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A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an
entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been
studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC
QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol
for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD,
we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC
source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill’s security
analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way
classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo
protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we
compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The
simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the
coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low-
and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement
PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC
source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate

up to 53 dB channel losses.
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I. INTRODUCTION

There are mainly two types of quantum key distribution
(QKD) schemes. One is the prepare-and-measure scheme
such as the Bennett-Brassand (BB84) 1984 protocol [1], and
the other is the entanglement-based QKD such as the Ekert
1991 (Ekert91) protocol [2] and Bennett-Brassard-Mermin
1992 (BBM92) [3] protocol. The security of both types of
QKD has been proven in the last decade; see, for example,
[4-6]. For a review of quantum cryptography, one may refer
to [7]. Meanwhile, researchers have also proven the security
of the QKD with realistic devices, such as [8—14].

In the original proposal of the BB84 protocol, a single-
photon source is required. Unfortunately, single-photon
sources are still not commercially available. Instead, a weak
coherent-state source is widely used as an imperfect single-
photon source. Throughout this paper, we call this imple-
mentation the coherent-state QKD. Many coherent-state
QKD experiments have been performed since the first QKD
experiment [15]; see, for example, [16-21].

The decoy-state method [22] has been proposed as a use-
ful method for substantially improving the performance of
the coherent-state QKD. The security of the QKD with decoy
states has been proven [23-25]. Asymptotically, the
coherent-state QKD with decoy states is able to operate as
good as a QKD with perfect single-photon sources in the
sense that the key generation rates given by both setups lin-
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early depend on the channel transmittance [25]. Afterwards,
some practical decoy-state protocols are proposed [26-29].
Experimental demonstrations of the decoy-state method have
been done recently [30-35]. Other than the decoy-state
method, there are other approaches to enhance the perfor-
mance of the coherent-state QKD, such as a QKD with
strong reference pulses [36,37] and differential-phase-shift
QKD [38].

Besides the coherent source, there is another source that
can be used for the QKD: parametric down-conversion
(PDC) source. With a PDC source, one can realize either
prepare-and-measure or entanglement-based QKD protocols
[39]. To implement a prepare-and-measure QKD protocol,
one can use a PDC source as a triggered single-photon
source. To implement an entanglement-based QKD protocol,
on the other hand, one can use the polarization entanglement
between two modes of the light emitted from a PDC source.
We call these two implementations triggering PDC QKD and
entanglement PDC QKD. With an entangled source, one can
also implement QKD protocols based on causality [40] and
Bell’s inequality [41]. We notice that the PDC QKD based on
time-energy entanglement has been exploited [42].

The model and post-processing of the triggering PDC
QKD have already been studied [9]. Recently, there have
been some practical decoy-state proposals for the triggering
PDC QKD [43-45]. In this paper, we will focus on the
asymptotic decoy-state protocol [25], which is the upper
bound of all these practical decoy-state protocols when
threshold detectors are used by Alice and Bob.

On the other hand, the model and post-processing for the
entanglement PDC QKD are still missing. In this paper, we
present a model for the entanglement PDC QKD. From the
model, we find that an entangled PDC source is a basis-
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independent source for the QKD. Based on this observation,
we propose a post-processing scheme by applying Koashi
and Preskill’s security analysis [13].

Recently, a free-space distribution of entangled photons
over 144 km has been demonstrated [46]. We simulate this
experiment setup and compare three QKD implementations:
entanglement PDC QKD, triggering PDC QKD, and
coherent-state QKD. In the simulation, we also apply the
Gottesman-Lo two-way post-processing protocol [47] and a
recurrence scheme [48]; see also [49].

The main contributions of this paper are the following.

(i) We present a model for the entanglement PDC QKD.
Although the model is proposed to study the entanglement-
based QKD, this generic model may also be useful for other
non-QKD experiments involving a PDC source.

(ii) From the model, we find that an entangled PDC
source is a basis-independent source for QKD. Based on this
observation, we propose a post-processing scheme for the
entanglement PDC QKD. Essentially, we apply Koashi and
Preskill’s security analysis [13].

(iii) By simulating a PDC experiment [46], we compare
three QKD implementations: entanglement PDC QKD, trig-
gering PDC QKD, and coherent-state QKD. In the entangle-
ment PDC QKD, we consider two cases: source in the
middle and source on Alice’s side.

(iv) In the case that the PDC source is placed in between
Alice and Bob, we find that the entanglement PDC QKD can
tolerate the highest channel losses, up to 70 dB, by applying
Gottesman-Lo two-way classical communication post-
processing protocol [47]. We remark that a 35-dB channel
loss is comparable to the estimated loss in a satellite-to-
ground transmission in the literature [50-54].

(v) We consider statistical fluctuations for the entangle-
ment PDC QKD. In this case, the PDC setup can tolerate up
to 53 dB channel loss.

(vi) The coherent state QKD with decoy states is able to
achieve highest key rate in the low- and medium-loss re-
gions.

In Sec. II, we will review two experiment setups of the
entanglement PDC QKD. In Sec. III, we will model the en-
tanglement PDC QKD. In Sec. IV, we will propose a post-
processing scheme for the entanglement PDC QKD. In Sec.
V, we will compare the entanglement PDC QKD, the trigger-
ing PDC QKD, and the coherent-state QKD by simulating a
real PDC experiment. We also apply protocols based on two-
way classical communications and consider statistical fluc-
tuations. In Appendix A, we calculate the quantum bit error
rate in the entanglement PDC QKD. In Appendix B, we in-
vestigate the optimal u for the entanglement PDC QKD.

II. IMPLEMENTATION

In general, the PDC source does not necessarily belong to
one of the two legitimate users of QKD, Alice or Bob. One
can even assume that an eavesdropper, Eve, owns the PDC
source. In this section we will compare two experimental
setups of the entanglement PDC QKD due to the position of
the PDC source, in between Alice and Bob or on Alice’s side.

Let us start with a general discussion about an entangled
PDC source. With the rotating-wave approximation, the

PHYSICAL REVIEW A 76, 012307 (2007)

PBS [ PC |~ O PDC O - pcl— PBS m
{Channel
DAy PoA B DB,

FIG. 1. A schematic diagram for the entanglement PDC QKD.
Alice and Bob connect to a entangled PDC source by optical links.
They each receive one of two entangled modes coming out from the
PDC source. Both Alice and Bob randomly choose the basis (by
polarization controllers) to measure the arrived signals (by single-
photon detectors). PC: polarization controller. PBS: polarized beam
splitter. DA, DA, DB, DB;: threshold detectors.

Hamiltonian of the PDC process can be written as [55]
H=ix(abl,-alb}) +H.ec., (1)

where “H.c.” means Hermitian conjugate and y is a coupling
constant depending on the crystal nonlinearity and the am-
plitude of the pump beam. The operators a; and b; are the
annihilation operators for rectilinear polarizations i € {H,V}
in mode a and mode b, respectively. Mode a and mode b are
the modes sent to Alice and Bob, respectively.

In Sec. III, we will focus on modeling the measurement of
the rectilinear polarization (Z) basis. Due to symmetry, all
the calculations can be applied to the X basis too.

A. Source in the middle

First we consider the case that the PDC source sits in
between Alice and Bob. The schematic diagram is shown in
Fig. 1.

As shown in Fig. 1, a PDC source provides two entangled
modes a and b, which are sent to Alice and Bob, respec-
tively. After receiving the signals, Alice and Bob each ran-
domly choose a basis (X or Z) to perform a measurement.
One key observation of this setup is that the state emitted
from the PDC source is independent of the bases Alice and
Bob choose for the measurements.

B. Source on Alice’s side

Another case is that Alice owns the PDC source. The
schematic diagram is shown in Fig. 2.

Comparing Figs. 1 and 2, we can see that the only differ-
ence is the position of the PDC source. As we will see in Sec.
IV, the post-processings of these two setups are similar.

We remark that in the second setup, Alice’s measurement
commutes with Bob’s measurement. Thus, we have the same
observation as before: that the PDC source state is indepen-
dent of the measurement bases.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

DA, || PBS phc

O frc}{ras}{on]

% Channel B !

FIG. 2. A schematic diagram for the entanglement PDC QKD.
Alice measures one of the entangled modes coming out from the
PDC source and sends Bob the other mode.
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Therefore, for both setups the entangled PDC source is a
basis-independent source. It follows that the entanglement
PDC QKD is a basis-independent QKD.

III. MODEL

In this section, we will model entangled PDC sources,
channel, and detectors for the entanglement PDC QKD. We
emphasize that this model is applicable for both experiment
setups described in Sec. II.

A. Entangled PDC source

From Egq. (1), the state emitted from a type-1I PDC source
can be written as [55]

|W) = (coshy) 2>, \n + Itanh"y|®,), (2)
n=0
where |®,) is the state of an n-photon pair, given by
1 < N
@)= ——=2 (= 1)"|n—mm)Jmn-my,.  (3)
i+ 1 =0

For example, when n=1, Eq. (3) will give a Bell state

1
|(D1> = ?( 1’0>a O’ 1>b - O, 1>a|170>b)
V2
1
= Do 10 ). @
V2
Here we use the polarizations |1,0)=|<)and [0,1)=|]) as a

qubit basis (Z basis) for QKD. From Eq. (2), the probability
to get an n-photon pair is

(n+1\"

P(n): (1 +)\)n+2’

)
where we define A =sinh?y. The expected photon pair num-
ber is u=2\, which is the average number of photon pairs

generated by one pump pulse, characterizing the brightness
of a PDC source.

B. Detection

We assume that the detection probabilities of the photons
in the state of Eq. (3) are independent. Define 7, and 7, to
be the detection efficiencies for Alice and Bob, respectively.
Both 7, and 7 take into account the channel losses, detector
efficiencies, coupling efficiencies, and losses inside the de-
tector box. For an n-photon pair, the overall transmittance is

7, =[1=(1=74)"][1 = (1= 75)"]. (6)

We remark that the channel loss is included in 7, and 7.
Thus, this model can be applied to either of following two
cases: (a) the PDC source is in between Alice and Bob or (b)
the PDC source is on Alice (or Bob)’s side.

Yield. Define Y, to be the yield of an n-photon pair—i.e.,
the conditional probability of a coincidence detection event
given that the PDC source emits an n-photon pair. Y, mainly
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comes from two parts: the background and the true signal.
Assuming that the background counts are independent of the
signal photon detection, then Y, is given by

Y, =[1=(1=Yo)(1 = 70)"][1=(1=Yop)(1 - 75)"],

(7)
where Y, and Y are the background count rates on Alice’s
and Bob’s sides, respectively. The vacuum-state contribution
is Yo=Yy4Y(p. The gain of the n-photon pair Q,, which is the
product of Egs. (5) and (7), is given by

Q,=Y,P(n)=[1-(1-You)(1-174)"]

 (n+ DN
X[1 = (1 =Yop)(1 = 7p) ]W- (®)
The overall gain is given by
1-You 1-Yop

0\=20,=1- -
n=0 (1+ 7,0 (1+ 7))
(1 =Yo,)(1 = Yop)
(1+ 7\ + 7N = 7 7p0)*
Here the overall gain Q, is the probability of a coincident
detection event given a pump pulse. Note that the parameter

\ is one-half of the expected photon pair number .
The overall quantum bit error rate (QBER, E,) is given by

)

2(eg—eg) mamph(1 +\)
(1+ 72a0)(1+ M) (1 + ma\ + 7\ — 14 775N)°
(10)

E\Oy\=e0\ —

where Q, is the gain given in Eq. (9). The calculation of the
E, is shown in Appendix A.

IV. POST-PROCESSING

As mentioned in Sec. II, the entanglement PDC QKD is a
basis-independent QKD. Thus, we can apply Koashi and
Preskill’s security proof [13]. The key generation rate is
given by

R = q{O\[1 - f(8,)H,(8,) — Hy(5,)]}, (11)

where ¢ is the basis reconciliation factor (1/2 for the BB84
protocol due to the fact that half of the time Alice and Bob
disagree with the bases, and if one uses the efficient BB84
protocol [56], g= 1), the subscript N\ denotes one-half of the
expected photon number u, Q) is the overall gain, J, (6,) is
the bit (phase) error rate, f(x) is the bidirection error correc-
tion efficiency (see, for example, [57]) as a function of error
rate, normally f(x) =1 with Shannon limit f(x)=1, and H,(x)
is the binary entropy function,

H,(x) = = x log,(x) — (1 = x)logy(1 - x).

Due to the symmetry of X- and Z-basis measurements, as
shown in Sec. II, &, and J, are given by

5,=8,=E,, (12)

where E, is the overall QBER. This equation is true for the
asymptotic limit of an infinitely long key distribution. Later
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TABLE I. Experimental parameters deduced from the 144-km
PDC experiment [46]. Here we assume that Alice and Bob use
detectors with the same characteristics. e, is the intrinsic detector
error rate. Y, is the background count rate. 745, (75,5 is the
detection efficiency in Alice’s (Bob’s) box, including detector effi-
ciency and internal optical losses. The overall transmittance 7, (775)
is the product of Alice’s (Bob’s) channel transmission efficiency
and ajice (Mgop)-

Repetition
rate Wavelength  74ice NBob ey Yo
2499 MHz 710 nm  145% 145% 1.5% 6.02X107°

in Sec. V C, we will see that Eq. (12) may not be true when
statistical fluctuations are taken into account.

We remark that in Koashi and Preskill’s security proof,
the squash model [14] is applied. In the squash model, Alice
and Bob project the state onto the qubit Hilbert space before
X or Z measurements. For more details of the squash model,
one can refer to [14]. In the case that Alice owns the PDC
source, as discussed in Sec. II B, the key rate formula of Eq.
(11) has been proven [58] to be valid for the QKD with
threshold detectors without the squash model; see also [59].
We also notice that this post-processing scheme, Egs. (11)
and (12), can also be derived from a security analysis based
on the uncertainty principle [60].

In Eq. (11), Q) can be directly measured from a QKD
experiment and E\ can be estimated by error testing. In the
simulation shown in Sec. V, we will use Egs. (9) and (10).

We remark that the post-processing for the entanglement
PDC QKD is simpler than the coherent-state QKD and trig-
gering PDC QKD. In the entanglement PDC QKD, all the
parameters needed for the post-processing (Q, and E,) can
be directly calculated or tested from the measured classical
data. In the coherent PDC QKD and the triggering PDC
QKD, on the other hand, Alice and Bob need to know the
value of some experimental parameters ahead, such as the
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expected photon number w, and also need to estimate the
gain and error rate of the single-photon states Q; and e,
which make the statistical fluctuation analysis difficult [29].

The post-processing can be further improved by introduc-
ing two-way classical communications between Alice and
Bob [47,49]. Also, the adding noise technique may enhance
the performance [61].

V. SIMULATION

In this section, we will first compare three QKD imple-
mentations: entanglement PDC QKD, triggering PDC QKD,
and coherent-state QKD. Then we will apply post-processing
protocols with two-way classical communications to the en-
tanglement PDC QKD. Finally, we will consider statistical
fluctuations.

We deduce experimental parameters from Ref. [46] due to
the model given in Sec. III, which are listed in Table 1. For
the coherent-state QKD, we use 7,=1 since Alice prepares
the states in this case. In the following simulations, we will
use ¢=1/2 and f(E,)=1.22 [57].

The optimal expected photon number w of the coherent-
state QKD has been discussed in Refs. [9,29]. In Appendix
B, we investigate the optimal w (2\) for the entanglement
PDC QKD. Not surprisingly, we find that the optimal u for
the entanglement PDC QKD is on the order of 1, u=2\
=0(1). Thus, the key generation rate given in Eq. (11) de-
pends linearly on the channel transmittance.

A. Comparison of three QKD implementations

In the first simulation, we assume that Alice is able to
adjust the expected photon pair number w (2\, the brightness
of the PDC source) in the region of [0,1]. Thus, we can
optimize w for the entanglement PDC QKD and the trigger-
ing PDC QKD. The simulation results are shown in Fig. 3.

From Fig. 3, we have the following remarks.

Key generation rate [per pulse]

== Coherent state+decoy
10 7 - - triggering PDC+decoy
-~ Source on Alice

—— Source in between

FIG. 3. (Color online) Plot of the key genera-
tion rate in terms of the optical loss, comparing
four cases: coherent-state QKD+ aysmptotic de-
coy, triggering PDC+asymptotic decoy, and en-
g tanglement PDC QKD (source in the middle and
source on Alice’s side). For the coherent state
QKD +decoy, we use 7,=1. We numerically op-
timize u (2\) for each curve.

0 10 20 40 50 60

30
Optical link loss [dB]

70
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Key generation rate [per pulse]

— one-way

" recurrence
101 -~ 1Bstep

- - 2B steps
— 3 B steps

FIG. 4. (Color online) Plot of the key genera-
tion rate in terms of the optical loss. We apply the
1 recurrence idea and up to 3 B steps. w is numeri-
cally optimized for each curve.

0 10 20 30 40 50 60
Optical link loss [dB]

(i) The entanglement PDC QKD can tolerate the highest
channel losses in the case that the source is placed in the
middle between Alice and Bob.

(ii) The coherent-state QKD with decoy states is able to
achieve the highest key rate in the low- and medium-loss
regions. This is because in the coherent-state QKD imple-
mentation, Alice does not need to detect any photons, which
will effectively give 7,=1 in the PDC QKD implementa-
tions.

(ili) Comparing two cases of the entanglement PDC
QKD—source in the middle and source on Alice’s side—
they yield similar key rates in the low and medium regions.
But the source in the middle case can tolerate higher channel
losses.

In the following simulations, we will focus on the case
that the entangled PDC source sits in the middle between
Alice and Bob.

B. With two-way classical communications

We can also apply the idea of post-processing with two-
way classical communications. Similar to the argument of
Ref. [49], we combine the recurrence idea [48] and the B
steps in the Gottesman-Lo protocol [47]. The simulation re-
sults are shown in Fig. 4.

From Fig. 4, we can see that the recurrence scheme can
increase the key rate by around 10% and extend the maximal
tolerable loss by around 1 dB. The PDC experiment setup
can tolerate up to 70 dB channel loss with 3 B steps. We
remark that 70 dB (35 dB in each channel) is comparable to
the estimated loss in a satellite-to-ground transmission [53].
This result suggests that a satellite-ground QKD may be pos-
sible. However, this simulation assumes the ideal situation
that an infinite number of signals are transmitted. Moreover,
we assume that u (the brightness of the PDC source) is a
freely adjustable parameter in the PDC experiment. In a
more realistic case where a finite number of signals are trans-
mitted and w is a fixed parameter, the tolerable channel loss
becomes smaller, as we show next.

70

C. Statistical fluctuations

In Eq. (12), we assume that &, and &, are the same due to
the symmetry between X and Z measurements. Alice and
Bob randomly choose to measure in the X or Z basis. Then,
asymptotically, J, is a good estimate of J,. However, in a
realistic QKD experiment, only a finite number of signals are
transmitted. Thus &, may slightly differ from &,. We assume
that Alice and Bob do not perform error testing explicitly.
Instead, they obtain the bit error rate directly from an error
correction protocol (e.g., the cascade protocol [57]). In that
case, there is no fluctuation in the bit error rate §,=E,. On
the other hand, the phase error rate may fluctuate to some
certain value 6,= 6,+ €. Following the fluctuation analysis of
Ref. [6], we know that the probability to get a € bias is

ezn)

4o(1-5) (13)

P, .= exp(—

where n=NQ), the number of detection events, the product of
total number of pulses N, and the overall gain Q,.

In the 144-km PDC experiment [46], the repetition rate of
pump pulse is 249 MHz, as given in Table I. As discussed in
Ref. [53], the typical time of ground-satellite QKD allowed
by satellite visibility is 40 min. Here, we assume the experi-
ment runs 10 min, which means that the data size is N=1.5
X 10'!. By taking this data size, we consider the fluctuations
for the entanglement PDC QKD.

In the realistic case, the brightness of the PDC source u
cannot be set freely. In the 144-km PDC experiment [46], the
expected photon pair number is u=2A=0.053. After taking
1=0.053 and a data size of N=1.5X 10" for the fluctuation
analysis, the simulation result is shown in Fig. 5.

We have a couple remarks on Fig. 5.
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Key generation rate [per pulse]

—— one-way
-- 1Bstep

107 '='- 2 B steps
3 B steps

FIG. 5. (Color online) Plot of the key genera-
tion rate in terms of the optical loss. We take a
realistic ©=2N=0.053 and consider the fluctua-
tion with a data size of N=1.5X10'" and a con-
fident interval of 1-P.=1-¢>",

0 10 20 30 40 50
Optical link loss [dB]

(i) In Fig. 5, if we cut off from the key rate of 107'°,'the
entanglement PDC QKD with one B step can tolerate up to
53 dB transmission loss.

(i) We have tried simulations with various w’s. We find
that the key rate is stable with moderate changes of w. With
the above fluctuation analysis, if we numerically optimize u
for each curve, the maximal tolerable channel loss (with a
cutoff key rate of 107'°) is only 1 dB larger than the one
given by w=0.053. Thus, one cannot significantly improve
the maximal tolerable channel loss by just using a better
PDC source in the 144-km PDC experiment setup [46].

VI. CONCLUSION

We have proposed a model and post-processing for the
entanglement PDC QKD. We find that the post-processing is
simple by applying Koashi and Preskill’s security proof due
to the fact that the entanglement PDC QKD is a basis-
independent QKD. Specifically, only directly measured data
(the overall gain and the overall QBER) are needed to per-
form the post-processing. By simulating a recent experiment,
we compare three QKD schemes: coherent-state QKD
+aysmptotic decoy, triggering PDC+asymptotic decoy, and
entanglement PDC QKD (source in the middle and on Al-
ice’s side). We find that (a) the entanglement PDC (with
source in the middle) can tolerate the highest channel loss;
(b) the coherent-state QKD with decoy states can achieve the
highest key rate in the medium- and low-loss regions; (c)
asymptotically, with a realistic PDC experiment setup, the
entanglement PDC QKD can tolerate up to 70 dB channel
losses by applying post-processing schemes with two-way
classical communications; (d) the PDC setup can tolerate up
to 53 dB channel losses when statistical fluctuations are
taken into account.

"Then the final key length is 15 bits. One should also consider the
cost in the authentication procedure. Thus, this is a reasonable cut-
off point.
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APPENDIX A: QUANTUM BIT ERROR RATE

Here we will study the quantum bit error rate of the en-
tanglement PDC QKD. Our objective is to derive the QBER
formula given in Eq. (10) used in the simulation. The QBER
has three main contributions: (i) background counts, which
are random noises e,=1/2; (ii) intrinsic detector error e,
which is the probability that a photon will hit the erroneous
detector and characterizes the alignment and stability of the
optical system between Alice’s and Bob’s detection systems;
(iii) errors introduced by multiphoton-pair states: (a) Alice
and Bob may detect different photon pairs and (b) double
clicks. Due to the strong pulsing attack [62], we assume that
Alice and Bob will assign a random bit when they get a
double click. In either case, the error rate will be ey=1/2.

Let us start with the single-photon-pair case, a Bell state
given in Eq. (4). The error rate of single-photon pair ¢, has
two sources: background counts and intrinsic detector errors,

(eg—eq) mamp

Y, (A1)

e =€pg—

If we neglect the case that both background and true signal
cause clicks, then e; can be written as
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_ eo(YouYop+ Yoang + 1aY0p) + €amams
Y,

e N (AZ)

where ey=1/2 is the error rate of background counts. The
first term of the numerator is the background contribution
and the second term comes from the errors of true signals.

In the following, we will discuss the errors introduced by
multiphoton-pair states, e,, with n=2. Here we assume that
Alice and Bob use threshold detectors, which can only tell
whether the incoming state is a vacuum or nonvacuum. One
can imagine the detection of an n-photon-pair state as fol-
lows.

(i) Alice and Bob project the n-photon-pair state, Eq. (3),
into the Z®" basis.

(ii) Afterwards, they detect each photon with certain prob-
abilities (7, for Alice and 7y for Bob).

(iii) If either Alice or Bob detects a vacuum, then we
regard it as a loss. If Alice and Bob both detect a nonvacuum
only in one polarization («or]), we regard it as a single-
click event. Otherwise, we regard it as a double-click event.

The state of a two-photon-pair state, according to Eq. (3),
can be written as

2,0,

0,2), —

1
|CD2>=T§( 1’1>a 1’1>b+ 072>a 29O>b
\

1 1
=7 [ =l LI =30 = D11 <

(] <)+l IM+T D= =) (A3)

As discussed above, Alice and Bob project the state into the
Z®Z basis. If they end up with the first or third state in the
brackets of Eq. (A3), they will get perfect anticorrelation,
which will not contribute to errors. If they get the second
state in the brackets of Eq. (A3), their results are totally
independent, which will cause an error with probability e
=1/2. Thus the error probability introduced by a two-
photon-pair state is 1/6. Here we have only considered the
errors introduced by multiphoton states, item (iii) discussed
in the beginning of this Appendix. We should also take into
account the effects of background counts and intrinsic detec-
tor errors. With these modifications, the error rate of the two-
photon-pair state is given by

_ 2(ep—ey)[1-(1 - 7]A)2][1 -(1- 773)2]
3Y, ’

€)=¢€
(A4)

where Y, is given in Eq. (7). Equation (A4) can be under-
stood as follows. Only when Alice and Bob project the Eq.
(A3) into |« <), 110 or |]1)al<> <), and no back-
ground count occurs can they have a probability of e, to get
the wrong answer. Given a coincident detection, the condi-
tional probability for this case is 2[1—(1—17,)*][1-(1
—15)?1/3Y,. All other cases—a background count, a double
click, and measuring different photon pairs—will contribute
an error probability eq=1/2.
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Next, let us study the errors coming from the state |n
—m,m),|m,n—m),. When Alice detects at least one of n
—m |]) photons but none of m |+ ) photons and Bob detects
at least one of n—m |« ) photons but none of m || ) photons,
or both Alice and Bob have bit flips of this case, they will
end up with an error probability of e,. Given a coincident
detection, the conditional probability for these two cases is

YL{[I = (1= 7)""](1 = 7)"[1 = (1 = 75)""](1 - 7p)"

+[1=(1=7)"](1 = 27" "1 = (1 = 5)"](1 = 75)"~"}.

When Alice detects at least one of n—m || ) polarizations but
none of m |+ ) polarizations and Bob detects at least one of
m |]) polarizations but none of n—m |« ) polarizations, or
both Alice and Bob have bit flips of this case, they will end
up with an error probability of 1—e,; Given a coincident
detection, the conditional probability for these two case is

0= (= N0 = (1 7)1 )

+[1= (1= 7)""1(1 = 72)"[1 = (1 = 75)"1(1 = 3p)"™"}..

For all other cases, the error probability is e. Thus the error
probability for the state [n—m,m),|m,n—m), is

€y~ €y
Y

n

X[ = (1= 725)"]+ (1 = 1) (1 = ;)" [1 = (1 = 794)"™"]
X[ = (1= 75)""] = (1 = 30)""(1 = )"
X[1=(1=70)"]1 = (1= 5p)""] = (1= m)"
X(1=775)" "1 = (1= ;)" ][1 = (1 = mp)"]}

€0~ €y
Y,

= (1= 7p)"].

In general, for an n-photon-pair state described by Eq. (3),
the error rate is given by

€aum = €0~ {(1 - 77.»“1)}1_}’”(1 - 7”B)n_m[l - (1 - nA)m]

=ep— [(1=7)"" = (1= 5)"][(1 = 5g)"™

(AS)

n

1 1 - enp— €y
Cpm="""24 € — 1—n)" ™
n+1n§) n+lmz_0 0 Y, [« )

= (1= 7)™ (1 = 7p)"™" = (1 = 7p)"]

e, =

=0~ ooy 2 L= 7)™ = (1= (= )

m=0
~ (1= 7)"]
L z<eo—ed){ L= (1= 7)1 = mp)""!
)y, L == )1 - 7p)
(=)™ - (1= w“] (46)
B~ 7A

The overall QBER is given by

012307-7



MA, FUNG, AND LO

PHYSICAL REVIEW A 76, 012307 (2007)

0.25

_ nA<<1
Np=

0.2

=2\
o
o
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FIG. 6. Plot of the optimal u in terms of e,
for the entanglement PDC QKD. f(e,)=1.22.
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Intrinsic detector error rate e d

E)\Q}\ = E enYnP(n)
n=0

o 2eo=e)N' [ 1= (1= 7)™ (1 = 7p)"™"!
= eOQ}\ - E n+2
= (1+)N) 1= (1= 24)(1 = 7p)
_ (1- 77A)n+1 —-(1- 7/3)"“)
7B~ Ma
_ 2(eg—eg) mamph(1 +)\)
(1+ 70 (1 + 75N (1 + N + 75\ — 74 775N)
(A7)

=eo0)

where Q, is the gain given in Eq. (9).

APPENDIX B: OPTIMAL u

The optimal w for the coherent-state QKD has already
been discussed [9,29]. Here we need to find out the optimal
w for the entanglement PDC QKD. In the following calcula-
tion, we will focus on optimizing the parameter \ (=u/2) for
the key generation rate given in Eq. (11).

By assuming 7 to be small and neglecting Y,,, we can
simplify Eq. (9):

7A
_(1+nA>\)3>' (B)

The overall QBER given in Eq. (10) can be simplified to

1 (1 =2e5)(1 +N)(1 + 740)
2 21 4+3N+370\2+ ;3\

N 2773)\<1

A (B2)

In order to maximize the key generation rate, given by Eq.
(11), the optimal \ satisfies

> >
0.09 0.1

J E 1-E
%{1 —[1+ A(E)IHH(E)} - 0)[1 +f(E>\)](9_):\ logs—- .
=0. (B3)

Here we treat f(E)) as a constant. In the following we will
consider two extremes: 7,~1 and 7, < 1.
When 7, =1, the overall gain and QBER are given by

Q}\ = 2778)\’

. 2€d+)\

. B4
242N (B4)

N

Thus, Eq. (B3) can be simplified to
1-2¢, 1-E,

1-[1+f(E\)]H(E)\) — N1+ f(E 1
[1-+ FEDVAS(E) =M1+ AUE T == Tog—
=0. (B5)
When 7, <1,
Oy = 2mymh(1 +3N),
€d+)\+€d)\
~— B6
» 143\ (B6)
Thus, Eq. (B3) can be simplified to
(L+6N{1 = [1+ f(E))]H,(E))}
l—2€d 1—E)\
-1 E 1 =0. B7
[+ BT g (B7)

The solutions to Egs. (B5) and (B7) are shown in Fig. 6.

From Fig. 6, we can see that the optimal u=2\ for the
entanglement PDC is in the order of 1, u=2A=0(1), which
will lead to a final key generation rate of R=0(7,7;).
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