
Iterative quantum-state transfer along a chain of nuclear spin qubits

Jingfu Zhang,* Nageswaran Rajendran, Xinhua Peng, and Dieter Suter†

Fachbereich Physik, Universität Dortmund, 44221 Dortmund, Germany
�Received 8 June 2007; published 17 July 2007�

Transferring quantum information between two qubits is a basic requirement for many applications in
quantum communication and quantum-information processing. In the iterative quantum-state transfer proposed
by Burgarth et al. �Phys. Rev. A 75, 062327 �2007��, this is achieved by a static spin chain and a sequence of
gate operations applied only to the receiving end of the chain. The only requirement on the spin chain is that
it transfers a finite part of the input amplitude to the end of the chain, where the gate operations accumulate the
information. For an appropriate sequence of evolutions and gate operations, the fidelity of the transfer can
asymptotically approach unity. We demonstrate the principle of operation of this transfer scheme by imple-
menting it in a nuclear magnetic resonance quantum-information processor.
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I. INTRODUCTION

Quantum-state transfer �QST�, i.e., the transfer of an ar-
bitrary quantum state � �0�+� �1� from one qubit to another,
is an important element in quantum computation and quan-
tum communication �1–5�. The most direct method to imple-
ment QST is based on SWAP operations �6�. This approach
consist of a series of SWAP operations between neighboring
qubits until the quantum state arrives at the target qubit. In a
general-purpose quantum register, these quantum gates re-
quire the application of single- as well as two-qubit opera-
tions. For longer distances, the number of such operations
can become quite large; it may then be advantageous to rely
on quantum teleportation instead �7�, which requires fewer
gate operations, but shared entanglement between sender and
receiver.

For specific systems, it is possible to transfer quantum
information without applying gate operations, but instead re-
lying on a static coupling network �2,3�. The main difficulty
with this approach is the required precision with which the
couplings have to be realized in order to generate a transfer
with high fidelity.

This requirement can be relaxed significantly, without
compromising the fidelity of the transfer, by applying gate
operations to the receiving end of the spin chain that effects
the transfer �5�. The capability for applying such gate opera-
tions is not an additional requirement, since such operations
are required anyway if the spin chain is to be used for com-
munication between quantum registers. This gate accumu-
lates any amplitude of the initial state that is transferred
along the chain. The protocol allows one, in principle, to
obtain unit fidelity for the transfer, even if the couplings
along the chain have arbitrary fluctuations, as long as a finite
amplitude reaches the end of the chain. Obtaining a large
transfer amplitude requires multiple iterations, each of which
includes the evolution of the spin chain and the two-qubit
gate operation. The fidelity for transfer increases with the

number of the iterations and can approach 1 asymptotically.
Hence we refer to this protocol as the iterative quantum state
transfer �IQST�. In this paper we implement the protocol in
an NMR quantum-information processor and demonstrate its
basic feasibility.

II. ITERATIVE TRANSFER ALGORITHM

A. System

We illustrate the IQST proposed in Ref. �5� using a sys-
tem of three spins coupled by Heisenberg XY interactions, as
shown in Fig. 1. The spin chain consists of spins 1 and 2,
which are coupled by a constant �time-independent� interac-
tion. Spin 3 is the target spin used to receive the transferred
quantum state. The interaction between spins 2 and 3 can be
switched on and off. Our purpose is to transfer an arbitrary
quantum state � �0�+� �1� from spin 1 to 3, where � and �
are two complex numbers normalized to ���2+ ���2=1.

The Hamiltonian of the spin chain without the end qubit is

H12 =
1

2
�J12��x

1�x
2 + �y

1�y
2� , �1�

where J12 denotes the coupling strength. The Hamiltonian of
spins 2 and 3 is
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FIG. 1. The spin chain including the target spin �3� used for
implementing the IQST. The XY interactions in the spin chain, de-
noted by the solid line, is always active, while the XY interaction
between spins 2 and 3, denoted by the dashed line, can be switched
on and off. W23 denotes the end gate applied to spins 2 and 3. U12

denotes the evolution of the spin chain.
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H23�t� =
1

2
�J23�t���x

2�x
3 + �y

2�y
3� , �2�

where J23�t� is J23 when the interaction is switched on and 0
otherwise.

B. IQST algorithm

The purpose of the IQST algorithm is the transfer of an
arbitrary state � �0�+� �1� from the start of the chain �qubit
1� to the end �qubit 3�. We start the discussion by choosing as
the initial state of the complete three-qubit system the state
� �000�+� �100�, i.e., a product state with spin 1 in state
� �0�+� �1�, and spins 2 and 3 in �0�. Transferring the � �0�
part of the input state is trivial, since spins 1 and 3 are in the
same state and this state is invariant under the XY interac-
tion. We therefore only have to consider the � �1� part.

The chosen initial state of the spin chain is not unique. We
could, e.g., choose to start with the total system in
� �011�+� �111�. In this case, the �111� is invariant and only
the transfer of the � �0� part needs to be considered. At the
end of this section, we discuss additional possibilities.

The iterative transfer scheme of Burgarth et al. consists of
a continuous evolution under the spin-chain Hamiltonian, in-
terrupted by successive applications of the end-gate opera-
tion. We write the transfer operator as

Tk = �
n=1

k

W23�cn,dn�U12��� , �3�

where

U12��� = e−i�H12 � I3 =�
1 0 0 0

0 C12 − iS12 0

0 − iS12 C12 0

0 0 0 1
	

� 
1 0

0 1
� �4�

represents the evolution of the spin chain and

W23�cn,dn� = 
1 0

0 1
� � �

1 0 0 0

0 dn
* cn

* 0

0 − cn dn 0

0 0 0 1
	

�5�

the end-gate operation. Here, C12=cos��J12�� and S12

=sin��J12�� and n represents the iteration step. The param-
eters cn and dn are related by the unitarity condition
�cn�2+ �dn�2=1. For each step of the iteration, they are equal to
the coefficients of the relevant states �010� and �001� just
before the gate is applied. Under this condition,

W23�cn,dn��cn�010� + dn�001�� = �001� ,

i.e., the transfer to the final state �001� is maximized.
During the nth step, the two coefficients are

cn = − i
S12C12

n−1

�1 − C12
2n

, �6�

dn =�1 − C12
2�n−1�

1 − C12
2n . �7�

C. Quantification of transfer

After k iterations, �100� is transferred to

��k� = Tk�100� = C12
k �100� + �1 − C12

2k�001� . �8�

Apparently, the transfer increases monotonically with the
number of iterations and can asymptotically approach unity
provided �C12 � �1. Writing Fk= 
001 ��k� for the overlap of
the system with the target state, we find

Fk = �1 − C12
2k . �9�

Equation �3� implies that only the spin chain or the end
gate is active at a given time. If the spin-chain interactions
are static �not switchable�, this can only be realized approxi-
mately if the coupling between the two end-gate qubits is
much stronger than the couplings in the spin chain, J23�J12.
In the NMR system, we instead refocus the spin-chain inter-
action during the application of the end-gate operation to
better approximate the ideal operation

W23�cn,dn� = e−i�J23tn��x
2�x

3+�y
2�y

3�/2 �10�

where

tan��J23tn� = − icn/dn. �11�

D. Generalization to mixed states

The IQST algorithm works also when the spin chain is in
a suitable mixed state. As an example, we choose �=�
=1/�2. The second and third qubits can be chosen in any
combination of �0� and �1�. Here, we implement all four pos-
sibilities in parallel �8� by putting qubits 2 and 3 into the
maximally mixed state I2 � I3, where I denotes the unit op-
erator and the upper index labels the qubit. The sample thus
contains an equal number of molecules with qubits in the
states � �0l�+� �1l� with l= �00,01,10,11�. The traceless
part of the corresponding density operator is �9�

�ini = �
l=00

11

�x
1

� ��l�
l�� . �12�

If the system is initially in one of the states �l�
= �01� , �10�, it acquires an overall phase factor of −1 during
the transfer. Combining this with the results of Sec. II B, we
find that after k iterations the system is in the state

�k = Tk�iniTk
† = �1 − Fk

2�x
1I2I3 + Fk�z

1�z
2�x

3. �13�

Similarly, when the initial state is chosen as

�ini = �
l=00

11

�y
1

� ��l�
l�� , �14�

the algorithm generates the state
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�k = Tk�iniTk
† = �1 − Fk

2�y
1I2I3 + Fk�z

1�z
2�y

3 �15�

after k iterations.

III. IMPLEMENTATION

For the experimental implementation, we chose the 1H,
19F, and 13C spins of ethyl 2-fluoroacetoacetate as qubits.
The chemical structure of ethyl 2-fluoroacetoacetate is
shown in Fig. 2, where the three qubits are denoted as H1,
F2, and C3, respectively. The strengths of the J couplings are
J12=48.5 Hz, J23=−195.1 Hz, and J13=160.8 Hz. T1 and T2
values for these three nuclei are listed in the right table in
Fig. 2. In the rotating frame, the Hamiltonian of the three-
qubit system is �9–11�

HNMR =
�

2
�J12�z

1�z
2 + J23�z

2�z
3 + J13�z

1�z
3� . �16�

The sample consisted of a 3:1 mixture of unlabeled ethyl
2-fluoroacetoacetate and d6-acetone. Molecules with a 13C
nucleus at position 2, which we used as the quantum register,
were therefore present at a concentration of about 1%. They
were selected against the background of molecules with 12C
nuclei by measuring the 13C signal. We chose H1 as the input
qubit and C3 as the target qubit. Figure 3�a� shows the 13C
NMR spectrum obtained by applying a readout pulse to the
system in its thermal equilibrium state. Each of the reso-
nance lines is associated with a specific spin state of qubits 1
and 2.

A. Initial-state preparation

The initial pseudopure state �000� is prepared by spatial
averaging �12�. The following radio-frequency �rf� and mag-
netic field gradient pulse sequence transforms the system
from the equilibrium state

�eq = 	1�z
1 + 	2�z

2 + 	3�z
3 �17�

to

�000�: �
1�y
1-�
2�y

2-�grad�z-��/2�x
1-�1/2J13�-�− �/2�y

1-

��/4�x
3-�− 1/2J23�-�− �/4�y

3-�grad�z-��/4�x
1-

�1/2J13�-�− �/4�y
1-�grad�z.

Here, 	1, 	2, and 	3 denote the gyromagnetic ratios of H1,
F2, and C3, respectively, and cos 
1=2	3 /	1 and cos 
2
=	3 /2	2. �grad�z denotes a gradient pulse along the z axis.
�� /2�x

1 denotes a � /2 pulse along the x axis acting on the H1
qubit. Overall phase factors have been ignored.

The coupled-spin evolution between two spins, for in-
stance, �1/2J13�, can be realized by the pulse sequence
1/4J13-���y

2-1 /4J13-�−��y
2, where 1/4J13 denotes the evolu-

tion caused by HNMR for a time 1/4J13 �13�.
The target state can be prepared directly from the state

�000� by applying a �� /2�y
3 pulse. It corresponds to �00���0�

− �1�� /�2, i.e., to transverse magnetization of the target spin,
with the first two qubits in state �00�. If we measure the free
induction decay �FID� of this state and calculate the Fourier
transform of the signal, we obtain the spectrum shown in
Fig. 3�b�. This spectrum serves as the reference to which we
scale the data from the IQST experiment.

The input state for the IQST is ��in�= ������ �00�. We gen-
erate this state by rotating H1 by an angle � around the y

axis: ��in�=ei��y
1/2 �000�. After k iterations of the IQST algo-

rithm, ��in� is transferred to

Tk��in� = ��1 − Fk�cos��/2��0� − �1 − Fk
2 sin��/2��1���00�

+ �00�Fk������ . �18�

Here, we have used Eqs. �8� and �9� and assumed C12
0,
without loss of generality. Hence the state transfer can be
observed through measuring carbon spectra.

FIG. 2. �Color online� Chemical structure of ethyl
2-fluoroacetoacetate. The three spins in the dashed oval are the
three qubits for implementing IQST. The strengths �in Hz� of the J
couplings between the relevant nuclear spins and the relaxation
times are listed in the left and right tables, respectively.

|01>|00>|11>|10>

NMR Frequency

−200 −100 1000 Hz

a

b

|00>

FIG. 3. �a� 13C NMR spectrum obtained by applying a selective
readout pulse to the system in its thermal equilibrium state. The
four resonance lines correspond to specific states of the spin-chain
qubits H1 and F2, as indicated by the labels above the resonance
lines. The assignment takes into account that J13�0 and J23�0. �b�
13C NMR spectrum of the state �00���0�− �1�� /�2, which was ob-
tained by applying a �� /2�y

3 pulse to �000�.

ITERATIVE QUANTUM-STATE TRANSFER ALONG A… PHYSICAL REVIEW A 76, 012317 �2007�

012317-3



For the mixed input state, �ini �Eq. �14�� can be generated
from �eq through the pulse sequence �14�

��

2
�

x

3

− ��

2
�

x

2

− �grad�z − ��

2
�

x

1

. �19�

B. Effective XY interactions

The IQST algorithm requires XY interactions, while the
natural Hamiltonian contains ZZ couplings. To convert the
ZZ interactions into XY type, we decompose the evolution

e−i���x
k
�x

l +�y
k
�y

l � into e−i��x
k
�x

l
e−i��y

k
�y

l
�15� using ��x

k�x
l ,�y

k�y
l �

=0, where � denotes an arbitrary real number. These trans-
formations can be implemented by a combination of radio-
frequency pulses and free evolutions under the J couplings
�16�

e−i��x
k�x

l
= e±i��y

k/4e±i��y
l /4e−i��z

k�z
l
e�i��y

k/4e�i��y
l /4, �20�

e−i��y
k�y

l
= e±i��x

k/4e±i��x
l /4e−i��z

k�z
l
e�i��x

k/4e�i��x
l /4. �21�

Figure 4 shows the complete pulse sequence for imple-
menting the IQST, starting from ��in�. The subscript n indi-
cates that the pulses in the square brackets have to be re-
peated for every iteration. The duration of each W23 segment
varies, since tn=−arctan�icn /dn� /�J23.

For the initial state �ini in Eq. �12�, the propagators n can
be simplified: since the density operator commutes with �x

1�x
2

and �y
2�y

3 at all times, it is sufficient to generate the propa-
gator

e−i�J23tn�x
2�x

3/2e−i�J12��y
1�y

2/2.

Similarly, for the initial state in Eq. �14�, iteration n can be

replaced by e−i�J23tn�y
2
�y

3/2e−i�J12��x
1
�x

2/2. We use these simpli-
fied versions to shorten the duration of the experiment and
thereby increase the fidelity.

C. Results for state transfer

When �=1/2J12, the transfer can be implemented in a
single step with a theoretical fidelity of 100%. The state
transfer from H1 to C3 can be observed by measuring 13C
spectra. The experimental result for ��in�= ���� /4�� �00� is
shown in Fig. 5�a�. Comparing with Fig. 3�b�, one finds that
the output state is �00���0�− �1�� /�2, i.e., the state ���� /4�� is
transferred from H1 to C3.

Figure 5�b� shows the corresponding result for the transfer
of �y

1 from H1 to C3 in a single step, with qubits 2 and 3
initially in the completely mixed state. For this experiment,
the receiver phase was shifted by � /2 with respect to the
upper spectrum. Since this experiment implements the trans-
fer for all possible states of the other qubits in parallel, we
observe four resonance lines corresponding to the states

FIG. 4. �Color online� Pulse sequence for implementing the
IQST. The two blocks that implement U12��� and W23�cn ,dn� are
separated by the dash-dotted line and “�¯�n” indicates iteration n.
The delays tn are given by Eq. �11�. The narrow rectangles denote
� /2 pulses, and the wide ones denote � pulses, where x, −x, y, or
−y denotes the direction along which the pulse is applied. The �
pulses are applied in pairs with opposite phases to reduce experi-
mental errors �17�. The durations of the pulses are so short that they
can be ignored.

−200 −100 1000 Hz

NMR Frequency

a

b

|00>

|01>|10>

|11> |00>

FIG. 5. Experimental results for quantum-state transfer with �
=1/2J12. The initial states are ��0�− �1�� �00� /�2 and �y

1, corre-
sponding to �a� and �b�, respectively. In the first experiment, the
receiver phase was set to x, in the second experiment it was set to y.

0 π 2π
−1

−0.5

0

0.5

1

θ

A
m

pl
itu

de

a
τ=1/5J

12

0 π 2π
−1

−0.5

0

0.5

1

θ

b
τ=1/6J

12

FIG. 6. �Color online� Experimental results for demonstrating
the IQST when the initial state is �cos�� /2� �0�−sin�� /2� �1�� �00�.
Two cases for �=1/5J12 and �=1/6J12 are shown in �a� and �b�. For
each case three iterations are implemented. The experimental data
after the completion of iteration 1, 2, and 3 are marked by *, +, and
�, respectively. The data can be fitted as sine functions of which
amplitudes represent the measured fidelities experimentally. The
dashed curves show sin���.
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�00,01,10,11� of qubits 1 and 2. For the states with odd
parity, the transfer adds an overall phase factor of −1, which
is directly visible as a negative amplitude in the spectrum.

To demonstrate that iterative transfer works for a range of
coupling strengths or �equivalently� evolution periods, we
chose �=1/5J12 and �=1/6J12. For the case of pseudopure
input states, three iterations are implemented for either case.
When � changes from 0 to 2� the experimental results ob-
tained from these transfer experiments are summarized in
Fig. 6, where the vertical axis denotes the amplitude of the
NMR spectrum. For each input state, the amplitude increases
with the number of iterations. The increase of the amplitude
shows the increase of the fidelity for the state transfer. The
dependence on the input state parameter � has the expected
sin��� dependence.

The experimental data obtained for the mixed input states
are summarized in Figs. 7�a� and 7�b�, for �=1/5J12 and �
=1/6J12, respectively. The positive lines indicate that the
transfer occurs with positive sign if qubits 1 and 2 are in
state �00� or �11�, and with negative sign for the states �01� or
�10�, in agreement with Eq. �15�. Obviously, the amplitude of
the signals increases with the number of iterations. Accord-
ing to Eq. �15�, the increase of the amplitudes is a direct
measure for the progress of the quantum-state transfer.

IV. DISCUSSION AND CONCLUSION

Our results clearly demonstrate the validity of the iterative
state transfer algorithm of Burgarth et al. In principle, it is

possible to iterate the procedure indefinitely, always improv-
ing the fidelity of the transfer. In practice, every iteration also
increases the amount of signal loss, either through decoher-
ence or through experimental imperfections.

According to Eq. �15�, the fidelity of the transfer is

Fk = �Tr���z
1�z

2�y
3��k�� . �22�

The experimental measurement corresponds to a summation
of the amplitudes of the resonance lines. We normalized the
experimental values to the amplitudes obtained by direct
preparation of the target states �see Fig. 3�a��. In Fig. 8, we
show the experimentally measured fidelities of the transfer of
the state �y for 1–5 iterations. As expected, the experimental
data points are below the theoretical curves �full lines�.

The experimental points can be fitted quite well if we
include a decay parameter for each iteration. The dashed
curves in Fig. 8 represent the function Fke

−kr with r=0.087
and r=0.079 for �=1/5J12 and �=1/6J12, respectively. Each
iteration thus adds imperfections �experimental plus decoher-
ence� of about 8%. Larger numbers of iterations are mean-
ingful only if this error rate can be reduced.

In conclusion, we have implemented the iterative
quantum-state transfer in a three-qubit NMR quantum-
information processor. The result shows that it is indeed pos-
sible to accumulate the quantum state at the end of a Heisen-
berg spin chain, whose couplings are always active.
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3 iterations
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1 iteration

−200 −100 1000 Hz

3 iterations

2 iterations
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b
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τ= 1/6J12

FIG. 7. �Color online� 13C NMR spectra demonstrating the
IQST of the state �y

1 for �=1/5J12 and �=1/6J12. For each case, the
spectra after the completion of iterations 1, 2, and 3 are shown as
the blue, black, and red curves, respectively. The resonance lines
corresponding to the �00� state of the spin chain are enlarged in the
inset. The dashed curves are the corresponding sections of the ref-
erence spectrum in Fig. 3�a�.
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FIG. 8. �Color online� Experimentally measured fidelity of the
iterative state transfer as a function of the number of iteration steps
when �=1/5J12 and 1/6J12. The experimental data are fitted to the
function Fke

−kr with r=0.087 and 0.079 for the two cases, respec-
tively. The two solid curves represent the theoretical fidelities Fk for
ideal conditions, and the two dash-dotted curves correspond to e−kr.
The dark and light curves correspond to the cases of �=1/5J12 and
1/6J12, respectively.
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