PHYSICAL REVIEW A 76, 012311 (2007)

Teleportation capability, distillability, and nonlocality on three-qubit states
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In this paper, we consider teleportation capability, distillability, and nonlocality on three-qubit states. In
order to investigate some relations among them, we first find the explicit formulas of the quantities about the
maximal teleportation fidelity on three-qubit states. We show that if any three-qubit state is useful for three-
qubit teleportation then the three-qubit state is distillable into a Greenberger-Horne-Zeilinger state, and that if
any three-qubit state violates a specific form of Mermin inequality then the three-qubit state is useful for

three-qubit teleportation.
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I. INTRODUCTION

Teleportation capability, distillability, and nonlocality
have been considered as significant features of quantum en-
tanglement, and have been helpful to understand quantum
entanglement. The three features have been known as a prac-
tical application of quantum entanglement, an important
method to classify quantum entanglement with respect to the
usefulness for quantum communication, and a physical prop-
erty to explain the quantum correlation, respectively.

In the case of two-qubit states, it has been shown that
there are two relations among the three features: If any two-
qubit state is useful for teleportation then it is distillable into
a pure entanglement, and if any two-qubit state violates the
Bell inequality then it is useful for teleportation [1]. Then
one could naturally ask what relations exist for multiqubit
states.

In order to answer the question, a proper concept of tele-
portation capability over multiqubit states should be re-
quired, since distillability and nonlocality over multiqubit
systems have already been presented, and their relations have
been appropriately investigated [2—-6]. In this paper, we
present teleportation on three-qubit states, which could be
generalized into the multiqubit case. We then define the
meaningful quantities related to the teleportation capability
on three-qubit states, and compare the quantities with distill-
ability and nonlocality to look into the relations.

This paper is organized as follows. In Sec. I we properly
define the quantities representing teleportation capability
over three-qubit states, and explicitly compute the quantities.
In Sec. III, we show that there are two relations among tele-
portation capability, distillability, and nonlocality, which are
similar to the two-qubit case. Finally, in Sec. IV we summa-
rize and discuss our results.
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II. TELEPORTATION CAPABILITY OVER
THREE-QUBIT STATES

For teleportation over three-qubit states, we recall the
Hillery-BuZek-Berthiaume [7] protocol, which is the splitting
and reconstruction of quantum information over the
Greenberger-Horne-Zeilinger (GHZ) state [8] by local quan-
tum operations and classical communication (LOCC). The
protocol can be modified into a teleportation protocol over a
general three-qubit state in the compound system 123, as
presented in [9]. The modified protocol is illustrated in Fig. 1
and is described as follows: Let i, j, and k be distinct in
{1,2,3}. (i) Make a one-qubit orthogonal measurement on the
system i. (ii) Prepare an arbitrary one-qubit state, and then
make a two-qubit orthogonal measurement on the one qubit
and the system j. (iii) On the system k, apply a proper unitary
operation depending on the three-bit classical information of
the two above measurement outcomes. We remark that the
modified protocol is essentially equivalent to the original one
with respect to the splitting and the reconstruction of quan-
tum information.

As mentioned in [9], it is noted that any observable for a
one-qubit measurement can be described as

(i) One-qubit orthogonal measurement

(ii) Two-qubit orthogonal measurement  (iii) Unitary operation

FIG. 1. (Color online) The modified teleportation protocol over
a three-qubit state presented in [9]: The dotted boxes and ellipse
represent performing the orthogonal measurements and applying
the unitary operation, respectively. The arrows represent sending
classical information corresponding to the measurement results.
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U'osU=U'0)0|U - U'|1X1|U, (1)

where 03=[0)(0|=|1)(1| is one of Pauli matrices, and U is a
2 X 2 unitary matrix. Thus after the step (i) of the teleporta-
tion protocol over a given three-qubit state p;,3, the resulting
two-qubit state of the compound system jk becomes
(Ul |t U; ® Ijkp123UzT|t><t|Ui ® 1)

(Up Uil
_ tr,(|){t|U; ® IjkPlZSUj'-|t><t| ® I)

(WlUpU10)

o
i =

2)

with probability (t|U,p,U]|t) for each t=0,1, where U is a
2X 2 unitary matrix of the system i, and p;=trj(p;23).

We now review the properties of the teleportation fidelity
[10], which represents the faithfulness of a teleportation over
a two-qubit state, and the fully entangled fraction [1,11-13].
The teleportation fidelity is naturally defined as

F(A) = f GEEA,(EXEDD. 3)

where A, is a given teleportation protocol over a two-qubit
state p, and the integral is performed with respect to the
uniform distribution d¢ over all one-qubit pure states, and the
fully entangled fraction of p is defined as

f(p) = max{el|ple), (4)

where the maximum is over all maximally entangled states
le) of two qubits. It has been shown [12,13] that the maximal
fidelity achievable from a given bipartite state p is

2f(p) + 1

F(Ap)==—7—.

&)
where A, is the standard teleportation protocol over p to
attain the maximal fidelity. We remark that F(A,)>2/3 [or
f(p)>1/2] if and only if p is said to be useful for teleporta-
tion, since it has been shown that the classical teleportation
can have at most F=2/3 (or f=1/2) [1,10,14].

Let F; be defined as the maximal teleportation fidelity on
the resulting two-qubit state in the compound system jk after
the measurement of the system i, and let f; be the maximal
average of the fully entangled fraction of the state in the
compound system jk after the measurement of the system i,
that is,

fi=max(O|UpU]0)(25) + (1 |Up U DA}, (6)

where the maximum is over all 2 X 2 unitary matrices. Then,
as in the two-qubit case, it can be obtained [9] that for i
e{1,2,3}

2f;+1
Fi= fl+ .
3

()

By the reason as in the two-qubit case, a given three-qubit
state p;,3 can be said to be useful for three-qubit teleporta-
tion if and only if F;>2/3 (or f;>1/2) for every i
e{1,2,3}.
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In order to explicitly calculate the values of f;, we remark
that a three-qubit state p;,3 can be described as

1 1. . . I
§I®I®I+§(s1-U®I®I+I®s2-0®l+l®l®s3-0')

3
+ élg‘,l WMo o @ o+bllo @l o+bllo ool
L2
- > ljkla'j ® 03 ® o7, (8)
k=1
where o, are Pauli matrices, 0=(0,0,,03), 5; are real vec-
tors in R satisfying |5}/ <1, and ¥ and # are real numbers.
For each i=1,2,3, let b; be a 3 X 3 real matrix with (k,[)
entry b¥. Let T/, T%, and T} be 3 X 3 real matrices with (k,[)
entry X, (j,I) entry #¥, and (j,k) entry #¥, respectively.
Then by way of the results in [1], it is obtained that for each

i=1,2,3,
], 9)

where ||-||=tr|-|, and the maximum is taken over real num-
bers x; satisfying x%+x%+x§= 1. By simple calculations of the
Lagrange multiplier, we have the following formulas: For

each i=1,2,3,
] (10)

7 I 1
= — 4 —
"4 8
where y=[T]|/ V=T

For instance, we consider the values of f; on the class of
three-qubit states with four parameters presented by Diir et
al. [15],

3
b; + >, xT!
=1

3

+[b;= > x/T!
=1

1 1
= — 4 —
fi 1 8max

3

b; - E YITﬁ
I=1

+

3
b; + E leg
I=1

Ponz = N[ WX Wil + N[ WX (W
3
+ 2 MWW+ [ W (w7
j=1

), (1

where \g+N\g+22\;=1, and [W))=()%[7-/))/\2 are the
GHZ-basis states. We note that any of three-qubit states can
be transformed into a state pgyz in the class by LOCC (the
so-called depolarizing process) [15,16].

Without loss of generality, we may assume that \{ is not
less than Ay and A, since otherwise it can be adjusted by a
local unitary operation. Then by Eq. (10), for four-parameter
states pgrz With Nj+\;=<1/4, we obtain

f] Z)\3+)\3= 1/2+()\3—)\6)/2—)\1 —)\2,
=N+ N =172+ (N = N)/2 =N = A5,

a4+ N =12+ (N =A)2= N =Ny, (12)

III. RELATIONS WITH DISTILLABILITY AND
NONLOCALITY OF THREE-QUBIT STATES

We now take the distillability over three-qubit states into
account. Note that if a three-qubit state p;,3 has p1T£3<O for
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all j=1,2,3, where T; represents the partial transposition for
the system j, then one can distill a GHZ state from many
copies of pj,3 by LOCC [15]. (We call such a state GHZ
distillable.) Thus it can be obtained that a given three-qubit
state pj,; is GHZ distillable if N;(p;,3)>0 for all j=1,2,3,
where

Ni(pi23) = (lotssl - D12, (13)

which is called the negativity, a bipartite entanglement mea-
sure [17,18]. We recall that for any two-qubit state p, its fully
entangled fraction and its negativity satisfy the inequality
f(p)<1/2+N(p), where N is the negativity [17]. Then since
N is an entanglement monotone, it follows from the defini-
tion of f; in Eq. (6) that for any three-qubit state p;,3

1
fi= m{?X > {1 UipiU”t)f(Qj'k)
i =0
1

< max X, (f|U;p,U0[ 172 + N(¢"))]
Ui =0

< 1/2+Nj(p123), 112+ Ni(p123), (14)

where i, j, and k are distinct in {1,2,3}. Therefore by the
inequalities in Eq. (14), we obtain the following theorem.
Theorem 1. If a three-qubit state p;,3 is useful for three-
qubit teleportation then it is GHZ distillable.
We remark that the converse of Theorem 1 is not true in
general. For example, we consider pgyy with N\j=0.4, \
=0, and N;=N,=N3=0.1. Then since

Ni(pouz) = max{0,(N\g = \g)/2 = N4_;}, (15)

we get Ny(pgrz) =Na(pcuz) =N3(pgrz) =0.1>0, that is, it is
GHZ distillable. However, since f|=f,=f3=0.5, it is not use-
ful for three-qubit teleportation.

For the nonlocality over three-qubit states, we consider
the Mermin inequality [2] on three-qubit states. Let 53, be
the Mermin operator associated with the Mermin inequality
as the following:

BMZC—I)]&@52&@53&—5]&®b2&®b3&
-b-0®ady 0®by-G—b-0Q®by,-0®as- 0,
(16)

where 5j and b; are unit vectors in R3. Then for a given
three-qubit state p, the Mermin inequality is

tr(pBy) < 2. (17)

We take @;=(0,~1,0) and b;=(~1,0,0) for all j=1,2,3.
Then after local phase redefinition [4], the Mermin operator
B, in Eq. (16) can be written as

By, =4V~ o)) (18)

Note that any three-qubit state p;,3 can be transformed
into a four-parameter state pgpy in Eq. (11) by the depo-
larizing process, and that N\5=(V§|pcuz|V5)=(V5lp123| ¥5)
and 2N =] | parz V1) + (VS ponzl V) = (W] p1os[ V)
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/— 3-qubit states
GHZ-distillable

Useful for 3-qubit teleportation

[ Violate the Mermin inequality ]

\ 2/

FIG. 2. The relations among the teleportation capability, distill-
ability, and nonlocality for three-qubit states: The Mermin inequal-
ity we consider is the inequality with respect to the quantity (20).

+(W7]p1p3|¥). Thus for the Mermin operator By, in Eg.
(18), we obtain the following equalities:

1 - -
th(PlszMo) = (W5lp12a|W5) = (Wolpias W)

=(¥§lpenzl W5) — (Wolpauzl o) = Aj = Ao
(19)

We now assume that a given state p,3 violates the Mermin
inequality with the Mermin operator in Eq. (18). Then \{
—N\y>1/2, and hence fi(pguz) =Nj+N4_;>1/2 for each i
=1,2,3.

Since, by the definition of f; in Egs. (6) and (10), it can be
easily shown that f; is invariant under local unitary opera-
tions and f; is convex, it can also be shown that f; does not
increase after applying operators in the depolarizing process
[16], that is, fi(pguy) <fi(pi23) for each i=1,2,3, and hence
the given state p;,3 is useful for three-qubit teleportation.

Hence if we take a=a,=a,=a; and l::l;l=l;2=l;3 then we
can readily show that if the quantity

max tr(p;538)) (20)
ab
is greater than 2 then p;,3 is useful for three-qubit teleporta-
tion. Therefore we have the following relation between non-
locality and teleportation on three-qubit states.

Theorem 2. If a three-qubit state p;,3 violates the Mermin
inequality with respect to Eq. (20), then f;>1/2 for all i
=1,2,3, and hence it is useful for three-qubit teleportation.

By Theorem 1 and Theorem 2, we have two relations
among the teleportation capability, distillability, and nonlo-
cality for three-qubit states as in two-qubit states. The rela-
tions are seen in Fig. 2.

We remark that if we consider the Mermin inequality with
respect to the quantity

max tr(py23B8y), (21)
sy
where By, is the Mermin operator in Eq. (16), then Theorem
2 does not hold in general. For instance, [0)(|00)+|11))/2
violates the Mermin inequality with respect to Eq. (21), but it
is clear that the state is not useful for three-qubit teleporta-
tion although f;=1.
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However, by direct calculations and the fact [2] that the
value of Eq. (21) for the GHZ state is 4, for any four-
parameter state pgyz in Eq. (11), we can explicitly find the
maximum value in Eq. (21),

a_]v,bk

Therefore it can be obtained that if pgy violates any form of
the Mermin inequality, then it is useful for three-qubit tele-
portation.

IV. CONCLUSIONS

In conclusion, we have considered two relations among
the maximal teleportation fidelity, the distillability of the
GHZ state, and violation of the Mermin inequality. In order
to investigate the relations, we have first presented teleporta-
tion capability over three-qubit states, and have found the
explicit formula of the maximal teleportation fidelity as a
quantity representing the teleportation capability. Then we
have shown that if any three-qubit state is useful for three-
qubit teleportation then the three-qubit state is GHZ distill-
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able, and that if any three-qubit state violates a specific Mer-
min inequality then the three-qubit state is useful for three-
qubit teleportation.

It is known that even though for n=4 there exist n-qubit
bound entangled states which violates the Mermin inequality
[3], there exists at least one splitting of the n qubits into two
groups such that pure-state entanglement can be distilled
[4-6]. Therefore if we would consider quantum communica-
tions between two or three groups then our results could be
generalized into multiqubit cases.

ACKNOWLEDGMENTS

S.L. was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD, Basic
Research Promotion Fund) (KRF-2006-331-C00044). J.J.
was supported by the Overseas Research Student Award Pro-
gram and the UK Engineering and Physical Sciences Re-
search Council through the QIP IRC, and J.K. by the IT
R&D program of MIC/IITA (2005-Y001-03, Development
of next generation security technology).

[1] R. Horodecki, M. Horodecki, and P. Horodecki, Phys. Lett. A
222, 21 (1996).

[2] N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990).

[3] W. Diir, Phys. Rev. Lett. 87, 230402 (2001).

[4] A. Acin, Phys. Rev. Lett. 88, 027901 (2002).

[5] A. Acin, V. Scarani, and M. M. Wolf, Phys. Rev. A 66, 042323
(2002).

[6] A. Acin, V. Scarani, and M. M. Wolf, J. Phys. A 36, L21
(2003).

[7] M. Hillery, V. Buzek, and A. Berthiaume, Phys. Rev. A 59,
1829 (1999).

[8] D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell’s
Theorem, Quantum Theory, and Conceptions of the Universe,
edited by M. Kafatos (Kluwer, Dordrecht, 1989), p. 69.

[9] S. Lee, J. Joo, and J. Kim, Phys. Rev. A 72, 024302 (2005).

[10] S. Popescu, Phys. Rev. Lett. 72, 797 (1994).

[11] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 (1996).

[12] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. A
60, 1888 (1999).

[13] P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki,

Phys. Rev. A 62, 012311 (2000).

[14] S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995).

[15] W. Diir, J. 1. Cirac, and R. Tarrach, Phys. Rev. Lett. 83, 3562
(1999); W. Diir and J. I. Cirac, Phys. Rev. A 61, 042314
(2000).

[16] Let p be an arbitrary three-qubit state, and for unitary operators
U, V, Win U(2), let S(U,V,W) be a superoperator defined as

1 L1
S(U,V,W)(p) = EU Ve WplU e Vie W+ 2P (23)

that is, U® V® W is performed to p with probability 1/2,
while no operation is performed with probability 1/2. Then we
first apply S(o,,0,,0,) to p, and then apply S(o,0,.l),
S(o,,1,0,). Then it can be easily obtained that the resulting
state is diagonal in the GHZ basis. We now apply
S(U3mpn» U, 1) and S(Uznyn,1,U pp), subsequently. Here Uy
maps |j) to eI} for j=0,1, when t=\-1. Then we can
obtain the three-qubit state with four parameters.

[17] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).

[18] S. Lee, D. P. Chi, S. D. Oh, and J. Kim, Phys. Rev. A 68,
062304 (2003).

012311-4



