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The exponential speedup of quantum walks on certain graphs, relative to classical particles diffusing on the
same graph, is a striking observation. It has suggested the possibility of new fast quantum algorithms. We point
out here that quantum mechanics can also lead, through the phenomenon of localization, to exponential
suppression of motion on these graphs �even in the absence of decoherence�. In fact, for physical embodiments
of graphs, this will be the generic behavior. It also has implications for proposals for using spin networks,
including spin chains, as quantum communication channels.
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I. INTRODUCTION

The starting point for the field of quantum computation is
the realization that quantum algorithms may perform tasks
more efficiently than known classical algorithms for the
same problem �1�. The first example of a complexity separa-
tion was discovered by Deutsch and Jozsa �2�. Perhaps the
most celebrated example is Shor’s factoring algorithm �3�,
which is exponentially more efficient than any known clas-
sical algorithm.

A third class of quantum algorithms stem from random
walks, which have proved a fruitful tool for finding classical
algorithms �4�; this has led to investigations of whether
quantum random walks might offer additional benefit for
producing fast algorithms. The first realization was that
quantum random walks in one dimension propagate at a rate
which is linear in time, compared to the square-root rate for
classical random walks �5�. This already suggests that quan-
tum walks may offer possibilities for at least polynomial
speedup of algorithms. Thus the subsequent discovery of
quantum walks that are exponentially faster than classical
walks is particularly striking and suggestive �6–8�. For fur-
ther details, see the survey article �9�.

The clear message is that quantum effects can enhance
computation. In this paper we point out that the opposite is
also possible, and that quantum effects can cause exponential
suppression of computations.

Our focus is on certain continuous-time walks �in contrast
to the discrete-time “coined” walks mostly used in algorith-
mic applications�, which, when carried out on ideally perfect
quantum graphs, have exponentially faster propagation than
a classical random walk on the same graph. We will apply
well-established ideas from the theory of localization �10� to
these quantum walks to show that, when the graphs have
imperfections, as they surely will in any real physical imple-
mentation, the propagation of quantum information is sup-
pressed exponentially in the amount of imperfection.

Our conclusion is that quantum walks on physical graphs
are not likely to be useful for algorithmic purposes. It is
worth stressing at this point, however, that applications of
quantum walks in quantum algorithms are thought of as be-
ing simulated walks in the memory of a quantum
computer—as is indeed always the case in the classical ap-
plications where the underlying graphs are typically expo-

nentially large and hence would require exponential re-
sources to realize physically.

We describe in detail a particular example of propagation
on a graph which, in the absence of imperfections, has the
property that quantum evolution is exponentially faster than
classical evolution; the effect of localization is particularly
stark here. Later we point out the implications for quantum-
information-processing tasks on other networks. �See also
�11� for a recent study of localization-delocalization in a
“small-world” network.�

II. QUANTUM SPEEDUP

The particular case we will consider is the graph Gn, first
studied in �6�. It consists of two joined branching trees with
2n+1 vertical columns of nodes; G4 is illustrated in Fig. 1.
By modifying the join in the middle one arrives at a slight
variation of the problem, now an oracle problem, for which
every classical algorithm provably takes exponential time,
while the quantum walk is still efficient �7�. The question of
interest is how rapidly a particle starting at the leftmost node
reaches the rightmost node. Let us first describe the idea
behind the exponential separation between classical diffusion
and quantum motion on this graph �when the graph is per-
fect�. Our treatment follows that in �6� closely.
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FIG. 1. The graph G4 �6�.
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The model of classical diffusion is that the particle is
equally likely to move from the node where it finds itself to
any of the nodes to which it is linked. Explicitly, we may
take the motion to arise from the Markov transition matrix

Mi,j = �− � , i � j if nodes i and j connected,

0, i � j if nodes i and j not connected,

di� , i = j ,
�

�1�

where � is the constant jumping rate between two connecting
vertices, and di is the number of edges incident to the vertex
i. The probability of being at node i at time t is governed by

dpi�t�
dt

= − �
j

Mi,jpj�t� . �2�

A classical particle finding itself in the middle of the
graph �not at the left- or rightmost node or one of the nodes
precisely in the center� is twice as likely to move toward the
center as away from it. Thus a classical particle starting at
the leftmost node will diffuse rapidly to the center of the
graph, but then it will diffuse exponentially slowly from the
center of the graph to the rightmost node.

We now analyze the quantum walk on Gn �6� starting in
the state corresponding to the leftmost node and evolving
with the Hamiltonian given by

�a	H	b
 = Ma,b, �3�

where 	b
 represents the state of a particle at node b.
The key observation is that, although there are exponen-

tially many nodes, and a Hilbert space of exponential dimen-
sion, in fact the system only evolves in a
�2n+1�-dimensional subspace. This subspace is spanned by

states 	 j̃
 �where 0� j�2n�, the uniform superposition over
all vertices in column j, that is,

	 j̃
 = 2−min�j,2n−j�/2 �
a�column j

	a
 . �4�

In this basis, the nonzero matrix elements of H are

� j̃	H	 j̃ ± 1
 = − �2� ,

� j̃	H	 j̃
 = �2� , j = 0,n,2n ,

3� otherwise,

 �5�

which is depicted in Fig. 2 as a quantum random walk on a
line with 2n+1 vertices.

In particular, it is seen that �away from the leftmost or
rightmost vertices� the quantum particle has equal amplitude
to move to the left as to the right, and in particular it is not
exponentially suppressed from moving right once it has

reached the center. �Observe that the central node, coming
from the center of the graph Gn, has a special status, but that
will not concern us here.�

III. DISORDER AND LOCALIZATION

We now turn to the main point of this paper. If we were to
try and build this graph physically and get a quantum particle
to evolve on it, it would be virtually impossible to do so
perfectly. In particular, for example, the distances between
the nodes will inevitably vary slightly from edge to edge.
Our main observation will be that the theory of Anderson
localization �10� implies that this variability will lead to sup-
pression of the quantum evolution, so that in fact a quantum
particle starting at the left of the graph can only travel a
distance to the right proportional to an inverse power of the
degree of variability. The probability of arriving at a point
beyond this “localization length” is exponentially small in
the distance from the starting point. Thus if the rightmost
node is further away than the localization length, the particle
is effectively prevented from reaching it. We emphasize that
localization is very much a quantum �or more strictly a
wave� phenomenon; it does not affect classical particles dif-
fusing. Indeed, Anderson localization is often characterized
as the quantum suppression of classical diffusion. We feel it
is striking that this is a case where quantum effects are sup-
pressing rather than enhancing possibilities for information
processing.

The imperfections in the quantum evolution we consider
are within the graph itself; namely, the Hamiltonian varies a
little from node to node. But the evolution is unitary. In
particular, we are not concerned with any interaction of the
quantum system with the environment, in other words we
assume that there is no decoherence �12�. In fact we will
consider a rather weak model of imperfection for our graph.
In the original �2n+1+2n−2�-node graph, one expects that the
interaction connecting each pair of nodes will vary slightly
from edge to edge. This breaking of the symmetry of the
original system would have a substantial effect on the sys-
tem, namely, that the evolution would now no longer proceed
simply through the states 	 j̃
, but leak into the entire Hilbert
space. Our model of the variability of the Hamiltonian is less
severe than this: we assume that the evolution still proceeds
through the states 	 j̃
, but that this effective walk on the line
is subject to a Hamiltonian that varies from node to node on
the line. It is to be expected that the more general situation in
which variability is allowed for all nodes and edges can only
further suppress the quantum evolution. Thus our system is
still considered to walk on a one-dimensional graph, but now
our Hamiltonian is

H� = H + �
j

� j	j
�j	 , �6�

where H is the Hamiltonian �5�. The variability is introduced
via the parameters � j. In the first instance, the parameters � j
will be taken independently from a Cauchy distribution with
parameter �: the density is

P��� =
1

�

�

�2 + �2 . �7�
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FIG. 2. Elements of the Hamiltonian H /� for G4 when reduced
to a walk on a line �6�.
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A particular reason for doing this is that the Cauchy dis-
tribution is most amenable to analytic treatment. Later, we
will point out that taking the � j to be chosen from other
distributions makes no qualitative difference to the conclu-
sions �although it does lead to some interesting quantitative
differences�. It will also be clear that we could encode vari-
ability in the Hamiltonian in various other ways than �6�; for
example, the off-diagonal terms could have random compo-
nents. Many studies in the localization literature �13,14�
show that these possibilities do not make a qualitative
change to our conclusion.

All our conclusions are encapsulated in Fig. 3. The first
plot shows the flow of intensity with time for motion along
the left half of the columns of Gn �0� j�n� according to the
Hamiltonian �5�—the perfect case. The signal clearly travels
smoothly �and indeed at constant speed� along the chain. The
remaining two plots show what happens when the Hamil-
tonian is now �6� with the � j taken from the Cauchy distri-
bution with increasing amounts of variability �. In all cases,
we numerically computed the probability �� j̃ 	��t�
�2 of a par-

ticle being in the state 	 j̃
 for seven times t, where 	��t�

=exp�−itH /	�	0̃
, �=1, 	=1, and n=1000.

When � is nonzero, the quantum wave packet travels a
certain distance along the graph, but is then seen to stop. The
distance that the packet gets to is reduced as � increases �in
fact, as we shall see the distance is inversely proportional to
��.

This behavior is a classic example of Anderson localiza-
tion �10�. It arises since the eigenstates 	E

 of the Hamil-
tonian �6� are exponentially localized in space, rather than
being extended into space as in the case �3�. The modulus of

the amplitude of each eigenstate is bounded by an exponen-
tial function

��E
	 j̃
� � N
e−	 j̃

0− j̃	/l
, �8�

where l
 is the localization length and N
 is a normalization
constant. It is simple to see why this behavior of the eigen-
states causes the time evolution witnessed in Fig. 3. The state
of the system at time t may be written as

	��t�
 = �



�
e−itE
/		E

 , �9�

where �
= �E
 	��0�
 are the amplitudes of the initial state
and E
 are the energy levels. Now consider a quantum state
initially concentrated at some point. This initial state will
have substantial amplitude only in energy eigenstates that are
localized in regions close to that initial point. As the state
evolves with time, the phase of these amplitudes can change,
but not the modulus of the amplitudes. Thus, for all time, the
state is expanded in terms of states which have small ampli-
tude far from the initial point.

For the particular model of Hamiltonian variability �6�,
we can explicitly describe the behavior of the localization
length of eigenstates as � varies, treating as negligible the
influence of the anomalous end and center points of the
graph. Namely, it has then been shown �15� that

cosh
1

l


=
���8� + Ê
�2 + �2 + ���8� − Ê
�2 + �2

�32�
,

�10�

where Ê
=E
−3�. It is not difficult to check that the largest
localization length occurs for E
=3�, and for small � �i.e.,
���8��, it becomes lmax��8� /�. Since the Hamiltonian
has a random component, it will almost surely not have an
eigenvalue equal to 3�; but the localization length for E


=3� is an upper bound for the localization length of any
eigenstate. This therefore gives an estimate of the furthest
attainable distance for a signal starting at an arbitrary point.
The plots in Fig. 3 bear this out.

IV. DISCUSSION

This then is the main conclusion of our investigation. A
particularly quantum effect, Anderson localization, causes a
particle undergoing a quantum walk in the graph to be effec-
tively stopped from propagating from left to right. More pre-
cisely, consider a fixed value of the degree of variability �,
and a series of graphs Gn with n increasing. Once the length
of the graph n is greater than about the maximum localiza-
tion length �8� /�, the probability of the particle reaching the
rightmost node, having started at the leftmost node, is expo-
nentially small in n.

This is reminiscent of the behavior of the classical ran-
dom walk on the same graph. However, it is fundamental
that the exponents arise from quite different sources. In par-
ticular, we note that in the original problem of motion on the
graph Gn, a classical particle diffusing from left to right trav-
els rapidly from the leftmost node to the center, and the
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FIG. 3. �Color online� Propagation within the left side of G1000

at times t according to �top� the perfect Hamiltonian Eq. �3�, and the
disordered Hamiltonian Eq. �6� with disorder �= �middle� 0.03 and
�bottom� 0.06. The solid black lines correspond to t=50, the dotted
red lines to t=150, the blue dash-dotted lines to t=250, and the
green dashed lines to t=350.
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exponential time it takes to get from left to right arises from
the fact that it is difficult to get from the center of the graph
to the rightmost node. In the case of a quantum particle on an
imperfect graph, localization means that it can be exponen-
tially difficult even to get from the leftmost node to the cen-
ter of the graph.

It is important to point out that localization is not a con-
sequence of our choice of Cauchy-distributed disorder. It is a
generic property of disordered systems, in one dimension,
occurring for any distribution. For other choices �e.g., Gauss-
ian or uniform on an interval�, the qualitative features are the
same as for the Cauchy case, but the quantitative details may
differ; in particular, if P��� has a second moment, the local-
ization length typically scales like �−2 as �→0, rather than
�−1 �13�.

The graph Gn is of particular interest because of its rela-
tionship to quantum algorithms and the exponential separa-
tion between classical and quantum propagation. However,
our results also have implications for other quantum-
information-processing tasks. For example, there has been
considerable interest recently in using spin chains and other
networks for propagation quantum information �16�. The
message of this paper is that localization will present a fun-
damental difficulty for these proposals even in the absence of
external interactions with the system. �See also �17�.�

To end this discussion, we emphasize two differences of
the model considered here to noisy quantum computation.
First, noise in quantum computers is usually modeled as suf-
ficiently independent stochastic variations in the dynamics,
in particular on a single memory qubit they vary with time;
here, we have randomness in the description of the system
itself, i.e., the Hamiltonian, but on the other hand the local-
ization effect remains even if the particular random Hamil-
tonian is known. Second, we consider here free evolution of
the quantum state on a spatially extended system; this means

that any comparison with quantum computers should not be
with the circuit model �for which also techniques for fault-
tolerant computation exist �18��, but rather with computation
in a closed system, like quantum cellular automata �19�. It is
not known whether fault-tolerant techniques for universal
quantum cellular automata in one dimension apply to the
type of error considered in localization: fault-tolerant com-
puting usually has to assume a degree of independence of
errors, both spatially and in time, and although able to cope
with certain correlations, the persistent “failure” of an inter-
action in always the same way throughout the evolution
seems to present a new challenge.

Also, it should be pointed out that localization is known
to occur for a single spin excitation moving in spin lattices,
and it may be expected for small numbers of excitations;
however, universal quantum computation happens in the re-
gime of many excitations, where it is not known if localiza-
tion presents an obstacle for information propagation.

In this paper, we have discussed how lack of regularity
causes suppression of quantum propagation; it is interesting
to observe that the opposite property—high symmetry—can
also cause suppression of quantum walks on graphs �20�. We
remark finally that the systems we have considered here are
different from stroboscopic ��-kicked� models �e.g., those in
�21��, which are closely related to the kicked rotor, where
localization occurs for quantum chaotic reasons �22�, and its
consequences have been extensively explored by Shepelyan-
sky and co-workers �see, for example, �23��.
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