is the number of errors of the � basis in the event of
o=1. Here, we have to treat the conditional expectation con-

cerning J� and t even if the other random variable De is fixed.
Hence, our purpose is choosing the size m of sacrifice bits
based on the information Di and De.

Since Alice chooses the positions of each kind of pulse
and check bits randomly, as is discussed in Hayashi et al.
�15�, the stochastic behavior of De is given by hypergeomet-
ric distribution in the case of any extremal point P. In order
to guarantee the security with the finite-length code, we have
to calculate Eqs. �19� and �20� for the specific function
m�Di ,De�. Since this task needs a large amount of calcula-
tion due to a large number of random variables, we treat it in
another paper �15�.

In the beginning of this section, we assume that the
states 
�n ,0�	n ,0� , �0,n�	0,n� , �n ,0 , � �	n ,0 , � � , �0,n , � �
�	0,n , � ��n
2 can be distinguished by Eve. Now, instead
of the above states, we focus on the other set of
states 
�i

↑,+
ª�nsn

i �n ,0�	n ,0� ,�i
↓,+
ª�nsn

i �0,n�	0,n� ,�i
↑,�

ª�n sn
i �n ,0 , � �	n ,0 , � � , �i

↓,�
ª�n sn

i �0,n , � �	0,n , � ��n
2

which can describe all sent pulses by the convex combina-
tion of themselves with the states �0,0�	0,0�, �1,0�	1,0�,
�0,1�	0,1�, �1,0 , � �	1,0 , � �, �0,1 , � �	0,1 , � �. Then, we
can assume so strong an ability of Eve that Eve can distin-
guish all states of 
�i

↑,+ ,�i
↓,+ ,�i

↑,� ,�i
↓,��n
2. In this case, we

obtain the same argument as this section with replacing the
former set by the latter set. The construction of sn

i in the case
of the phase-randomized coherent light is given in Hayashi
�16�.

E. Security with two-way error correction

Here, we should remark that the effects of dark counts and
the vacuum states are helpful only when the error correction
is one-way. If we apply a careless two-way error correction,
these effects are not so helpful. That is, Eve has a possibility
to access the information in the events o=0,2 ,3 ,4 ,5. The
main point of the two-way error correction is the following:
Consider the case where a reverse error correction is applied
after a forward error correction. In this case, the second error
correction depends on �a part of� Bob’s syndrome. That is, he
has to announce �a part of� his syndrome. Now, consider an
extremal case, i.e., the case where Bob announces all of his
syndrome. This case is equivalent with the case where Bob
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announces his syndrome after Alice transmits her informa-
tion via a Pauli channel with the � basis.

In the single-photon case, as is discussed in Appendix B,
Eve’s information contains all information concerning the
flip action X on the � basis, which includes Bob’s syndrome.
Hence, this information is useless for Eve in the single-
photon case. However, it allows Eve to access the informa-
tion in the events o=0,2 ,4 ,5 in the imperfect photon case.
Eve knows the parts o=2,4 ,5 concerning Alice’s bits Z after
the forward error correction by the code C�F2

N. She also
knows the parts o=0,2 concerning Bob’s bits Z� after the
forward error correction by the code C using Bob’s syn-
drome. The channels in other parts o=1,3 can be regarded as
the single-photon case with the channels as follows:

Eei��1,c�� ��� = Wei��Wei�†,

Ed��0,d�� ��� =
1

2
�Z0��Z0�† + Z1��Z1�†� .

Suppose that Bob can perfectly correct the error, i.e., his bits
Z� is equal to hers Z. Eve knows the parts o=0,2 ,4 ,5 con-

cerning Z. Now, we focus on the subcode C��F2
J1+J3

defined
by

C� = 
x � F2
J1+J3

��x,0�N−�J1+J3�� � C� ,

where 0�N−�J1+J3� is the 0 vector in the composite system of
the parts o=0,2 ,4 ,5. Then, Eve’s state is equal to that in the
case where Alice sends her information with the code C� via
the J1+J3-qubits channel �ei

Pn��e��� i:ni=�1,c�,�0,d�Eei�ni
� . There-

fore, our situation is the same as the case of K1=J1 and K2

=J0+J2+J4+J5 of Theorem 3.
Now, we proceed to the general case of two-way error

correction, in which the final classical error correction code
Cu is chosen with the probability p�u�, i.e., Alice decides the
ith code Ci depending on the i−1 syndromes of Bob, induc-
tively. We define the average error probability Pph,min,↔�Mp,u

Pn�

and the distribution pu� t
J1 � concerning the random variable t

J1

when the classical error correction code Cu is chosen, where
t is defined similar to Sec. III B. The relation

�
u

p�u�pu� t

J1� = p� t

J1� �21�

holds. Applying Theorem 3 in the case of K1=J1 and K2

=J0+J2+J4+J5, we obtain

EMp
Pph,min,↔�Mp,u

Pn� 
 �
t=0

J1

pu� t

J1�min
2J1h̄�t/J1�+J0+J2+J4+J5−m,1� .

�22�

Thus, from Eqs. �21� and �22�, the average error probability
Pph,min,↔�Mp

Pn� satisfies that

EMp
Pph,min,↔�Mp

Pn� 
 �
t=0

J1

p� t

J1�min
2J1h̄�t/J1�+J0+J2+J4+J5−m,1� .

�23�

Thus, we can derive the same argument as Sec. III D. Here,
the choice of the sacrifice bit size m depends only on the data
Di and De. If we choose the sacrifice bit size m using infor-
mation u, there is a possibility to improve the above evalua-
tion.

IV. ASYMPTOTIC KEY GENERATION RATE

A. Asymptotic key generation rate with dark count effect

From the discussion of the previous section, if we choose
the number of sacrifice bits m as a larger number than

J1h̄�r1�+J2+J4+J5 in the forward case, our final key is as-

ymptotically secure. Hence, we call J1h̄�r1�+J2+J4+J5=N

−J1(1− h̄�r1�)− �J0+J3� the initial Eve’s information in the

forward case. Also, J1h̄�r1�+J0+J2=N−J1(1− h̄�r1�)− �J3

+J4+J5� is called the initial Eve’s information in the reverse
case. Thus, the asymptotic key generation �AKG� rates for
the detected pulses of the forward and reverse cases are equal
to

J1
„1 − h̄�r1�… + J0 + J3

N
− „1 − ��s	,+�… , �24�

J1
„1 − h̄�r1�… + J3 + J4 + J5

N
− „1 − ��s	,+�… , �25�

respectively, when ��s	,+� is the coding rate of the classical
error correction code, where Nª�i=0

5 Ji and s	,+ is the average
error probability of the detected pulses.

In the asymptotic case, J3+J4+J5

N and J0+J3

N converge to pD
and 	�0�p0 in probability, respectively, where p0 is the count-
ing rate of the vacuum pulse and pD is the rate of the dark
counts among sent pulses. Thus, when our pulse is generated
by the distribution 	, the initial Eve’s information in the for-
ward and reverse cases are equal to

N�1 −
	�1�q1

„1 − h̄�r1�…
p	,+

−
	�0�p0

p	,+
� , �26�

N�1 −
	�1�q1

„1 − h̄�r1�…
p	,+

−
pD

p	,+
� , �27�

respectively, where p	,+ is the counting rate of the pulse with
the � basis generated by the distribution 	, q1 is the counting
rate of the single-photon states except for dark counts, and r1

is the error rate of the � basis among the single-photon
states detected except for dark counts. Hence, two important
rates q1 and r1 are needed to be estimated.

By taking into account the counting rate p	,+, the AKG
rates for the sent pulses of the forward and reverse cases are
equal to
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I→ ª

	�1�q1�1 − h̄�r1�� + 	�0�p0 − p	,+�1 − ��s	,+��
2

�28�

I← ª

	�1�q1�1 − h̄�r1�� + pD − p	,+�1 − ��s	,+��
2

, �29�

respectively, where s	,+ is the error rate of pulses generated
with the distribution 	 in the � basis. These rates are equal
to those conjectured by BBL �14�. Hence, the difference be-

tween
	�0�p0

2 and
pD

2 gives those of the forward and reverse
cases.

By applying GLLP �12�-ILM �7� formulas, the AKG rate
is equal to

IGLLP-ILM ª

1

2

	�1�q1�1 − h̄�r1�� − p	,+�1 − ��s	,+��� ,

where q1 is the rate of all detected single-photon states �con-
taining states detected by dark counts�, and r1 is the error rate
among all detected single-photon states in the � basis �4�.
These are calculated as

q1 = q1 + pD, r1 =

r1q1 +
1

2
pD

q1 + pD
.

If we do not take into account the effect of dark counts, the
AKG rates of the forward and reverse cases are calculated to

Ī→ ª

	�1�q1�1 − h̄�r1�� + 	�0�p0 − p	,+�1 − ��s	,+��
2

,

Ī← ª

	�1�q1�1 − h̄�r1�� − p	,+�1 − ��s	,+��
2

,

respectively. The AKG rate Ī→ was conjectured by Lo �13�,
and proved by Koashi �19� independently.

The discussion in Sec. III E implies that the AKG rate

I↔ ª

	�1�q1�1 − h̄�r1�� + 	�0�pD − p	,+�1 − ��s	,+��
2

can be attained by two-way error correction �21�. Assum-
ing that the coding rate of two-way error correction is
equal to that of one-way error correction, we compare these

AKG rates. Since 	�1�q1�1− h̄�r1��+	�0�pD
	�1�q1�1

− h̄�r1��=	�1�
q1�1− h̄�r1��+ pD�1− h̄� 1
2
���
	�1��q1+ pD�

��1− h̄� r1q1+�1/2�pD

q1+pD
��=	�1�q1�1− h̄�r1��, we have

I→ 
 Ī→ 
 IGLLP-ILM ,

I← 
 I↔ 
 Ī← 
 IGLLP-ILM , I→ 
 I↔.

B. Mixture of the vacuum state
and the single-photon state

First, we assume that pS=0. Now, we consider the distri-
bution 	 taking probabilities only in the vacuum state and the
single-photon state. Then, q1 and the error rate r1=r�

1 of the
� basis can be solved from the counting rate p0 of the
vacuum states, the counting rate p	,� of the pulses generated
by 	 in the � basis, and the error rate s	,� of the same pulses
as follows. Since q1 and r�

1 satisfy the equations

p	,� = 	�0�p0 + 	�1��pD + q1� ,

s	,�p	,� =
1

2
	�0�p0 + 	�1��1

2
pD + r�

1 q1� ,

we obtain

q1 =
p	,� − 	�0�p0

	�1�
− pD,

r�
1 =

s	,�p	,� −
1

2
	�0�p0 −

1

2
	�1�pD

p	,� − 	�0�p0 − 	�1�pD
.

Note that the counting rate p	,+ of the pulses generated by 	
in the � basis coincides with the counting rate p	,� of the
pulses generated by 	 in the � basis. In the case of pS�0, r�

1

can be calculated as

r�
1 =

s	,�p	,� −
1

2
	�0�p0 −

1

2
	�1�pD

p	,� − 	�0�p0 − 	�1�pD
− pS

1 − 2pS
.

This is because when r1� is the error probability among the
single-photon states detected except for dark counts, the re-
lation r1�= pS�1−r1�+ �1− pS�r1 holds.

C. Approximate single-photon state

Now, in the case of pS=0, we discuss the distribution 	
taking probabilities not only in the vacuum state and the
single-photon state but also in multiphoton states. An ap-
proximate single-photon state has this form. When we can
generate pulses only with the distribution 	, we have to treat
the rates q�

2 and q+
2 of counts except for dark counts of the

multiphoton states in the � and � bases and the error rates
r�

2 and r+
2 of the multiphoton states detected in the � and �

bases except for dark counts as unknown parameters as well
as the rate q1 of counts except for dark counts of the single-
photon states and the error rates r�

1 and r+
1 of the � basis and

the � basis of the single-photon states detected except for
dark counts. Thus, the following equations hold:

UPPER BOUNDS OF EAVESDROPPER’S PERFORMANCES … PHYSICAL REVIEW A 76, 012329 �2007�

012329-9



p	,� = 	�0�p0 + 	�1��pD + q1� + 	�2��pD + q�
2 � , �30�

p	,+ = 	�0�p0 + 	�1��pD + q1� + 	�2��pD + q+
2� , �31�

s	,�p	,� =
1

2
	�0�p0 + 	�1��1

2
pD + r�

1 q1�
+ 	�2��1

2
pD + r�

2 q�
2 � , �32�

s	,+p	,+ =
1

2
	�0�p0 + 	�1��1

2
pD + r+

1q1� + 	�2��1

2
pD + r+

2q+
2� ,

�33�

where q1, q�
2 , and q+

2 belong to the interval �0,1− pD�, and
r�

1 , r+
1, r�

2 , and r+
2 belong to the interval �0,1�. The AKG rate

is characterized by the minimum value of q1�1− h̄�r�
1 �� with

these conditions. Since it is difficult to calculate this mini-
mum, we treat the symmetric case, i.e., the case

p	,� = p	,+, s	,� = s	,+. �34�

Then, the minimum qmin
1 of q1 and the maximum rmax

1 of r�
1

are given as

qmin
1 =

p	,� − p0	�0� − 	�2�
	�1�

− pD,

rmax
1 =

s	,�p	,� −
1

2
p0	�0� −

1

2
pD	�1� −

1

2
pD	�2�

p	,� − p0	�0� − pD	�1� − 	�2�
.

The minimum qmin
1 and the maximum rmax

1 are realized simul-
taneously when q�

2 =1− pD ,r�
2 =0. The minimum of q1�1

− h̄�r�
1 �� is equal to qmin

1 �1− h̄�rmax
1 ��.

Next, we consider how much the AKG rate can be im-
proved when we send pulses generated by different distribu-
tions. For this purpose, we focus on the maximum qmax

1 of q1

and the minimum rmax
1 of r�

1 , which are calculated as

qmax
1 =

p	,� − p0	�0� − 	�2�pD

	�1�
− pD,

rmin
1 
 r̃min

1
ª

s	,�p	,� −
1

2
p0	�0� −

1

2
pD	�1� −

1

2
pD	�2� − �1 − pD�	�2�

p	,� − p0	�0� − pD	�1� − 	�2�pD
.

The difference between the maximum and the minimum are given as

qmax
1 − qmin

1 =
	�2��1 − pD�

	�1�
,

rmax
1 − rmin

1 
 rmax
1 − r̃min

1 
 rmax
1 −

s	,�p	,� −
1

2
p0	�0� −

1

2
pD	�1� −

1

2
pD	�2� − �1 − pD�	�2�

p	,� − p0	�0� − pD	�1� − 	�2� �1 −
	�2��1 − pD�

p	,� − p0	�0� − pD	�1� − 	�2��

=
�1 − pD�	�2�

p	,� − p0	�0� − pD	�1� − 	�2�
�1 +

s	,�p	,� −
1

2
p0	�0� −

1

2
pD	�1� −

1

2
pD	�2� − �1 − pD�	�2�

p	,� − p0	�0� − pD	�1� − 	�2�
� ,

where the inequality a
b+x = a

b
1

1+ x
b



a
b

�1− x
b

� is applied in the

case of a=s	,�p	,�− 1
2 p0	�0�− 1

2 pD	�1�− 1 � 2 pD	�2�− �1
− pD�	�2�, b= p	,�− p0	�0�− pD	�1�−	�2�, and x=	�2��1
− pD�. Hence, when these differences are relatively small
with qmin and rmax, the AKG rate cannot be improved so
much even though we send pulses generated by different
distributions. For example, �1− pD�	�2� is small enough
when the generated pulse is close enough to the single pho-
ton.

When the symmetric assumption �34� does not hold, con-
ditions �31� and �33� are added with conditions �30� and �32�.
The maximums qmax

1 and rmax
1 become small, and the mini-

mums qmin
1 and rmin

1 become large. Hence, the following re-
lations also hold even in the nonsymmetric case:

qmax
1 − qmin

1 

	�2��1 − pD�

	�1�
,
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rmax
1 − rmin

1 

�1 − pD�	�2�

p	,� − p0	�0� − pD	�1� − 	�2�
�1 +

s	,�p	,� −
1

2
p0	�0� −

1

2
pD	�1� −

1

2
pD	�2� − �1 − pD�	�2�

p	,� − p0	�0� − pD	�1� − 	�2�
� .

V. DETAIL ANALYSIS ON EVE’S ATTACK

A. Reduction to three-dimensional outcome channel

We prove that any Eve’s attack can be reduced by the
attack discussed in Sec. III. Of course, the following discus-
sion contains the case when the frame of Alice does not
coincide with that of Bob. Since Alice sends N pulses and
Bob receives N pulses, Eve’s operation can be described by a
CP-TP map EN from the system H�N to the system H�N.
This description contains the loss of the communication
channel. Even if the detector has the loss, if the loss does not
depend on the measurement basis, the security is guaranteed
by our discussion.

In order to reduce the output system H to the three-
dimensional system H0 � H1, we modify our protocol as fol-
lows: In the measurement with the � basis, Bob performs
the measurement 
�n ,m��n,m. When �0,0� is measured, he de-
cides his final outcome to be �. When �n ,m� is measured, he
does his final outcome to be 0 with the probability n

n+m , and
1 with the probability m

n+m . This POVM with three outcomes

is denoted by 
M̃� ,M̃0 ,M̃1� on the system H. First, we dis-

cuss the security based on the POVM 
M̃� ,M̃0 ,M̃1�, and
after this discussion, we treat the security with the POVM

M� ,M0 ,M1�, which is given in Sec. II.

The stochastic behavior of the outcome of the POVM


M̃� ,M̃0 ,M̃1� is described by the POVM 
M�� ª �0�	0� ,M0�
ª �1,0�	1,0� ,M1�ª �0,1�	0,1�� on the system H0 � H1 and
the TP-CP map E, which are defined as

Tr M̃i� = Tr ei�E��� ,

E��� ª PH0
�PH0

+ PH1
�PH1

+ �
n=2

�

En�PHn
�PHn

� ,

where the TP-CP map En from the n-photon system Hn
�which is equal to the 2nd through nth symmetric space� to
the system H1 is defined by embedding the state � on the nth
symmetric space Hn into the n-tensor product system H1

�n as

En��� ª Tr2,. . .,n � ,

where Tr2,. . .,n means taking partial trace concerning the 2nd
through nth subsystems.

Hence, by extending the system under Eve’s control, the
environment of the TP-CP map E can be regarded to be un-
der Eve’s control. The channel from Alice to Bob can be
described as the TP-CP map E�N �EN from the system H�N to
the system �H0 � H1��N. We also assume a stronger ability
of Eve, i.e., all states �n ,0�, �0,n��n ,0 , � �, �0,n , � � can be
distinguished by Eve for n
2. Then, each pulse can be de-

scribed as a state on the system H�ªH0 � H1
� ��n=2

� Hn,+� � ��n=2
� Hn,��, where the space Hn,+ is

spanned by 
�n ,0� , �0,n��, and the space Hn,� is spanned by

�n ,0 , � � , �0,n , � ��. Then, the channel E�N �EN from Alice
to Bob can be regarded as a TP-CP map from the system
H��N to the system �H0 � H1��N, which is denoted by EN� in
the following.

Now, we focus on the following two pinching maps:

Ea��� ª PH1
�PH1

+ �0,0�	0,0���0,0�	0,0�

+ �
n=2

�

�n,0�	n,0���n,0�	n,0�

+ �0,n�	0,n���0,n�	0,n�

+ �n,0, � �	n,0, � ���n,0, � �	n,0, � �

+ �0,n, � �	0,n, � ���0,n, � �	0,n, � � ,

Eb��� ª PH0
�PH0

+ PH1
�PH1

.

By extending the system controlled by Eve, the channel from
Alice to Bob can be regarded as a TP-CP map ENªEb �EN�
�Ea from the system H��N to the system �H0 � H1��N, due to
the forms of the measurement by Bob and the states sent by
Alice.

B. Discrete twirling

In order to define discrete twirling, we define the opera-
tors X and Z on the system H� by

X�0� = �0� , X�↑� = �↓�, X�↓� = �↑� ,

X�n,0� = �0,n�, X�0,n� = �n,0� ,

X�n,0, � � = �n,0, � �, X�0,n, � � = − �0,n, � � ,

Z�0� = �0� , Z�↑� = �↓�, Z�↓� = �− 1��↑� ,

Z�n,0� = �n,0�, Z�0,n� = − �0,n� ,

Z�n,0, � � = �0,n, � �, Z�0,n, � � = �n,0, � � ,

and the operators Xx and Zz for x ,z�F2
N by

Xx = Xx1 � ¯ � XxN, Zz = Zz1 � ¯ � ZzN.

It is known that if and only if the relation

�XxZz�†EN„X
xZz��XxZz�†

…XxZz = EN��� �35�

holds for any x ,z�F2
N, EN has the form of Eq. �2�. Now, we

define the discrete twirling EN of the map EN as follows:

UPPER BOUNDS OF EAVESDROPPER’S PERFORMANCES … PHYSICAL REVIEW A 76, 012329 �2007�

012329-11



EN��� ª
1

22N �
x,z�F2

N

�XxZz�†EN„X
xZz��XxZz�†

…XxZz.

�36�

The operation of “discrete twirling” corresponds to the fol-
lowing operation: First, Alice generates two random numbers
x ,z�F2

N, performs the operation XxZz, and sends the state
via the channel EN, and the classical information x ,z�F2

N via
the public channel. Next, Bob performs the inverse operation
�XxZz�† to the received system. Since the TP-CP map E has
the covariance �35�, E has the form �2�. However, when
Eve’s system is extended, the implemented channel E is not
EN but only EN� .

C. Forward case

In the forward error correction case, by taking into ac-
count the error correction operation, the raw keys can be
regarded to be transmitted via the discrete twirling of the
original channel. The operation concerning x in Eq. �36� is
essentially realized by the following operation. After quan-
tum communication, Alice generates the random number X
and sends the classical information Y =MeZ+X. Bob regards
X�−Y as the final raw key. On the other hand, the input and
output data are not changed when the operation corresponds
to z. If Alice and Bob perform the operation concerning z in
Eq. �36�, Eve’s performance is increased only. Hence, in the
forward case, the security can be evaluated by analysis on
the channel �2�. Note that since our error is symmetric in the
form �2�, the error probability can be estimated from the
random variable De.

When we take into account dark counts, any channel con-
cerning pulses detected except for dark counts, can be de-
scribed by Eq. �2� in the forward case. Eve can obtain all
information when the sent pulse is not in the vacuum state
but is detected by dark counts while he cannot obtain any
information when the sent pulse is in the vacuum state and is
detected by dark counts. Hence, the analysis in Sec. III is
valid in the forward case.

D. Reverse case

We proceed to the case where all sent states are in single
photon and the reverse error correction is applied. Our pro-
tocol is given as follows. First, Alice sends the information
bits X with the � basis to Bob via the quantum channel �,
and Bob obtains the bits X� by measuring the received states
with the � basis. Bob generates another random number Z,
and sends the classical information Y =Z+X� to Alice, and
Alice regards X−Y as the final raw keys. Now, we consider
the following modified protocol: Alice generates an en-
tangled pair and sends one part to Bob. Bob generates an-
other quantum state with the � bit basis, and performs the
Bell measurement 
M�0,0� ,M�0,1� ,M�1,0� ,M�1,1�� to the joint
system of the received system and his original system, where
M�0,0� , M�0,1� , M�1,0� , M�1,1� is the projection correspond-
ing to 1

�2
��0��0�+ �1��1��, 1

�2
��0��0�− �1��1��, 1

�2
��0��1�+ �1��0��,

1
�2

��0��1�− �1��0��, respectively. Then, he sends his measure-

ment value to Alice. Alice performs the inverse transforma-
tion depending on the data to her system, and measures it
with the � basis. Since the map from Bob’s input state to
Alice’s final state satisfies the covariance �35�, this channel is
described by the Pauli channel E��� that is the discrete twirl-
ing of �. The latter protocol is essentially equivalent with the
former protocol with the following modification: Bob sends
Alice �0,0� and �0,1� with the probability 1

2 in the case of
Y =0, and sends Alice �1,0� and �1,1� with the probability 1

2
in the case of Y =1. Hence, the channel from Bob to Alice in
the former case can be described by the Pauli channel E���.
Therefore, without loss of generality, we can assume that the
original map from Alice to Bob can be regarded as a Pauli
channel.

Now, in order to treat the loss during the transmission, we
modify the latter protocol as follows. Alice performs the
two-valued measurement 
T0 ,T1� before sending one part of
the entangled pair, and sends the state �T1��T1 only when 1
is detected. In this case, the map from Bob’s input state to
Alice’s final state can be described by a Pauli channel. This
protocol is essentially equivalent with the modification of the
above former protocol with the following modification: Alice
performs the two-valued measurement 
T0 ,T1� before send-
ing her state, and sends the state �T1��T1 only when 1 is
detected. This modification is equivalent with the lossy chan-
nel case.

Next, we consider the case where the number of photons
in the input state is not fixed and no dark count is detected.
In this case, we assume that Eve can know Bob’s measured
value when the n-photon state �n
2� or the vacuum state is
transmitted. It is needed only to describe the behavior of the
counting rates and the error rates, which are estimated from
the random variable Di. Thus, we can assume that the chan-
nel from Alice to Bob can be described by Eq. �2� without
loss of generality.

Finally, we consider the case with dark counts. Eve cannot
obtain any of Bob’s information for the bits detected by dark
counts. Hence, Eve’s information concerning this part has no
relation with the channel from Alice to Bob. Any description
of this part is allowed. Thus, even if the dark counts exist,
the channel from Alice to Bob can be described by Eq. �2�
without loss of generality.

E. Security with the original POVM

We compare the case with the measurement


M̃� ,M̃0 ,M̃1� and that with the measurement 
M� ,M0 ,M1�.
The systems controlled by Eve in these two cases are iden-
tical. Hence, even if we use the measurement 
M� ,M0 ,M1�,
if we suitably estimate the phase error rate r1 of the measure-

ment 
M̃� ,M̃0 ,M̃1�, our protocol is secure. The error prob-
abilities rn and rm

n for each number state �n�	n� of the � basis

with the measurements 
M̃� ,M̃0 ,M̃1� and 
M� ,M0 ,M1� sat-
isfy the relation: �rm

n − 1
2 � 
 �rn− 1

2 �. Thus, if we suitably esti-
mate rm

1 , estimating r1 by r1=rm
1 and applying the evaluation

in Sec. III, we obtain the upper bound of Eve’s information.

VI. CONCLUDING REMARKS

Applying the relation between Eve’s information and
phase error probability, we have derived useful upper bounds
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of the eavesdropper’s performances, i.e., the eavesdropper’s
information and the trace norm between the Eve’s states cor-
responding to final keys for the protocol given in Sec. II.
Here, we have used powerful relations between the eaves-
dropper’s performances and the phase error probability. We
have also treated our channel as a TP-CP map on the two-
mode bosonic system, which is the most general framework.
Further, our discussion has taken into account the effect of
dark counts, which forbids Eve to access Bob’s bits of the
pulses detected by dark count. However, our upper bounds
�19� and �20� contain so many random variables that its de-
tail numerical analysis in the case of phase-randomized co-
herent light is very complicated and is separately given in
Hayashi et al. �15�. Hence, the future problem for practical
QKD is the numerical calculations of the bounds �19� and
�20�. On the other hand, the concrete calculation of the AKG
rate is another future important topic. Also this topic is sepa-
rately discussed in Hayashi �16�.

We have treated the AKG rate more deeply when the gen-
erated imperfect resource is close to the single photon. Since
this resource is different from the perfect single photon, we
need the decoy method. We have compared the case where
only the vacuum state is sent as a different pulse with the
case where additional pulses are sent as different pulses.

This paper has treated only the binary case. However, it is
easy to extend to the p-nary case, where p is a prime. In this
case, we replace the two-mode bosonic system and F2 by the
p-mode bosonic system and Fp.
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APPENDIX A: PROOF OF THEOREM 1

Now, we prove Theorem 1. More precisely, we show the
following. �1� An element �x ,y�T�F2

m
� F2

l belongs to the
image of �X , I�T with the probability 2−m if x�0 and y�0.
�2� It does not belong to the image of the transpose of any
l� �l+m� Toeplitz matrices �X , I� if x�0 and y=0.

Indeed, since �2� is trivial, we will show �1�. For y
= �y1 , . . . ,ym�, we let i be the minimum index i such that yi

�0. An element �x ,y�T�F2
m

� F2
l belongs to the image of

�X , I�T if and only if �x ,y�= �XTy ,y�, which is written as the
following m conditions:

Yiyi = x1 − �
j=i+1

l

Y jyj − x1,

Yi+1yi = x2 − �
j=i+1

l

Y j+1yj − x1,

]

Yi+m−2yi = xm−1 − �
j=i+1

l

Y j+m−2yj − x1,

Yi+m−1yi = xm − �
j=i+1

l

Y j+m−1yj−x1
.

Now, the random variables Yi+m , . . . ,Yl+m−1 are fixed. The
mth condition does not depend on the variables Y1 , . . .Yi+m−2.
Hence, the mth condition only depends on the variable
Yi+m−1. Therefore, the mth condition holds with the probabil-
ity 1 /2. Similarly, we can show that the m−1th condition
holds with the probability 1 /2 when the mth condition holds.
Thus, the lth condition and the l−1th condition hold with
1/22. Repeating this discussion inductively, we can conclude
that all the m conditions hold with the probability 2−m.

APPENDIX B: EVE’S STATES

For any Pauli channel E���=�x,z�F2
l P�x ,z�XxZz��XxZz�†,

the channel to Eve is given by EE��� as follows:

EE��� ª �
�x,z�,�x�,z���F2

2l

�P�x,z��P�x�,z��

�Tr XxZz��Xx�Zz��†��x,z��	�x�,z��� .

If the input state is given by �y� in the � basis, Eve’s state
can be evaluated as follows:

EE��y�	y�� = �
x�F2

l ,z,z��F2
l

�P�x,z��P�x,z��

�	y�Zz−z��y���x,z��	�x,z���

= �
x�F2

l ,z,z��F2
l

P�x��P�z�x��P�z��x�

��− 1��z−z��y��x,z��	�x,z���

= �
x�F2

l

P�x��P,y,x�	P,y,x� , �B1�

where we define the vector �P ,y ,x� as

�P,y,x� ª �
z�F2

l

�− 1�zy�P�z�x���x,z�� .

That is, Eve’s state is the stochastic mixture of the state
�P ,y ,x�	P ,y ,x� with the probability P�x�. Then, Eve loses no
information even if she measures the information x concern-
ing the error of the � basis.

APPENDIX C: PROOF OF THEOREM 2

The inequalities �4� and �5� are proved by Hayashi �10�.
First, we prove the inequalities �6�–�9�. As is similar to the
inequalities �4� and �5�, it is sufficient to show these inequali-
ties for the corrected channel. This is because the code
Im Me /Me�Ker Mp� with the � basis is equivalent with the
code (Me�Ker Mp�)� / �Im Me�� with the � basis �10�. Thus,
it is sufficient to show
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min
y,y��F2

l
F„EE��y�	y��,EE��y��	y���… 
 1 − 2Pph, �C1�

max
y,y��F2

l
�EE��y�	y�� − EE��y��	y����1 
 4Pph, �C2�

min
y�F2

l
F„EE��y�	y��,�mix… 
 1 − Pph, �C3�

max
y�F2

l
�EE��y�	y�� − �mix�1 
 Pph, �C4�

where �mix is the maximally mixed state and the phase error
probability Pph is defined as

Pph ª �
x,z�F2

l ,z�0

P�x,z� = �
x�F2

l

P�x,0� − 1.

Since ��−���1
2�1−F�� ,����, the inequalities �C2� and
�C4� follow from Eqs. �C1� and �C3�. Now, we will prove
Eqs. �C1� and �C3�. Remember the relation �B1�. Since

�	P,y,x�P,y�,x�� = � �
z�F2

l

�− 1�z�y�−y�P�z�x��

 P�0�x� − � �

z�F2
l ,z�0

�− 1�z�y�−y�P�z�x��
= P�0�x� − �1 − P�0�x�� = 2P�0�x� − 1,

the fidelity F(EE��y�	y�� ,EE��y��	y���) can be evaluated as

F„EE��y�	y��,EE��y��	y���… = �
x�F2

l

P�x��	P,y,x�P,y�,x��


 �
x�F2

l

P�x��2P�0�x� − 1�

= 2 �
x�F2

l

P�x,0� − 1 = 1 − 2Pph,

which implies Eq. �C1�. Since

	P,y,x�� 1

2l �
y��F2

l

�P,y�,x�	P,y�,x���P,y,x�

= 	P,y,x�� �
z�F2

l

P�z�x���x,z��	�x,z����P,y,x� 
 P�0�x�2,

we have

F�EE��y�	y��, �
y��F2

l

1

2lEE��y��	y����
= �

x�F2
l

P�x��	P,y,x�� 1

2l �
y��F2

l

�P,y�,x�	P,y�,x���P,y,x�


 �
x�F2

l

P�x�P�0�x� = �
x�F2

l

P�x,0� = 1 − Pph,

which implies Eq. �C3�.
Next, we show Eq. �10�. The discrimination on the set of

states 
EE��y�	y���y�F2
l can be reduced to the discrimination

on the set of states 
�P ,y ,x�	P ,y ,x��y�F2
l . This set has

a symmetry concerning the action of y��F2
l as Uy�

ª�z�F2
l �−1�zy���x ,z��	�x ,z��. Each one-dimensional sub-

space spanned by ��x ,z�� is a different representation sub-
space in the space spanned by 
��x ,z���z�F2

l . From Holevo’s
�20� theory of the covariant estimator, the minimum average
error is given by the following covariant POVM 
2−lUy���
�	��Uy

†�, where ���=�z�F2
l ei�z��x ,z��. Then, the correct-

decision probability is given as

2−l�	P,0,x����2 = 2−l� �
z�F2

l

�P�z�x�ei�z�2
.

Its maximal value is ��z�F2
l �P�z �x��2−l�2, which is attained

when ei�z =1. Therefore, the optimal correct-decision prob-
ability of the set 
EE��y�	y � ��y�F2

l is equal to �x�F2
l P�x�

���z�F2
l �P�z �x��2−l�2.

Since ��z�F2
l �P�z��2−l�2 is the fidelity between the uni-

form distribution and the distribution P, the joint concavity
of the fidelity guarantees that the concavity of
��z�F2

l �P�z��2−l�2 concerning the distribution P. Thus,

�
x�F2

l

P�x�� �
z�F2

l

�P�z�x��2−l�2

 � �

z�F2
l
� �

x�F2
l

P�x,z��2−l�2
.

The concavity guarantees that

max
P: P�0�=1−Pph

� �
z�F2

l

�P�z��2−l�2

= � �
z�F2

l

�1 − Pph
�2−l + �2l − 1�� Pph

2l − 1
�2−l�2

= ��Pph
�1 − 2−l + �1 − Pph

�2−l�2,

which implies Eq. �10�.
Applying the concavity of ��z�F2

l �P�z��2−l�2 between

the distributions �1− Pph ,
Pph

2l−1
, . . . ,

Pph

2l−1
� and �1− Pph� ,

Pph�

2l−1
, . . . ,

Pph�

2l−1
�, we obtain the concavity of ��Pph

�1−2−l

+�1− Pph
�2−l�2 concerning Pph.

APPENDIX D: PROOF OF THEOREM 3

Since the condition Z� �Me Ker Mp�� is equivalent with
the condition Me

TZ� Im Mp
T for Z�F2

N, the condition �1� is
equivalent with the condition

Pr
Z � �Me Ker Mp��� 
 2−m for ∀ Z � F2
N \ �Im Me��.

Hence, Theorem 3 is essentially equivalent with the follow-
ing proposition, which we will prove.

Proposition 1. Let C1�F2
N be an l+m-dimensional code.

We choose an m-dimensional subcode C2�X��C1 satisfying
the following condition:

PrX
X�x � C2�X��� 
 2−m for ∀ x � F2
n \ C1

�, �D1�

where X is the random variable describing the stochastic be-
havior. Alice sends the information C2�X�� /C1

� via the fol-

MASAHITO HAYASHI PHYSICAL REVIEW A 76, 012329 �2007�

012329-14



lowing channel. Here, when she wants to send the informa-
tion �x�C1

� �C2�X�� /C1
�, she chooses x� among x+C1

� with
the equal probability 2l+m−N. The total N bits can be divided
into the following three parts: n0 bits: no noise �zeroth part�;
n1 bits: at most t bits will be changed �first part�; n2 bits: no
assumption �second part�. Using the above classification,
Bob recovers the original information for received informa-
tion y in the following way. First, he defines the element
��y��C2�X�� by

��y� ª argmax
z�C2�X�:�0�y�=�0�z�

��1�y − z�� ,

where �i is the projection to the above ni bits. Next, Bob
recovers the information ���y��C1

� �C2�X�� /C1
�.

Then, we obtain

EXpx
���y��C1
� � �x�C1

�� 
 2n1h̄�t/n1�+n2−m �D2�

for any �x�C1
� �C2�X�� /C1

�, where px is the conditional dis-
tribution describing the distribution of the output y with the
input x satisfying the above condition.

Proof. From the linearity,

px
���y��C1
� � �x�C1

�� = p0
���y��C1
� � �0�C1

��

= p0
��y� � C1
�� .

Hence, it is enough to show

EXPrp0

��y� � C1

�� 
 2n1h̄�t/n1�+n2−m. �D3�

When the original message is 0, the received signal y satis-
fies the conditions �0�y�=0 and ��1�y��
 t, i.e., the distribu-
tion p0 has positive probability only on the set Y
ª 
y ��0�y�=0, ��1�y��
 t�. Then,

EXp0
��y� � C1
��

= EXp0
y� ∃ z � C2�X�� \ C1
�

such that ��1�z� − �1�y�� 
 ��1�y���


 EXp0
y� ∃ z � C2�X�� \ C1
�

such that ��1�z� − �1�y�� 
 t�

= �
y�Y

p0�y�PrX
X� ∃ z � C2�X�� \ C1
�

such that ��1�z� − �1�y�� 
 t�


 �
y�Y

p0�y� �
z: ��1�z�−�1�y��
t

PrX
X�z � C2�X�� \ C1
��


 �
y�Y

p0�y� �
z: ��1�z�−�1�y��
t

2−m �D4�


 �
y�Y

p0�y�2n1h̄�t/n1�+n2−m = 2n1h̄�t/n1�+n2−m, �D5�

where the inequality �D4� follows from Eq. �D1� and the
inequality �D5� follows from the following inequality:

�
z���1�z� − �1�y�� 
 t�� 
 2n1h̄�t/n1�+n2.

Therefore, we obtain Eq. �D3�. �

APPENDIX E: PROOF OF EQ. (16)

Since −�1−x�log2�1−x�
 �log2 e�x, we have

h̄�Pph,min,x�De,POS
P � + EDe,POS

P �N� − m�Pph,min,x�De,POS
P


 − Pph,min,x�De,POS
P log2�Pph,min,x�De,POS

P �

+ log2ePph,min,x�De,POS
P + N̄Pph,min,x�De,POS

P

= Pph,min,x�De,POS
P �N̄ + log2e − log2 Pph,min,x�De,POS

P � .

Thus, using the concavity of the function x→−x ln x, we
obtain Eq. �16�.

APPENDIX F: PROOF OF EQ. (18)

We will prove Eq. �18�. First, the function q� f�q�
ª

�1− p�q+�p�1−q is monotone increasing for q
1/2
when p
1/2. This is because the derivative is calculated as
f��q�= 1

2
��1−p

q −� p
1−q

�
0. Thus,

EMp,De,POS
P ��Pph,min,x�Mp,De,POS

P �1 − 2−��N−m�

+ �1 − Pph,min,x�Mp,De,POS
P �2−��N−m��2


 EMp,De,POS
P ��Pph,min,x�Mp,De,POS

P �1 − 2−N�

+ �1 − Pph,min,x�Mp,De,POS
P �2−N� �2


 ��Pph,av,x
P �1 − 2−N� + �1 − Pph,av,x

P �2−N� �2,

where the last inequality follows from the concavity of
��Pph

�1−2−t+�1− Pph
�2−t�2 concerning Pph.
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