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A geometrical description of open quantum systems is presented. This is based on a connection on a vector
bundle over a Grassmann manifold, as well as the Anandan geometric phase for pure states [J. Anandan, Phys.
Lett. A 133, 171 (1988)]. The geometric phase proposed here also naturally includes the geometric phase in
adiabatic open quantum systems proposed by Sarandy and Lidar [Phys. Rev. A 73, 062101 (2006)]. The
present geometrical description can be applied to all the quantum systems described by time-local master

equations for density operators.
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I. INTRODUCTION

The geometric phase is one of the most interesting con-
cepts in quantum physics [1]. Berry first found that a geo-
metrical phase factor appears, in addition to a dynamical
phase factor, in an adiabatic and cyclic quantum evolution
with a nondegenerate eigenstate of a Hamiltonian [2]. Simon
pointed out that the Berry phase can be regarded as a ho-
lonomy on a line bundle over a parameter space [3]. The
Berry phase was generalized to the case of a degenerate
eigenspace by Wilczek and Zee (WZ) [4]. Interestingly, the
Berry and WZ phases have the same mathematical structures
as Abelian and non-Abelian gauge field theories, respec-
tively. Aharonov and Anandan (AA) introduced the nonadia-
batic (Abelian) geometric phase [5]. Furthermore, Anandan
generalized the AA phase to the non-Abelian one [6]. The
AA phase has also been generalized to the noncyclic case by
Samuel and Bhandari (SB) [7] by applying Pancharatnam’s
geometric phase for the interference between two polarized
light beams [7,8] to quantum interference.

Recently, geometric phases for mixed states have been
extensively studied, especially for geometric quantum com-
putations [9,10]. There are mainly three general approaches
to the definition of the mixed-state geometric phase which
are based on state purification [11,12], quantum trajectories
[13], and quantum interferometry (kinematic approach)
[14-19], respectively (see Refs. [20-22] for the other ap-
proaches). The first approach proposed by Uhlmann defines a
parallel transport for a purification of a density operator
[12,23]. A connection is defined on a fiber bundle whose
fiber and base manifold are a Hilbert-Schmidt space [24,25]
and the manifold of all density operators, respectively. This
approach has a problem that the geometric phase depends on
the evolution of the ancillary part [26]. The second approach
proposed by Carollo ef al. is based on the application of the
SB approach (Pancharatnam’s phase) to each quantum trajec-
tory [27]. Very recently, a problem of this approach that the
geometric phase depends on the type of unraveling (non-
physical parameters) has been pointed out [28]. The third
approach is a natural generalization of the SB approach (Pan-
charatnam’s phase) to the mixed-state case. This approach
was first based on quantum interferometry assuming unitary
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evolution and nondegenerate density operators [14]. The
geometric phase by this approach has been experimentally
observed with nuclear spins [17] and photons [19]. The gen-
eralizations to the cases of degenerate density operators [16]
and nonunitary evolution [18] have been achieved by kine-
matic approaches. While the geometric phase by this kine-
matic approach is well defined, this does not correspond to a
generalization of the pure-state non-Abelian geometric
phases such as the WZ and Anandan phases [4,6,29]. Re-
cently, the proposals to unify the purification and kinematic
approaches have been reported [30,31]. In the case of non-
unitary evolution, however, the same problem as the purifi-
cation approach arises [31]. Very recently, Sarandy and Lidar
(SL) have proposed a natural generalization of the WZ phase
to the mixed-state case [21], which is based on adiabatic
approximation in open quantum systems [32]. In this paper,
we propose another formulation of the geometric phase for
mixed states, which is a natural generalization of the Anan-
dan phase [6]. The geometric phase proposed here also natu-
rally includes the SL phase.

This paper is organized as follows. In Sec. II, a vector
representation for density operators is introduced. In Sec. III,
a geometric structure for density operators is defined. The
geometric phase for mixed states in the present formulation
is also proposed. In Sec. IV, a geometric description of open
quantum systems in the present formulation is presented. In
Sec. V, a simple example is discussed. This is stimulated
Raman adiabatic passage (STIRAP) [10,33,34] with dephas-
ing. The conclusion is presented in Sec. VI.

II. VECTOR REPRESENTATION OF DENSITY
OPERATORS

Consider a quantum system described by an
N-dimensional complex Hilbert space Hy(C). The Anandan
phase for pure states is based on a connection on a vector
bundle over a Grassmann manifold, G, 5(C), where G, 5(C)
is the set of n-dimensional subspaces of H,(C) [6,35-39].
Each point on G, 5(C) corresponds to a subspace of H(C).
The fiber over a point on G, (C) is the vector space corre-
sponding to the point. Similarly, our approach is also based
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on a connection on a vector bundle over a Grassmann mani-
fold. We use the Hermitian Hilbert-Schmidt space [24,25],
Hp2(R), instead of Hy(C), to describe density operators.
Ha2(R) is an N-dimensional real Hilbert space spanned by
the following Hermitian operators:

k) = [k)k|  for k=1,2,....N
[142[ +[2)(1] [1)€2] = [2)(1]
|N+1>)——V2 , |N+2>>__\J21
o 1y DN W= 1]
'2
vy = = D=y 1]
V2i

where {|k)|k=1,...,N} is an orthonormal basis of Hy(C)
[40]. The inner product is defined as

(w.v) = ((w[v)) = Tr{wo], (1)

where w,v € Hp2(R). {|k))|k=1,2,...,N?} is an orthonor-
mal basis of Hx2(R) with respect to the above inner product
[41]. Any density operator can be expressed as

N2

loy =2 pulk)), ()
k=1

where p, (k=1,2,...,N?) are real coefficients.

III. GEOMETRIC STRUCTURE FOR DENSITY
OPERATORS

We use a Grassmann manifold, G, 52(R), which is the set
of n-dimensional subspaces of H2(R). We also define a vec-
tor bundle, V,, over G, »2(R) whose fiber over a point on
G, 2(R) is the vector space corresponding to the point. A
connection is defined as

V|Uk>> = 2 |Uj>><<Uj|d|Uk>> = 2 |Uj>>~Aj,k’ (3)
j=1 j=1

where V and d denote the covariant and exterior derivatives,
respectively, and {|v,))|k=1,2,...,n} is an orthonormal ba-
sis of V, € G, \2(R). The one-form A;, is regarded as a
gauge field in gauge field theory [39]. This type of connec-
tion is fundamental from a mathematical point of view
[6,36,37,42,43]. The covariant derivative for |p))

=27 ajlv;)) € V, is defined as

Vlp)) = 2 o)X vld]|p)) = E (dajlo) +a; Vvp)).
4)

From the definition of A;, under a so-called gauge transfor-
mation |v,£))=2;’=lgj,k|vj>>, A; i transforms as a gauge field:
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n n
’ -1 -1
k= 2 gj,jrAj’,k'gk',k"' E gj,jrdgj',k, (5)
jlk'=1 j'=1

where A’ jx corresponds to the connection for the new basis.
As a result V|p)) is gauge invariant, that is, independent of
the choice of the basis. The parallel transport condition is
given by V|p))=0. Let C be a curve represented by V,(s) on

p()) = 2 a;(9)|o(s)), (6)
j=1

a(s)=P expl— f A] a(0), (7)
c

where {|v i(s))} is an orthonormal basis of V,(s), a
=(ay,...,a,)" (T denotes transpose), P denotes path order-
ing, and A is the matrix-valued one-form whose elements are
A; - When C is closed, P exp[-$..A] is the holonomy and is
gauge invariant. This holonomy is the geometric phase factor
for the density operator in the present formulation [44]. In
general, the present geometric phase factors are non-Abelian.

IV. GEOMETRIC DESCRIPTION OF OPEN QUANTUM
SYSTEMS

Next, we consider the time evolution of a mixed state. In
most cases, the evolution of a density operator is determined
by a master equation. We consider master equations in the
following form:

d
;t|p(t)>> = L@)|p(1)), (8)

with

L(t) = ©)
Kkl

where £; (1) are real numbers. This master equation is local
in time in the sense that the time derivative of p(f) at any
time ¢ is determined by p(z), and no time integration is nec-
essary [25,45]. An important example of the time-local mas-
ter equation is a Lindblad-form master equation
[21,25,32,46]. While the Lindblad-form master equations can
be applied only to Markovian processes, general time-local
master equations can describe non-Markovian processes
[25,45]. Here, we consider the case where |p(7))) is confined
in a time-dependent n-dimensional subspace V,(f) of
Ha2(R). Then, |p(#))) can be expressed as |p(z))
=37, oy (1)|vi(1))), where {|v,(1)))} is an orthonormal basis of
V,(). By applying the  projection  operator,
S o)X ()], onto V(1) to the right-hand and left-hand
sides of Eq. (8), we obtain
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Vlo) = dr 2 Jo) v {L]p)), (10)
j=1

where Eq. (4) has been used. It should be noted that Eq. (10)
is obviously gauge invariant. The equation for a;(z) is given
by

daj+2./4j,kak=dt2 <<Uj|L|Uk>>ak' (11)
k=1 k=1

30 A ey and diZ)_((vj|Llv)a; in Eq. (11) can be re-
garded as geometrical and dynamical parts, respectively [47].
The formal solution for Eq. (11) is

o?(t):Pexp[—f.A+f W(t)dt]&(O), (12)

where W(r) is the matrix whose elements are
{v;(0)]L()|vi(0))). Thus it is found that if an open quantum
syétem is described by a time-local master equation and is
confined in a time-dependent subspace of H2(R), then the
time evolution is given by a matrix consisting of the geo-
metrical and dynamical parts. This is the geometrical de-
scription of an open quantum system in the present formula-
tion. Since in general A and W(z) is not commutable with
each other, the geometrical and dynamical phase factors can-
not be separated from each other. If W is zero or negligible,
Egs. (10) and (12) reduce to V|p))=0 (parallel transport con-
dition) and Eq. (7), respectively. Then, the evolution of the
open quantum system is purely geometrical and corresponds
to the horizontal lift of the curve V,(7) on G, y2(R). Further-
more, if the evolution is cyclic (the curve is closed), the
evolution is given by the geometric phase factor (holonomy),
P exp [-$.A], proposed here.

As in the case of the Anandan phase [6], we can formulate
geometric phases based on a connection on a vector bundle

over a parameter space, if a set of parameters R(r) determines
the subspace V,(¢) of Hp2(R) in which the state is confined.
The vector bundle over the parameter space is naturally in-

duced by V, with respect to the mapping V,,(IE) [43]. This
formulation based on a connection on the induced bundle is
significant for applications to quantum-state manipulation,
since we can control quantum states geometrically if the
above parameters are controllable. A typical example of this
situation is an adiabatic evolution of an open quantum sys-
tem [21,32]. Thus it turns out that the geometric phase pro-
posed here naturally includes the SL phase [21,22,48].

V. EXAMPLE: STIMULATED RAMAN ADIABATIC
PASSAGE WITH DEPHASING

Finally, we discuss a simple example. The example is
stimulated Raman adiabatic passage (STIRAP) [10,33,34] in
a A configuration in the four-level system depicted in Fig. 1.
This has been used for the geometric realization of a single-
qubit rotation in Ref. [10]. The Hamiltonian is given by
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FIG. 1. Four-level system used for the example. (1) (j=1,2)
is the Rabi frequency corresponding to the |j)-|3) transition.

HO =i ks [Q;(0[3)] -

]12

(13)

where (), and (), are the Rabi frequencies corresponding to
the |1)-|3) and [2)-|3) transitions, respectively, and are set as
Q,=-Qe?sin(#/2) and Q,=1 cos(6/2), where ) is a posi-
tive constant. It is assumed that @ varies from 6=0 to 6=0,
and the initial state is a superposition of |0) and |1). This
Hamiltonian has the following dark state (nontrivial zero-
eigenvalue eigenstate): |[D)=cos(8/2)|1)+¢'? sin(6/2)[2). In
the pure-state case, the STIRAP process via the dark state
provides |1} with the Berry phase factor ¢™®, where ©
=i [(D|d|D)=~] sin 6d6d ¢ [10].

To consider the mixed-state case, the dephasing for all the
transitions is taken into account [49]. For simplicity, the
dephasing rates are assumed to be equal to one another and
be much smaller than (). The master equation is given by

LIS [2(

i o= o) =3p |,
j>k

— 0] k,k)P(

(14)

where 7 is the dephasing rate and o= |k)(k|. The density
operator can be expressed as |p)==, p/k)), and then Eq.
(14) has the form dtpj DN kP By diagonalizing the ma-
trix £, it is found that |p)) =3 ayfve)) € V(1) € Go 42(R),
where

_ I+l + 133

|Ul>>= 3
o) = 3[DXD] - \3[v)) o)) = [D)0] +[0XD|
U3)) = \’g ’ 4/7 = \’5 >
0|-10 3 0
lvg)) = IDX IFI. ><D|’ |U6>>=| )XB| - |BX |
V2i ’2

with [By=—¢"'¢sin(6/2)|1)+cos(6/2)|2). alzy) (¢ the time
at which the process finishes) can be expressed as follows
under some approximation [50]:
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&(tf) = MM pa(0), (15)
with
1 00 0 0 0
010 0 0 0
Mo 001 0 0 0 (16)
““1000 cos® sin® 0|
0 0 0 —sin® cos® 0
00O 0 0 1
My, = diag(1,1,e"% e, e, e77) (17)

where ©® is the Berry phase defined above, I'(¢)
= f-‘yff) sin® 6(¢')dt’, and diag(a,, ... ,as) denotes a 6 X 6 di-
agonal matrix whose diagonal elements are ay,...,aq. Mg
and M, correspond to the geometrical and dynamical phase
factors, respectively, in the present formulation. It should be
noted that in the present case the geometrical and dynamical
phases are commutable, and consequently the evolution of &
can be given by the product of M; and M. The rotation
matrix M is exactly equivalent to the Berry phase factor in
the pure-state case. This means that the present formulation
is a natural generalization of the pure-state geometric phase.
On the other hand, M induces the decay of the polarization
and leads to the uniform distribution of the populations of
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[1), [2), and |3). Although the present case is similar to adia-
batic open quantum systems considered in Refs. [21,22], the
simple results derived above may not be naturally obtained
from the formulation of Ref. [21] (see Ref. [51] for the rea-
son).

VI. CONCLUSION

We have presented a geometrical description of open
quantum systems, which is a generalization of Anandan’s
formulation for pure states [6] to the mixed-state case. The
geometric phase proposed here also naturally includes the
geometric phase in adiabatic open quantum systems pro-
posed by Sarandy and Lidar [21], and is expected to be ap-
plied to the nonadiabatic case. The geometric description can
be applied to all the quantum systems described by time-
local master equations in the form of Eq. (8). We have dis-
cussed an example using A-type STIRAP in a four-level sys-
tem with dephasing. As a result, the followings have been
found: in this case, the mixed-state geometrical and dynami-
cal phase factors in the present formulation are separable
from each other; the mixed-state geometric phase factor is
equivalent to the Berry phase factor in the pure-state case;
and the mixed-state dynamical phase factor induces the de-
cay of the polarization and leads to the uniform distribution
of the population. The geometrical description presented here
will provide a deeper understanding of the dynamics of open
quantum systems.

[1] Geometric Phases in Physics, edited by A. Shapere and F.
Wilczek (World Scientific, Singapore, 1989); C. A. Mead, Rev.
Mod. Phys. 64, 51 (1992).

[2] M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).

[3] B. Simon, Phys. Rev. Lett. 51, 2167 (1983).

[4] F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).

[5] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593
(1987).

[6] J. Anandan, Phys. Lett. A 133, 171 (1988).

[7]J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988).

[8] S. Pancharatnam, Proc. Indian Acad. Sci., Sect. A 44, 247
(1956).

[9] P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999); J.
Pachos, P. Zanardi, and M. Rasetti, Phys. Rev. A 61,
010305(R) (1999); J. A. Jones, V. Vedral, A. Ekert, and G.
Castagnoli, Nature (London) 403, 869 (2000); A. Recati, T.
Calarco, P. Zanardi, J. I. Cirac, and P. Zoller, Phys. Rev. A 66,
032309 (2002); A. O. Niskanen, M. Nakahara, and M. M.
Salomaa, ibid. 67, 012319 (2003); P. Solinas, P. Zanardi, N.
Zanghi, and F. Rossi, Phys. Rev. B 67, 121307(R) (2003); L.
Fuentes-Guridi, F. Girelli, and E. Livine, Phys. Rev. Lett. 94,
020503 (2005); G. Florio, P. Facchi, R. Fazio, V. Giovannetti,
and S. Pascazio, Phys. Rev. A 73, 022327 (2006).

[10] L.-M. Duan, J. L. Cirac, and P. Zoller, Science 292, 1695
(2001).

[11] A. Uhlmann, Rep. Math. Phys. 24, 229 (1986).

[12] A. Uhlmann, Lett. Math. Phys. 21, 229 (1991).

[13] A. Carollo, I. Fuentes-Guridi, M. F. Santos, and V. Vedral,
Phys. Rev. Lett. 90, 160402 (2003).

[14] E. Sjogvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson,
D. K. L. Oi, and V. Vedral, Phys. Rev. Lett. 85, 2845 (2000).

[15] M. Ericsson, E. Sjoqvist, J. Brinnlund, D. K. L. Oi, and A. K.
Pati, Phys. Rev. A 67, 020101(R) (2003).

[16] K. Singh, D. M. Tong, K. Basu, J. L. Chen, and J. F. Du, Phys.
Rev. A 67, 032106 (2003).

[17] J. Du, P. Zou, M. Shi, L. C. Kwek, J.-W. Pan, C. H. Oh, A.
Ekert, D. K. L. Oi, and M. Ericsson, Phys. Rev. Lett. 91,
100403 (2003).

[18] D. M. Tong, E. Sjoqvist, L. C. Kwek, and C. H. Oh, Phys. Rev.
Lett. 93, 080405 (2004).

[19] M. Ericsson, D. Achilles, J. T. Barreiro, D. Branning, N. A.
Peters, and P. G. Kwiat, Phys. Rev. Lett. 94, 050401 (2005).

[20]J. C. Garrison and E. M. Wright, Phys. Lett. A 128, 177
(1988); D. Gamliel and J. H. Freed, Phys. Rev. A 39, 3238
(1989); D. Ellinas, S. M. Barnett, and M. A. Dupertuis, ibid.
39, 3228 (1989); R. S. Whitney and Y. Gefen, Phys. Rev. Lett.
90, 190402 (2003); 1. Kamleitner, J. D. Cresser, and B. C.
Sanders, Phys. Rev. A 70, 044103 (2004); R. S. Whitney, Y.
Makhlin, A. Shnirman, and Y. Gefen, Phys. Rev. Lett. 94,
070407 (2005); M. Nordling and E. Sjéqvist, Phys. Rev. A 71,
012110 (2005); X. X. Yi, D. M. Tong, L. C. Wang, L. C.
Kwek, and C. H. Oh, ibid. 73, 052103 (2006).

[21T1M. S. Sarandy and D. A. Lidar, Phys. Rev. A 73, 062101
(2006).

012120-4



GEOMETRIC PHASE FOR MIXED STATES:...

[22] S. Dasgupta and D. A. Lidar, J. Phys. B 40, S127 (2007).

[23] Here, a purification |i) of a density operator p is a state vector
in a larger Hilbert space (system+ancilla) such that the partial
trace of |#)(y| is equal to p. A standard purification corre-
sponds to a Hilbert-Schmidt operator W such that p
=WW/Tr(W'W) [12].

[24] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-
bridge, England, 2000).

[25] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[26] M. Ericsson, A. K. Pati, E. Sjoqvist, J. Briannlund, and D. K. L.
Oi, Phys. Rev. Lett. 91, 090405 (2003).

[27] H. J. Carmichael, An Open Systems Approach to Quantum Op-
tics, Lecture Notes in Physics Vol. m18, edited by W. Beigl-
bock (Springer-Verlag, Berlin, 1993); M. B. Plenio and P. L.
Knight, Rev. Mod. Phys. 70, 101 (1998).

[28] A. Bassi and E. Ippoliti, Phys. Rev. A 73, 062104 (2006).

[29] The geometric phase factor by the kinematic approach is ex-
pressed as e'”, where v is a real number defined by Eq. (11) or
Eq. (24) in Ref. [18]. On the other hand, non-Abelian geomet-
ric phase factors, such as the WZ and Anandan ones, are rep-
resented by matrices. The formulation proposed in this paper
provides a generalization of the non-Abelian geometric phases.
In this sense, the aims of this paper and Ref. [18] are quite
different from each other.

[30] M. Shi and J. Du, e-print arXiv:quant-ph/0501006.

[31] A. T. Rezakhani and P. Zanardi, Phys. Rev. A 73, 012107
(20006).

[32] M. S. Sarandy and D. A. Lidar, Phys. Rev. A 71, 012331
(2005).

[33] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys.
70, 1003 (1998).

[34] R. G. Unanyan, B. W. Shore, and K. Bergmann, Phys. Rev. A
59, 2910 (1999).

[35] The geometric phase in Ref. [36] may be equivalent to the
Anandan phase [6]. Mathematical details are well presented in
Ref. [36]. Recently, further generalization to geometrical de-
scription of dynamical phases with a composite bundle has
been reported [37]. The proposal in Ref. [38] may also be
related to the Anandan phase.

[36] A. Bohm and A. Mostafazadeh, J. Math. Phys. 35, 1463
(1994).

[37] D. Viennot, J. Math. Phys. 46, 072102 (2005).

[38] D. Kult, J.Aberg, and E. Sjoqvist, Phys. Rev. A 74, 022106
(2006).

[39] M. Nakahara, Geometry, Topology and Physics (I0P, London,
1990).

[40] The double bracket notation similar to that in Refs. [21,32] has
been used.

[41] Hp2(C) is the standard Hilbert-Schmidt space, and the inner

PHYSICAL REVIEW A 76, 012120 (2007)

product on Hx2(C) is defined by (w,v)=Tt[w'u]. But here,
we use Hp2(R) instead of Hy2(C) to remove redundancy. As a
result of the use of the real space, the present geometric phase
is nontrivial only in multidimensional cases, in contrast to the
Anandan phase. [Since the one-dimensional Grassmann mani-
fold, G, y, is the projective space, the famous AA phase is the
Anandan phase in the one-dimensional case [6].]

[42] M. S. Narasimhan and S. Ramanan, Am. J. Math. 83, 563
(1961).

[43] The present connection is related to a universal connection
[6,36,37,42]. The Grassmann manifold is more fundamental
than the other parameter space in the sense that a connection
on some bundle over some parameter space is naturally in-
duced from that on a bundle over the corresponding Grass-
mann manifold.

[44] It should be noted that the present geometric phase factor de-
pends only on the closed curve on the Grassmann manifold,
not on the dynamical details of the system. Also note that a
standard phase factor of the form e is represented by a rota-
tion matrix in the present formulation as a result of the use of
a real space. See the example of STIRAP discussed here.

[45] H.-P. Breuer, Phys. Rev. A 70, 012106 (2004).

[46] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

[47] It is notable that Eq. (11) has the same form as the classical
equation of motion for a charged particle in gravitational and
electromagnetic fields in the general theory of relativity [see,
for example, L. D. Landau and E. M. Lifschitz, The Classical
Theory of Fields (Pergamon Press, 1975)], which is given by

. . e .
du! + (I, dx')u* = ﬁdst’kuk,

where x/ and #/ denote the four-dimensional position and ve-
locity vectors of the particle, respectively, s denotes the proper
time, v £ are so-called Christoffel’s symbols, F' is an electro-
magnetic tensor, e and m are the charge and mass of the par-
ticle, respectively, c is the speed of light in vacuum, and Ein-
stein’s rule for the summation of dummy indices has been
used.

[48] The present definition for adiabatic evolutions is a little differ-
ent from that of Ref. [21]. But, this difference may not be
essential.

[49] For simplicity, the spontaneous emission from the excited state
3) is ignored.

[50] We have confirmed by numerical calculation that Eq. (15)
holds well when y<<() and the process is sufficiently slow.

[51] In Ref. [21], the case of one-dimensional Jordan blocks with
different eigenvalues, which the present case is, was not dis-
cussed because this case may not satisfy their adiabatic condi-
tion. This point becomes clearer by comparing the present ex-
ample with the analysis in Ref. [22]. In Ref. [22], only the case
of Jordan blocks with the same eigenvalues was discussed.

012120-5



