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We solve the master equation of a two-qubit system with the induced unitary term and the dissipation term
coming from the system-environment coupling. We explain under this situation how entanglement between two
qubits can be generated and persist at the asymptotic time.
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Entanglement is a genuine feature of the quantum world
and one of the most valuable resources in quantum informa-
tion and quantum computation �1�. It is well known that, in
most case, quantum coherence is destroyed by the environ-
ment, and as a result a quantum state becomes a classical
state very rapidly. It was expected that the decoherence by
the environment also makes entanglement disappear �2�. This
fragility has been thought of as an obstacle for the applica-
tions of entanglement, since one cannot avoid interactions
with the environment.

Recently several authors �3–8� found the astonishing re-
sult that entanglement can be created and even increased in
some dissipative systems. Braun �4� thought that the origin
of entanglement generation comes from the induced interac-
tion between two qubits. However, others �5,6� have shown
that entanglement can be created through a purely noisy
mechanism in the Markovian regime. In particular, Benatti et
al. �5� have also discussed the general criteria for the possi-
bility of entanglement creation by considering a common
bath with only a noisy term. An et al. �7� showed that the
entanglement dynamics of a quantum register interacting
with a common environment can be analytically solved by
the quantum jump method, and the entanglement generation
gives rise due to a decoherence-free state included in the
initial state. Jakóbczyk solved the master equation directly in
an example with only a dissipation term due to the thermal
heat bath �8�. Nevertheless, it is still an interesting question
whether entanglement can be created only through purely
dissipative dynamics even in the presence of an effective
induced interaction. In general, it is almost impossible to turn
off the unitary coupling term induced by the interaction with
the bath and study only the dissipation term, because of the
fluctuation-dissipation theorem �9�. We will discuss this
question by exactly solving the master equation in the Mar-
kovian regime in a real physical system.

As is well known, the creation of entanglement by given
interactions is very sensitive to the choice of an initial state
as well as the interaction between qubits. For example, the
initial state �↑���↑� cannot be entangled under the Ising-type
interaction SzSz, but ������� ��+ �= �1/�2���↑ �+ �↓ �� can be
entangled under the same interaction. We will show that the

dissipative dynamics increases entanglement, while the ef-
fective induced interaction makes no change to the entangle-
ment at an arbitrarily long time for the Werner-type initial
state in a special representation. In this paper, we will find a
physical model that creates entanglement solely by the dis-
sipation term in the presence of the unitary term induced by
the interaction with the bath, and consider several kinds of
interactions with the bath and the initial states of system. In
order to describe the full story, it is necessary to solve the
master equation. First, we will solve the master equation of
the model suggested by Benatti et al. �5� This provides the
method to approach the entanglement generation in a purely
noisy environment.

The evolution of the system interacting with an environ-
ment can be written using a master equation of
Kossakowski-Lindblad form �10,11� under appropriate ap-
proximations:

d

dt
�s�t� = − i�H,�s�t�� + L„�s�t�… , �1�

where �s denotes the reduced density operator representing
the state of the system, and H denotes the sum of the original
system Hamiltonian and the unitary effective induced inter-
action term. For simplification, we consider only the induced
interaction Hamiltonian and ignore other Hamiltonians. This
simplification does not affect the general argument related to
the entanglement creation, because the local Hamiltonian
gives only a local unitary transformation, which does not
change the entanglement.

The general form of the nonunitary term that describes the
dissipation of the reduced density operator is

L„�s�t�… = �
�,�

D��	�L�,�s�t�L�
†� + �L��s�t�,L�

†�
 , �2�

where L� are generators of a dynamical semigroup �10�. If
D�� is positive definite, Eq. �1� guarantees the positive den-
sity operator which is essential for the density operator to be
the physical operator.

Benatti et al. studied a model having the coefficients of
the dissipation term given by*lhjae@kookmin.ac.kr
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D = � A B

B† C
� , �3�

which is defined by

A = C =  1 − ia 0

ia 1 0

0 0 0
�, B = b 0 0

0 − b 0

0 0 0
� ,

where a and b are real constants. This model shows notice-
able properties in the entanglement dynamics. The physical
condition of the positivity of D describes the condition a2

+b2�1 which is inside the unit disk in Fig. 1. Benatti et al.
showed that entanglement is created in the four portions be-
tween the outside of the embedded square �a±b�=1 and the
disk boundary. These regions are between the black and red
lines in Fig. 1.

To investigate the entanglement dynamics of the model,
let us solve the master equation straightforwardly. For an
initial reduced state of the form ��0�= �+ ��+� � �+ ��+�, the
density matrix is easily obtained, but the expression is too
long. So we write only the asymptotic expressions of the
solutions as

lim
t→�

�w
11�t� =

1 + a2 − b2 + 2a − 2ab2

4�1 − b2�
,

lim
t→�

�w
22�t� =

1 − a2 − b2

4�1 − b2�
,

lim
t→�

�w
44�t� =

1 + a2 − b2 − 2a + 2ab2

4�1 − b2�
,

lim
t→�

�w
14�t� = −

a2b

2�1 − b2�
= lim

t→�
�w

41�t� .

The other components of the density matrix become zero.
Since the reduced system is bipartite and a 2�2 system, we
can check entanglement by using the concurrence. The con-
currence of the above asymptotic state is limt→�C(�w�t�)
=limt→�	2��w

14�t�−�w
22�t��
=−�2a2b+1−a2−b2� /2�1−b2�.

The positivity of the concurrence explains why the system of
two qubits has entanglement at asymptotic time. The persis-
tence of entanglement on the asymptotic time is shown in the
four regions between the green and black lines in Fig. 1. The
system in these regions generates entanglement at the
asymptotic time. The region of entanglement at the
asymptotic time is smaller than that of Benatti et al. The
parameters between the red and green lines satisfy the crite-
rion of Benatti et al. only, but not the entanglement condition
of the concurrence at the asymptotic time. The solution
shows that entanglement between two qubits whose param-
eters are in this region is created for a short time and disap-
pears with the lapse of time. That is, the entanglement gen-
eration in this region is transient, and the state of the system
goes to a separable mixed state at the asymptotic limit. For
the region between the green and black lines, the concur-
rence increases monotonically and the maximum value can
be 1 for special parameter values.

This model has the further interesting behavior that any
initial state approaches the same asymptotic state. This fact
has no relevance to whether the initial state is pure or en-
tangled or mixed. As the time gets large, all the states lead to

�asymp =
−

1 + 2a + a2 − b2 − 2ab2

4�− 1 + b2�
0 0

ba2

2�− 1 + b2�

0
− 1 + a2 + b2

4�− 1 + b2�
0 0

0 0
− 1 + a2 + b2

4�− 1 + b2�
0

ba2

2�− 1 + b2�
0 0 −

1 + 2a + a2 − b2 − 2ab2

4�− 1 + b2�

� . �4�

This result comes from the fact that the density matrices in
arbitrary time are always of Werner type. Since Markovian
dynamics has no history dependence, these Werner-type
states go to one asymptotic state of Eq. �4�.

Although Benatti et al.’s criterion to create entanglement
give useful information about the interaction parameters, it is
not good enough to use it as the physical criterion of

entanglement for a practical system. This is because, for
some values of the interaction parameters, the system shows
only transient entanglement. It is better to define the physical
criterion using the asymptotic behavior of the reduced sys-
tem.

At this stage, we will ask what kinds of physical baths
cause creation and persistence of entanglement, and also
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study what is the source of entanglement creation. Which
one of the unitary or the dissipation term, or both, gives
entanglement creation? Another interesting question is
whether it is universal that the entanglement at asymptotic
time is independent of the initial states.

For these questions, let us consider the system interacting
with a thermal bath, which consists of harmonic oscillators.
The Hamiltonian of this model is given by

H = HS + HR + HSR, �5�

where

HS =
�

2
	
1

z +
�

2
	
2

z ,

HR = �
j

�� jrj
†rj ,

HSR = �
j

��gj
*rj

†
1
− + gjrj
1

+ + gj
*rj

†
2
− + gjrj
2

+� .

Here, 
1
i =
i � 1 and 
2

i =1 � 
i. The interaction between the
system and the bath is governed by the relaxation interaction.

The dynamics of the system is determined by the follow-
ing master equation in the Schrödinger representation:

d�s
1

dt
= −

i

2
�	
1

z + 	
2
z ,�s

1� − i���
1
z + 
2

z ,�s
1�

− i��1

2
�
1

z + 
2
z� + �
1

+
2
− + 
2

+
1
−�,�s

1�
+ �

�,�=1

6

D���
��s
� −
1

2
	
�
�,�s

1
� , �6�

where 
�=
�
1 for �=1,2 ,3 and 
�=
�−3

2 for �=4,5 ,6. �
and �� are defined in the continuum limit as

�� � P�
0

�

d�
D����g����2n̄��,T�

�0 − �
, �7�

� � P�
0

�

d�
D����g����2

�0 − �
, �8�

where P means the principal value. D��� is the density
of states and g��� the frequency-dependent interaction
strength for the thermal bath in the continuum limit. n̄�� j�
is the average occupation number of each mode � j
for the thermal bath, i.e., n̄��i�=TrR��bathrj

†rj�
=�nj

	nj exp�−�� jnj /kBT� / �1−exp�−�� j /kBT��
. �bath is the
density matrix of the thermal bath and T is the temperature.
D is represented by the 6�6 matrix � A B

B† C
�, where

A = B = C =


4
+



2
n̄ i



4
0

− i


4



4
+



2
n̄ 0

0 0 0
� . �9�

 is defined by 2�D�	�g�	�.
The ��- and �-proportional terms represent the Hamil-

tonian induced by the thermal bath. Both terms renormalize
the system Hamiltonian, but the �-proportional term has an
additional term corresponding to the indirect interaction be-
tween two qubits. This induced interaction is a planar-type
interaction between two system qubits.

In order to investigate the effect of the unitary planar-type
interaction and the dissipative dynamics on entanglement of
two system qubits clearly, we consider the dissipation term
and the unitary term separately. To study the pure dissipative
dynamics first we set the unitary term to zero. Under this
situation, the master equation gives the asymptotic solution
for the initial Werner state as

FIG. 1. �Color online� The black line �outer circle� represents
the boundary of the physical region. The red line �inner square�
represents the boundary of the region of entanglement obtained by
Benatti et al. The green line �surrounding red square� represents the
boundary of the parameters that give asymptotic entanglement.
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�asymp
1

=
3a2+6ab+3b2+a2r+2abr+b2r

4�a2+3b2�
0 0 0

0 −
a2 − 3b2+a2r+b2r

4�a2+3b2�
− 2a2+2b2r

4�a2+3b2�
0

0
− 2a2+2b2r

4�a2+3b2�
−

a2 − 3b2+a2r+b2r

4�a2+3b2�
0

0 0 0
3a2 − 6ab+3b2+a2r − 2abr+b2r

4�a2+3b2�

�
�10�

where a= /4 and b= /4+ /2n̄. We note that the general
solution is easily calculated for the systems we deal with.
However, the solution is too lengthy, so we will discuss the
behavior of the solutions at the interesting time, i.e., the
asymptotic time. The initial Werner state is defined by �W
=r��+���+�+ ��1−r� /4�I4, where ��+� is the Bell state;
�1/�2��1,0 ,0 ,1�T in the representation using the eigenstates
of 
z � 
z.

The concurrence of the density matrix at the asymptotic
time is calculated as

C��asymp
1 � = max�1 − r

4
−

3�b2 − a2��3 + r�
4�a2 + 3b2�

,0� . �11�

This value can be greater than 0. Hence the dissipation term
can generate entanglement between two qubits. We note that
for high temperature, b�a, the above concurrence at the
asymptotic time becomes −�1+r� /2. Since this is always
negative, there is no entanglement induced by the high-
temperature bath. For the zero-temperature bath, a=b, the
concurrence at asymptotic time becomes �1−r� /4. This is
always positive except for r=1. Then the zero-temperature
bath can always generate entanglement between two qubits
coupled with it. Furthermore, this result suggests that the
initial Bell states �r=1� become separable, and the fully
separable initial states �r=0� become most entangled at the
asymptotic time. This result is unexpected. This also means
that entanglement creation is very sensitive to the initial
state, unlike the model of Eq. �3�.

Next, we consider the effect of the unitary term by turning
off the dissipative dynamics for the same initial state. The
general solution for this case has a complicated form, but the
asymptotic solution is the same as for the initial state, except
for the oscillatory term �r /2�exp�−i�4c+2d�t� of �14, where
c=��+	 /2 and d=�. However, the oscillatory behavior dis-
appears in the calculation of the concurrence. The concur-
rence at any time does not change from the initial value. This
means that the unitary term, which has a planar-type interac-
tion, cannot change the entanglement for the initial Werner
states. Since it is well known that the planar-type interaction
can entangle two qubits in general, this result shows that the

entanglement generation at asymptotic time is also sensitive
to the initial states.

Finally, let us consider the model with both the unitary
and the dissipation terms. We can easily show that for this
case the concurrence at asymptotic time is the same as that in
the dissipation-only case. Hence, for this kind of thermal
bath, interaction, and initial states, it shows that the entangle-
ment is generated only by the dissipation.

Now we consider the system and the bath with a different
interaction, called dephasing, as

HSR = �
j

��gj
*rj

†
z
1 + gjrj
z

1 + gj
*rj

†
z
2 + gjrj
z

2� . �12�

This bath also induces unitary and dissipation terms in the
system. The unitary term induced by Eq. �12� forms an Ising-
type interaction between two qubits. Entanglement of initial
Werner states is not created by the induced Ising-type inter-
actions. This model has a purely dephasing interaction, and
the asymptotic state becomes a separable mixed state under
both the unitary and dissipation terms.

In a thermal bath, we have observed special features in
the Werner state. When planar-type interactions for two qu-
bits are induced by the thermal bath, the dissipation term
instead of the unitary term gives the entanglement, contrary
to our general belief. The dissipation term determines the
entanglement generation in the asymptotic region despite the
fact that the unitary term could not be turned off. This situ-
ation arises from the physical models that have a
z-representation Werner state prepared initially, and a relax-
ation interaction with a thermal bath. Furthermore, entangle-
ment survives to the asymptotic time. Hence, one can mea-
sure the entanglement induced solely by the dissipation term
without turning off the unitary term for the initial Werner
state at asymptotic time. This means that the dissipation can
be a useful tool in quantum computers and quantum-
information processing. It is also shown that there is no en-
tanglement creation for high enough temperature. Another
interesting feature is that entanglement is highly dependent
on the initial states. The dephasing interaction between the
system and the bath induces an Ising-type interactions be-
tween two qubits. The induced Ising-type interactions can
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create entanglement in general. However, it cannot create
entanglement for some initial Werner states.

Until now, we have studied the relation of the entangle-
ment creation and the physical situations of the system and
the bath. However, we do not know the reasons why the
system has entanglement through the dissipative interaction
with the thermal bath. An et al. �7� showed that the entangle-
ment generation occurs due to the decoherence-free state in-

cluded in the initial state. Their opinion seems to explain
well the case of Eq. �6�. We can show that the entanglement
generation in the system of Eq. �6� grows from an initial
state including a decoherence-free state. The model of
Benatti et al. cannot be explained by this method, since the
asymptotic state goes to the same density state independent
of the initial states. We will study the origin of the entangle-
ment generation in further work.
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