
Application of quantum algorithms to the study of permutations and group automorphisms

Marianna Bonanome,1 Mark Hillery,1,2 and Vladimír Bužek3

1Department of Mathematics, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
2Department of Physics, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10021, USA

3Research Center for Quantum Information, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
�Received 26 September 2006; revised manuscript received 2 April 2007; published 24 July 2007�

We discuss three applications of efficient quantum algorithms to determining properties of permutations and
group automorphisms. The first uses the Bernstein-Vazirani algorithm to determine an unknown homomor-
phism from Zp−1

m to Aut�Zp� where p is prime. The remaining two make use of modifications of the Grover
search algorithm. The first finds the fixed point of a permutation or an automorphism �assuming it has only one
besides the identity�. It can be generalized to find cycles of a specified size for permutations or orbits of a
specified size for automorphisms. The second finds which of a set of permutations or automorphisms maps one
particular element of a set or group onto another. This has relevance to the conjugacy problem for groups. We
show how two of these algorithms can be implemented via programmable quantum processors. This approach
opens new perspectives in quantum information processing when both the data and the programs are repre-
sented by states of quantum registers. In particular, quantum programs that specify control over data can be
treated using methods of quantum information theory.

DOI: 10.1103/PhysRevA.76.012324 PACS number�s�: 03.67.Lx

I. INTRODUCTION

Group theory has proven to be a useful arena in which to
explore the application of quantum algorithms, that is imple-
mentation of fundamental concepts of quantum theory for
design of efficient algorithms. Perhaps the most prominent
example of this is the algorithm for the hidden subgroup
problem �1–5�. In this problem, we are given a black box that
evaluates a function, f . The function maps a finite group G to
some finite set X. The function f separates �6� cosets �7� of
some subgroup K of G. That is, f is constant on the left
cosets of some subgroup, K of G and distinct for different
cosets. The object is to use the black box �the function f� to
determine a generating set for the subgroup K. This problem
can be solved efficiently for Abelian groups by using a quan-
tum algorithm. Specifically, Shor’s algorithm for factoring is
one particular example of this quantum algorithm. A quest
for efficient quantum algorithms for the hidden subgroup
problem for arbitrary groups would result in efficient quan-
tum algorithms for problems such as the graph isomorphism
problem and the shortest vector problem in lattices. Recently,
progress has been made for certain non-Abelian groups, one
example being the dihedral group �8–10�.

A. Quantum algorithms

Here we wish to show that quantum algorithms can be
applied to the study of permutations and group automor-
phisms. If S is a finite set, a permutation, � is a bijection
mapping S into itself. A group automorphism is a permuta-
tion on a group that satisfies certain conditions. In particular,
an automorphism, � :G→G of a group, G, is a bijection of
the group back into itself so that the group operation is pre-
served, i.e., if g1 ,g2�G, then ��g1g2�=��g1���g2�. The set
of automorphisms of a group, G, is itself a group, denoted by
Aut�G�, with the group operation being function composi-
tion. If the order of the group, G, is N, then the automor-
phism group of G is a subgroup of the symmetric group on N

objects, that is the group formed by permutations of N ob-
jects.

�1� Our first algorithm solves the following problem by
making use of a variant of the Bernstein-Vazirani algorithm
�11,12�. Consider the cyclic group Zp, where p is prime �13�.
The automorphism group of Zp is isomorphic to Zp−1 �14�.
We consider a function f :Zp−1

m →Aut�Zp�. In particular, we
have that

f:�n1,n2, . . . ,nm� → � jm

nm� jm−1

nm−1
¯ � j1

n1, �1�

where nk�Zp−1 and � jk
�Aut�Zp�. We have a circuit whose

inputs are an element of Zp−1
m , n̄= �n1 ,n2 , . . . ,nm�, and an el-

ement, l�Zp, and whose output is an element of Zp given by
��l�, where �= f�n̄�. Our task is to determine the automor-
phisms �� jk

�k=1,2 , . . . ,m� with as few uses of the circuit as
possible.

The other two algorithms are both variants of the Grover
search algorithm �15�.

�2� The first finds fixed points of permutations or auto-
morphisms. Suppose the permutation � on S has only one
fixed point, that is, there is only one element s�S such that
��s�=s. The object is to find the fixed point evaluating the
permutation as few times as possible. This can clearly be
used to find fixed points of automorphisms as well. By ap-
plying the same procedure to �n we can also find elements of
S satisfying �n�s�=s. Permutations can be written as the
product of disjoint cycles. By searching for points satisfying
�n�s�=s, we are effectively searching for cycles of length n.
Therefore this algorithm can be used to find cycles of a
specified length in a permutation. For an automorphism, this
corresponds to finding an orbit of a particular length.

�3� The final algorithm searches among permutations to
find one with a specific property. In particular, suppose we
have a set of permutations �k where k=1,2 , . . . ,M. Let s1
and s2 be two specified elements of S, and suppose that only
one of the permutations satisfies the condition �k�s1�=s2. We

PHYSICAL REVIEW A 76, 012324 �2007�

1050-2947/2007/76�1�/012324�6� ©2007 The American Physical Society012324-1

http://dx.doi.org/10.1103/PhysRevA.76.012324


want to find which one making use of as few function evalu-
ations as possible. The corresponding problem for automor-
phisms is related to the conjugacy problem. For a group G,
g1 and g2 in G are said to be conjugate if there is an element
g0 of G such that g1=g0g2g0

−1. The mapping �g0
�g�=g0gg0

−1

is an automorphism �automorphisms of this type are known
as inner automorphisms�. The conjugacy problem is, given
two elements of a group, to determine whether they are con-
jugate to each other. The algorithm we are proposing can be
applied to this problem.

Two of the algorithms we suggest are implemented by
programmable quantum processors. A programmable quan-
tum processor is a device that can perform several different
functions on a quantum input state, which we shall call the
data. The operation that is performed on the data is deter-
mined by a program, which is itself a quantum state. The
advantage of such a device is that it is not necessary to con-
struct a new quantum circuit for each operation, but only to
change the program.

B. Programmable quantum processors

Programmable quantum processors have been the object
of a number of recent studies. Nielsen and Chuang showed
that the number of unitary operations such a device can de-
terministically perform is limited by the dimension of the
program space �16�. This led to the consideration of proba-
bilistic �16–21� and approximate processors �17–19,22�. A
probabilistic processor succeeds only part of the time, but we
know when it does and when it does not. An approximate
processor performs a set of operations to some specified
level of approximation. Probabilistic and approximate pro-
cessors do not suffer from the same limitations as determin-
istic ones do, and can perform larger sets of operations for a
given program space dimension.

Another class of programmable devices consists of pro-
grammable measurement devices. These perform a measure-
ment on an input state, with the measurement being specified
by a program state. The first programmable measurement
device was proposed by Dušek and Bužek �23�, and since
then a number of different types of these devices have been
studied �24–29�.

One question that can be raised is whether having quan-
tum programs gives one any advantage over simply having
classical ones. A classically programmable quantum device
can simply be thought of as one with a dial, with different
settings of the dial leading to different quantum operations
being applied to the input quantum state. There are several
reasons that quantum programs can be advantageous. First,
the program itself may be the result of a previous quantum
computation. This allows programmable quantum processors
to be chained together, with the output of one serving as the
program of the next. A second reason is that the program
may be intrinsically quantum. As an example of this, con-
sider the programmable measurement device discussed in
�28�. There the program consists of two qubits, one in the
state ��1� and the other in the state ��2�, both of which are
unknown. The data consists of a qubit that is guaranteed to
be in either ��1� or ��2�, and our task is to determine which.

Here, the program, consisting of two qubits, is intrinsically
quantum; we are comparing our unknown qubit to a two-
qubit string in order to determine which one it matches. Fi-
nally, a third reason is that if the programs are quantum, we
can apply quantum information processing methods to the
programs as well as the data. This is what we shall study
here with two examples.

II. MODIFIED BERNSTEIN-VAZIRANI ALGORITHM

Before proceeding to the modified version of the
Bernstein-Vazirani algorithm that solves the problem dis-
cussed in the Introduction, let us review what the original
algorithm does. One is given a black box that evaluates a
Boolean function, f�x�, whose argument, x=xn−1¯x1x0, is
an n-digit binary number, and xj =0,1 for 0� j�n−1. The
function is of the form

f�x� = 	
j=0

n−1

xjyj + b = xy + b , �2�

where y is a fixed, and unknown, n digit binary number, b
=0 or 1, and all additions and multiplications are modulo 2.
The objective is to find y. Classically this requires n+1 func-
tion evaluations. One first finds b by evaluating the function
for x=0, and then one finds yj by choosing x to be the string
with xj =1 and all of the other digits equal to 0. Quantum
mechanically only one function evaluation is required.

In the version of the algorithm considered here, the func-
tion is a mapping from Zp−1

m to Aut�Zp� rather than one from
Z2

n to Z2. As was stated in the Introduction, the automorphism
group of Zp, where p is prime, is isomorphic to Zp−1. This
can be seen as follows. Each of the automorphisms is com-
pletely determined by its action on 1, so let us denote by �k
the automorphism that satisfies �k�1�=k. Note that �k�n�
=nk mod k. There are clearly p−1 such automorphisms, and
any of the �k for which k does not divide p−1 is a generator
of the group Aut�Zp�.

We now have the function f :Zp−1
m →Aut�Zp� specified by

Eq. �1�. This function can be implemented by a quantum
circuit �see Fig. 1�. It consists of gates that are controlled-
unitary gates. The control line has inputs from Zp−1. The
target line has inputs taken from Zp. Elements of both of
these groups are encoded as vectors from orthonormal bases.
The action of the controlled-unitary gate is given by �n
�Zp−1 and l�Zp�

�n��l� → �n���k
n�l�� , �3�

for some �k. We have p−1 different kinds of controlled-
unitary gates, one for each automorphism in Aut�Zp�. The
circuit is composed of m of these gates. Consequently, there
are m control lines, one for each of the inputs from Zp−1

m . All
of the unitary operators act on a common target line. The first
gate corresponds to � j1

, the second to � j2
, etc. The inputs to

the circuit are �n̄�= �n1�¯ �nm� corresponding to an element
of Zp−1

m and �l� corresponding to an element of Zp. We shall
denote the span of the vectors �n̄� by HP, the program space,
and the span of the vectors �l� by HD, the data space. The
action of the circuit is

BONANOME, HILLERY, AND BUŽEK PHYSICAL REVIEW A 76, 012324 �2007�

012324-2



�n̄��l� → �n̄����l�� , �4�

where �= f�n̄�.
For each of the automorphisms, �k, define the vector in

HD

�uk� =
1

�p − 1�1/2 	
n�=0

p−2

e−2�in�/�p−1���k
n��1�� . �5�

If Uk is the operator whose action is given by Uk�l�= ��k�l��,
then we have that

Uk�uk� = e2�i/�p−1��uk� . �6�

We now choose one of the automorphisms, say � j0
, that is a

generator of Aut�Zp�, i.e., any member of Aut�Zp� can be
expressed as a power of � j0

, and construct the vector �uj0
�.

This vector is a simultaneous eigenvector of all of the opera-
tors Uk. In particular, if � j =� j0

s , then

Uj�uj0
� = e2�is/�p−1��uj0

� . �7�

Therefore there is a one-to-one correspondence between au-
tomorphisms and eigenvalues of �uj0

�.
We take the input state to the quantum circuit to be

��in� = 
 1

�p − 1�m/2 	
n̄�Zp−1

m

�n̄�� � �uj0
� . �8�

The output state is then

��out� = 
 1

�p − 1�m/2 	
n̄�Zp−1

m

e2�iȳn̄/�p−1��n̄�� � �uj0
� , �9�

where yk is the unique integer between 0 and p−2 such that

� jk
= � j0

yk. �10�

We now note the following useful fact. Defining the vectors

�vr̄� =
1

�p − 1�m/2 	
n̄�Zp−1

m

e2�ir̄n̄/�p−1��n̄� , �11�

where r̄�Zp−1
m and r̄n̄=r1n1+ ¯ +rmnm, we have that

�vq̄�vr̄� = �q̄,r̄. �12�

Therefore by measuring the output of the control lines in the
basis �vr̄�, we can determine ȳ. This member of Zp−1

m com-
pletely specifies the function f , i.e., we know which automor-
phism is performed by each control line in the circuit.

One use of the quantum circuit has allowed us to deter-
mine the unknown function f . Classically, m uses would be
required. One would always send 1 into the target input, and
1 into one of the control inputs and 0 into the others. This
would allow one to determine the automorphism correspond-
ing to the control input into which 1 had been sent. Repeat-
ing this operation for each control line �m times� would al-
low one to determine f .

Finally, let us note that this algorithm solves a particular
kind of hidden subgroup problem, which is rather different
from the usual one. The mapping f is a homomorphism from
Zp−1

m to Aut�Zp�, and so its kernel is a subgroup of Zp−1
m , and

its image is a subgroup of Aut�Zp�. One can view the algo-
rithm we have just presented as solving the problem of find-
ing either the kernel or the image of the unknown homomor-
phism, f . For example, suppose we wish to find the kernel.
Once we have found ȳ with one use of the quantum circuit,
the kernel is given by the elements of Zp−1

m satisfying ȳn̄
=0 mod�p−1�.

III. FINDING FIXED POINTS

Let us now consider the following problem. We are given
a black box that implements an unknown permutation on a
finite set, S, i.e., � :S→S. We would like to find the fixed
points of the permutation, that is those elements s�S such
that ��s�=s. An algorithm that solves this problem could also
be used to find cycles. Any permutation can be written as the
product of disjoint cycles. If we know that a permutation, �,
has one cycle of n and has no cycles whose size divides n,
then we can find the cycle by applying the algorithm to �n

because the elements of the cycle are fixed points of �n.
Group automorphisms are special kinds of permutations so
they too can be decomposed into disjoint cycles. In that case
the cycles are known as orbits. Clearly an algorithm that
solves the problem of finding fixed points of permutations
would also be capable of finding orbits of automorphisms.

Consider now a set S and a permutation � of that set that
has only one fixed point, s0. We shall show how we can use
a modified Grover algorithm to find the fixed point. The
elements of the set are encoded into an orthonormal basis of
a Hilbert space, HS, whose dimension is equal to the number
of elements in the set, N. We shall be operating in the space
Ha � Hb where both Ha and Hb are copies of HS. Define the
state

. . .

.

.

.

0

1

M-1

data

FIG. 1. The quantum circuit for the modified Bernstein-Vazirani
algorithm. Each control line is a qudit, where d= p−1, that is con-
nected to a gate that implements a unitary operation on the data.
The data space is spanned by the basis ��l� � l=1,2 , . . . , p−1�, where
each basis state encodes a member of Zp. If the kth control line is in
the state �n� the operation Ujk

n is performed, where Ujk
corresponds

to the automorphism � jk
. We have that Ujk

�l�= �� jk
�l��.

APPLICATION OF QUANTUM ALGORITHMS TO THE … PHYSICAL REVIEW A 76, 012324 �2007�

012324-3



�v�ab =
1

N
	
s�S

�s�a � �s�b, �13�

and the operator U��s�= ���s��. We begin the iteration that
amplifies the amplitude of the state �s0� by preparing the state

��in�ab = �U� � Ib��v�ab. �14�

We now need an operator that will perform the amplifica-
tion of the desired state. This operator consists of two parts,
one part flips the sign of the target state and this is followed
by what Grover called the “inversion about the mean.” The
operator that performs the sign flip is Uid= Iab−2Pid, where

Pid = 	
s�S

��s�a�s�� � ��s�b�s�� . �15�

Clearly, Uid�s1�a�s2�b= �s1�a�s2�b if s1�s2, and Uid�s�a�s�b
=−�s�a�s�b. The second operator is given by

Uw = �U� � Ib��Iab − 2�v�ab�v���U�
−1

� Ib� . �16�

Note that in order to implement this operator, we need black
boxes that implement both U� and U�

−1.
We now apply −UwUid to ��in�ab O�N� times. This has

the effect of bringing the amplitude of the state �s0�a�s0�b
close to one and suppressing the amplitudes of all of the
other states, so that if the state is measured in the basis
��s1�a � �s2�b �s1 ,s2�S� the probability to find �s0�a�s0�b is
close to one. We shall not prove this statement here, because
the argument is standard �see Ref. �30��, and we shall present
a more detailed discussion of the Grover algorithm in the
next section. It is useful, however, to see the effect of one
application of −UwUid. We have that

− UwUid��in�ab =
1

N
�
3 −

4

N
��s0�a�s0�b

+ 
1 −
4

N
� 	

s�s0

���s��a�s�b� . �17�

Note that the effect has been to increase the amplitude of
�s0�a�s0�b and decrease the amplitude of all of the other states
in the superposition.

If one does not know the number of fixed points, quantum
counting can be used to find it �31,32�. This procedure uses
phase estimation to find the eigenvalues of the operator that
implements the Grover iteration, and this allows one to de-
termine the number of solutions, which in this case is the
number of fixed points.

IV. DETERMINING WHETHER TWO ELEMENTS
ARE AUTOMORPHIC IMAGES

Let X= �k �k=0, . . . ,N−1� and suppose we have a set of
permutations on X, S= �� j � j=1, . . . ,M�. In addition, if
x0 ,y0�X are specified elements of X, we shall assume that
only one of the permutations � j satisfies the condition
� j�x0�=y0. Our object is to find this permutation.

There are a number of problems for which the problem
stated above forms a template. We are interested in the case

in which the elements of the set X are elements of a group,
and the permutations represent the actions of automor-
phisms, and S is a subgroup of the automorphism group of
the original group. The object is then to find the automor-
phism for which one specified group element is the automor-
phic image of another specified element. The problem can be
modified so that we ask whether or not there is an automor-
phism in the set S so that one specified group element is the
automorphic image of another. The automorphisms may or
may not be inner. An inner automorphism, �, is of the form
��g�=hgh−1, where g is an arbitrary element of the group G
and h is a fixed element of G. If they are, we are trying to
determine whether group elements are conjugate to each
other. If S is the subgroup of the automorphism group con-
sisting of the inner automorphisms, then we are trying to
determine whether two specified group elements are conju-
gate to each other, i.e., whether they are in the same conju-
gacy class. This is known as the conjugacy problem.

Another group theoretic problem which serves as a moti-
vation to look at the above search problem for permutations
is the Whitehead problem. In that problem, one is trying to
determine whether two elements of a free group are automor-
phic images of each other �33�. A generalized form of the
Whitehead problem considers n-tuples. In particular, given
two n-tuples consising of elements of the free group,
�g1 ,g2 , . . . ,gn� and �h1 ,h2 , . . . ,hn�, does there exist an auto-
morphism of the group, �, such that ��gj�=hj for j
=1, . . . ,n? A further variant is to restrict the set of automor-
phisms one is considering. In that case one would be inter-
ested in determining whether there is an automorphism in the
allowed set that maps one specified n-tuple to a second
specified one.

Classically, the only way to find the desired permutation
is simply to try them one by one to see which one gives the
result � j�x0�=y0. This would typically take of the order of M
steps. What we want to show here is that by an application of
a modified form of Grover’s algorithm, we can, on a quan-
tum computer, find the desired permutation in a number of
steps that is of the order of M.

We suppose that we have a quantum processor that causes
the unitary operator V to be applied to the state vector ���.
The Hilbert space is a product of two others, H=HS � HX,
where HS is spanned by the orthonormal basis ��j�S � j
=1, . . . ,M�, and HX is spanned by the orthonormal basis
��x�X �x=0, , . . .N−1�. The operator V has the following ac-
tion:

V�j�S�x�X = �j�SUj�x�X, �18�

where the operator Uj, acting on HX implements the permu-
tation � j, i.e., Uj�x�X= �� j�x��X. What we see is that our pro-
cessor is a controlled-U gate, with the unitary operators that
it performs corresponding to the permutations in the set S. As
we shall see shortly, besides a processor that implements V
we shall also need one that implements V−1.

We start the system in the state ��in�= �w�S�x0�X, where

�w� =
1

M
	
j=1

M

�j�S. �19�

We first apply V, and then apply the operator

BONANOME, HILLERY, AND BUŽEK PHYSICAL REVIEW A 76, 012324 �2007�

012324-4



Q = − V�I − 2�w�S�w� � �x0�X�x0��V−1�I − 2IS � �y0�X�y0�� ,

�20�

a number of times n, where n is yet to be determined, to the
initial state. At the end of the iteration procedure our state is
QnV��in�, and we then measure the state in the basis ��j�S � j
=1, . . . ,M�. With a probability close to one we will obtain
the j corresponding to the desired permutation.

In order to see how this works, let us find the state after
one iteration. We can assume, without loss of generality, that
j=1 corresponds to the desired permutation. We then have
that

Q��in� = V
1

M
�
3 −

4

M
��1�S + 	

j=2

M 
1 −
4

M
��j�S� � �x0�X.

�21�

We note that what has happened is that the probability of j
=1 has increased, and the probabilities of all of the other
values of j has decreased. This is exactly what happens in the
standard Grover algorithm. Further applications of Q will
increase the probability of j=1 further, as long as we do not
do it too many times.

For a more detailed analysis, we note, again as with the
standard Grover algorithm, that all of the action takes place
in a two-dimensional subspace, and that Q is simply a rota-
tion in that subspace. In particular, the subspace is the span
of the two vectors �v1�= �1�S�y0�X and �v2�=V��in�. We find
that

Q�v1� = �v1� −
2

M
�v2� ,

Q�v2� = 
1 −
4

M
��v2� +

2
M

�v1� . �22�

The vectors �v1� and �v2� are not orthogonal, so we define the
vector

�v1
�� = 
 M

M − 1
�1/2
�v2� −

1
M

�v1�� . �23�

In terms of the basis ��v1� , �v1
��� the action of Q is given by

Q�v1� = 
1 −
2

M
��v1� −

2
M


1 −
1

M
�1/2

�v1
��;

Q�v1
�� = 
1 −

2

M
��v1

�� +
2

M

1 −

1

M
�1/2

�v1� . �24�

Defining the angle � as

sin � =
2

M

1 −

1

M
�1/2

, �25�

we see that for any vector of the form

��� = cos ��v1� + sin ��v1
�� , �26�

we have that

Q��� = cos�� − ���v1� + sin�� − ���v1
�� . �27�

The procedure we have outlined starts in the state �v2�,
which is close to, but not quite, orthogonal to �v1�. We want
to rotate the state so that it becomes close to �v1�, because it
is the HS part of �v1� that contains the information about
which permutation has the desired property. This means that
we want to iterate the process approximately n=� / �2��
��M /4 times. This is a considerable improvement over
the roughly M steps we would have to perform classically.

We can also easily extend this algorithm to search for
n-tuples that are automorphic images of each other as in the
generalized Whitehead problem. Let us consider the case n
=2. In particular, we now want to find the permutation � j
such that � j�x0�=y0 and � j�x1�=y1. Our Hilbert space is now
H=HS1 � HS2 � HX1 � HX2, where HS1 and HS2 are both
copies of HS, and HX1 and HX2 are copies of HX. The op-
erator V � V acts as

�V � V��j1�S1�j2�S2�x�X1�x��X2 = �j1�S1�j2�S2Uj1
�x�X1Uj2

�x��X2.

�28�

Now define the state

�W�S1S2 =
1

M
	
j=1

M

�j�S1�j�S2, �29�

and the operators

PX1X2
�x� = �x0�X1�x0� � �x1�X2�x1� ,

PX1X2
�y� = �y0�X1�y0� � �y1�X2�y1� . �30�

For our initial state we now choose ��in�
= �W�S1S2�x0�X1�x1�X2. We begin by applying V � V to this
state, and then applying the operator

Q = − �V � V��I − 2�W�S1S2�W� � PX1X2
�x� �

	 �V−1
� V−1��I − 2IS1S2 � PX1X2

�y� � , �31�

approximately �M /4 times. We then measure either the
HS1 or HS2 part of the state in the computational basis to
determine the permutation.

Note that in the algorithms being discussed in this section,
the quantum search is being applied to the programs that
implement the permutations. This would not be possible if
those programs were classical.

V. CONCLUSION

We have presented three applications of efficient quantum
algorithms to the study of group automorphisms. In addition
to finding properties of automorphisms, two of them can be
applied to find properties of permutations, i.e., finding fixed
points and finding which permutation maps one particular set
element onto another.

This last task is accomplished by doing a Grover search
on the programs of a programmable quantum processor. This

APPLICATION OF QUANTUM ALGORITHMS TO THE … PHYSICAL REVIEW A 76, 012324 �2007�

012324-5



shows that there are advantages to using quantum programs
that are themselves quantum states. In particular, one can
apply quantum information processing to programs as well
as data. We expect that further work in this direction could
prove useful.

ACKNOWLEDGMENTS

This work was supported in part by the European Union
projects CONQUEST and QAP, by the Slovak Academy of
Sciences via the project CE-PI/2/2005, and by the project
APVT-99-012304.

�1� R. Boneh and R. Lipton, Lecture Notes in Computer Science
�Springer-Verlag, Berlin, 1995�, p. 424.

�2� P. Høyer, Phys. Rev. A 59, 3280 �1999�.
�3� M. Mosca and A. Ekert, Lecture Notes in Computer Science

1509 �Springer-Verlag, Berlin, 1999�, p. 174; in Proceeding of
the First NASA International Conference on Quantum Com-
puting and Quantum Communication, edited by C. Williams
�Springer-Verlag, Berlin, 1998�.

�4� R. Jozsa, Comput. Sci. Eng. 3, 34 �2001�; e-print arXiv:quant-
ph/0012084.

�5� Ch. Lomont, e-print arXiv:quant-ph/0411037.
�6� Given a group G, a subgroup K�G, and a set X, we say a

function f :G→X separates cosets of K if for all g1 ,g2

�G , f�g1�= f�g2� if and only if g1K=g2K.
�7� If G is a group, K a subgroup of G, and g an element of G,

then gK= �gk :k�K� is a left coset of K in G, and Kg= �kg :k
�K� is a right coset of K in G. Only when K is normal will the
right and left cosets of K coincide.

�8� G. Kuperberg, SIAM J. Comput. 35, 170 �2005�; e-print
arXiv:quant-ph/0302112.

�9� O. Regev, e-print arXiv:quant-ph/0406151.
�10� D. Bacon, A. M. Childs, and W. van Dam, Chic. J. Theor.

Comput. Sci. �2� �2006�.
�11� E. Bernstein and U. Vazirani, Proceedings of the 25th Annual

ACM Symposium on the Theory of Computing �ACM Press,
New York, 1993�, pp. 11–20.

�12� For a very nice discussion of the Bernstein-Vazirani algorithm,
and quantum algorithms in general, see R. Cleve, A. Ekert, C.
Macchiavello, and M. Mosca, Proc. R. Soc. London, Ser. A
454, 339 �1998�; e-print arXiv:quant-ph/9708016.

�13� A group G is called cyclic if there exists an element g �the
generator� in G such that, when written multiplicatively, every
element of the group G is a power of g. Since any group
generated by an element in a group is a subgroup of that group,
showing that the only subgroup of a group G that contains g is
G itself suffices to show that G is cyclic.

�14� Joseph J. Rotman, An Introduction to the Theory of Groups
�Springer, New York, 1995�.

�15� L. K. Grover, Phys. Rev. Lett. 79, 325 �1997�.

�16� M. A. Nielsen and I. L. Chuang, Phys. Rev. Lett. 79, 321
�1997�.

�17� A. Yu. Vlasov, e-print arXiv:quant-ph/0103119.
�18� G. Vidal and J. I. Cirac, e-print arXiv:quant-ph/0012067.
�19� G. Vidal, L. Masanes, and J. I. Cirac, Phys. Rev. Lett. 88,

047905 �2002�.
�20� M. Hillery, V. Bužek, and M. Ziman, Phys. Rev. A 65, 022301

�2002�.
�21� M. Hillery, M. Ziman, and V. Bužek, Phys. Rev. A 69, 042311

�2004�.
�22� M. Hillery, M. Ziman, and V. Bužek, Phys. Rev. A 73, 022345

�2006�.
�23� M. Dušek and V. Bužek, Phys. Rev. A 66, 022112 �2002�.
�24� J. Fiurašek, M. Dušek, and R. Filip, Phys. Rev. Lett. 89,

190401 �2002�; J. A. Fiurašek and M. Dušek, ibid. 69, 032302
�2004�.

�25� J. Soubusta, A. Černoch, J. Fiurašek, and M. Dušek, Phys.
Rev. A 69, 052321 �2004�.

�26� M. Sasaki and A. Carlini, Phys. Rev. A 66, 022303 �2002�; M.
Sasaki, A. Carlini, and R. Jozsa, ibid. 64, 022317 �2001�.

�27� G. M. D’Ariano and P. Perinotti, Phys. Rev. Lett. 94, 090401
�2005�.

�28� J. A. Bergou and M. Hillery, Phys. Rev. Lett. 94, 160501
�2005�.

�29� A. Hayashi, M. Horibe, and T. Hashimoto, Phys. Rev. A 73,
012328 �2006�; 72, 052306 �2005�.

�30� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, 2006�, Chap. 6.

�31� G. Brassard, P. Høyer, and A. Tapp, Lecture Notes in Com-
puter Science 1443 �Springer Verlag, Berlin, 1999�, p. 820;
e-print arXiv:quant-ph/9805082.

�32� M. Mosca, in Proceedings of International Workshop on Ran-
domized Algorithms, edited by R. Freiwalds, available at http://
eccc.hpi-web.de/eccc-local/ECCC-LectureNotes/
randalgindex.html

�33� Roger C. Lyndon and Paul E. Schupp, Combinatorial Group
Theory �Springer-Verlag, Berlin, 2001�.

BONANOME, HILLERY, AND BUŽEK PHYSICAL REVIEW A 76, 012324 �2007�

012324-6


