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Casimir pistons are models in which finite Casimir forces can be calculated without any suspect renormal-
izations. It has been suggested that such forces are always attractive, but we present several counterexamples,
notably a simple type of quantum graph in which the sign of the force depends upon the number of edges. We
also show that Casimir forces in quantum graphs can be reliably computed by summing over the classical
orbits, and study the rate of convergence of the periodic orbit expansion. In generic situations where no
analytic expression is available, the sign and approximate magnitude of Casimir forces can often be obtained
using only the shortest classical orbits.
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I. INTRODUCTION

According to a classic calculation �1�, the Casimir force
inside a roughly cubical rectangular parallelepiped is repul-
sive; that is, it tends to expand the box. The reasoning lead-
ing to this conclusion is open to criticism on two related
grounds: It ignores the possibility of nontrivial vacuum en-
ergy in the region outside the box, and it involves “renormal-
ization” in the sense of discarding divergent terms associated
with the boundary although �unlike the case of parallel
plates, or any calculation of forces between rigid bodies� the
geometry of the boundary depends upon the dimensions of
the box. Recently �see also Ref. �2�� a class of scenarios
called “Casimir pistons” has been introduced to which these
objections do not apply. The piston is an idealized plate that
is free to move along a rectangular shaft, whose length L
−a to the right of the piston is taken arbitrarily large �Fig. 1�.
Both the external region and the divergent �or cutoff-
dependent� terms in the internal vacuum energy are indepen-
dent of the piston position a so that a well defined, finite
force on the piston is calculated. One finds that this force is
always attractive, both for a two-dimensional scalar-field
model with the Dirichlet boundary condition �3� and for a
three-dimensional electromagnetic field with the perfect-
conductor boundary condition �4�.

Barton �5� showed that the piston force can be repulsive
for some �not too small� values of a if the conducting mate-
rial is replaced by a weakly polarizable dielectric. This result
is somewhat ironic in that one reason for suspicion of repul-
sive Casimir forces is the belief that the force between dis-
joint bodies of realistically modeled material should always
be attractive. The unexpected result is easily understood,
however, as being due to attraction between the piston and
the distant part of the shaft. The effect would disappear if the
shaft extended a long distance to the left of the fixed plate
�“baffle”� at a=0 as well as to the right of the piston.

In the present paper we study the vacuum energy and
Casimir forces in one-dimensional quantum graph models
and observe several situations with idealized boundary con-
ditions for which the piston force is unambiguously repul-
sive. In quantum graphs of high symmetry, the Casimir
forces may be calculated analytically. More generally, we
show that these forces may be obtained systematically from a
sum over the classical periodic orbits in the graph, as done in
three-dimensional problems in Refs. �6–8�, and we discuss
the rate of convergence of the periodic-orbit expansion. In
some cases, the sign and approximate magnitude of the force
on a Casimir piston may be obtained using only the shortest
orbit hitting that piston. Although the quantum graph models
are less realistic than those studied in Refs. �4,5�, they do
show that repulsive Casimir forces do arise physically and
are not inevitably an artifact of a naive renormalization
scheme. Our effects are unrelated to that in Ref. �5� and do
not depend on the asymmetry noted above in connection
with that paper. The periodic-orbit techniques discussed here
have relevance to the study of Casimir energies in more re-
alistic geometries �see Ref. �9��, including two- and three-
dimensional chaotic billiards. In an appendix, we consider a
situation in which an unambiguously repulsive Casimir force
appears for the electromagnetic field in a three-dimensional
geometry. Throughout, we take �=1=c.

II. VACUUM ENERGY IN QUANTUM GRAPHS

A finite quantum graph �10–13� consists of B one-
dimensional undirected bonds or edges of length Lj �j
=1, . . . ,B�. Either end of each bond ends at one of V verti-
ces, and the valence v��1 of a vertex is defined as the
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FIG. 1. A rectangular piston in two dimensions �see Ref. �3��. In
three dimensions there is another length b2 perpendicular to the
plane of the figure.
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number of bonds meeting there. A normal mode u of the
quantum graph has the form uj�x�=aj cos�kxj�+bj sin�kxj� on
every bond j, and satisfies the specified boundary conditions
at each vertex. Despite their simplicity, quantum graph mod-
els have previously shed light on a number of important
physical problems, having served originally as models of
conjugated molecules, and more recently of quantum, elec-
tromagnetic, and acoustic waveguides and circuits. These
models have also served as valuable testing grounds for
studying more general properties of quantum behavior, in-
cluding Anderson localization, quantum chaos, adiabatic
quantum transport, and scattering. A recent review may be
found in Ref. �14�.

In the spirit of abstract modeling, the vacuum energy of a
graph is defined as the sum �renormalized� of zero-point en-
ergies over all normal-mode frequencies �n, where the fre-
quency �n is equal to the wave number kn in our units. It is
convenient to apply an exponential ultraviolet regularization
�the same answer would be obtained, for example, by a cal-
culation with zeta functions�:

E�t� � �
n=0

�
1

2
�ne−�nt = −

1

2

d

dt
T�t� , �1�

where

T�t� � �
n=0

�

e−�nt �2�

is the trace of the so-called cylinder kernel �15�.

III. ANALYTIC EXAMPLES OF REPULSIVE
CASIMIR FORCES

A. One-dimensional piston with mixed boundary conditions

The first example is already rather well known, in its es-
sence. Consider a scalar field quantized on a line divided into
three parts by two points, at each of which either a Dirichlet
or a Neumann boundary condition is imposed. The contribu-
tions of the two infinite �or, better, extremely long� intervals
to the Casimir force will vanish. �As emphasized in Ref. �4�,
the force contributed by a long shaft is entirely associated
with periodic orbits perpendicular to the shaft, which do not
exist in the one-dimensional case.� Let the length of the cen-
tral interval be a. Then the frequencies of the normal modes
are

�n =
n�

a
�3�

for nonnegative �or positive� integer n, if the boundaries are
both Neumann �or both Dirichlet, respectively�, and one has

T�t� = �
n=0,1

�

e−�nt/a =
1

1 − e−�t/a �− 1� =
a

�t
±

1

2
+

1

12

�t

a
+ O�t2� .

�4�

Thus the regularized vacuum energy is

E�t� =
a

2�t2 −
�

24a
+ O�t� . �5�

The leading, divergent term is proportional to the interval
length a and corresponds to a geometry-independent constant
energy density. This term is compensated in the force by
similar terms in the exterior regions, already discarded. Then
letting t→0, we obtain the well-known attractive force

F � −
�E

�a
= −

�

24a2 . �6�

More precisely, if the entire space has length L, then the
regularized energy of the exterior regions is

L − a

2�t2 + O�L−1� . �7�

The second term is negligible as L→�, and the first term
combines with the first term of Eq. �5� to make a term inde-
pendent of a, which, therefore, is an unobservable constant
energy shift that contributes nothing to the force. Henceforth
we shall not repeat this type of argument every time it is
needed, and will simply refer to such endpoints as Neumann
or Dirichlet pistons.

On the other hand, if one boundary is Dirichlet and the
other Neumann, then the eigenfrequencies are

�n =
�2n + 1��

2a
. �8�

The same calculation leads to

T�t� = e−�t/2a�
n=0

�

e−�nt/a =
1

2 sinh��t/2a�
=

a

�t
−

1

24

�t

a
+ O�t2�;

�9�

the regularized energy is

E�t� =
a

2�t2 +
�

48a
+ O�t� , �10�

and the force comes out to be repulsive:

F = +
�

48a2 . �11�

B. Quantum star graphs

In the next model the space consists of B one-dimensional
rays of large length L attached to a central vertex �Fig. 2�. In
each ray a Neumann piston is located a distance a from the
vertex, so that a normal mode of the field in ray j must take
the form uj�x�=cj cos���x−a�� when x is measured from the
center. At the central vertex the field has the Kirchhoff �gen-
eralized Neumann� behavior

uj�0� = C for all j, �
j=1

B

uj��0� = 0. �12�

The following analysis is part of a broader study of vacuum
energy in quantum graphs �16� �see also Refs. �17–19��.
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There are two types of normal modes. First, if cos��a�
�0, we have from Eq. �12� that cj =C / cos��a� and
tan��a�=0, whence � is one of the numbers �3�. Second, if
cos��a�=0, then � is one of the numbers �8� and

�
j=1

B

cj = 0, �13�

which has B−1 independent solutions. Therefore, the ener-
gies and forces are just the appropriate linear combinations
of those calculated in the previous example: the regularized
energy for the whole system is

E�t� =
BL

2�t2 +
�B − 3��

48a
+ O�L−1� + O�t� , �14�

and the force �either from Eq. �14� or from Eqs. �6� and �11��
is

F = −
�

24a2 + �B − 1�
�

48a2 =
�B − 3��

48a2 . �15�

When B=1 or 2, the result reduces properly to that for an
ordinary Neumann interval of length a or 2a, respectively.
When B�3, however, the force is repulsive: if the pistons
are free to all move together, they will tend to move outward.
�More generally, a periodic-orbit calculation, such as dis-
cussed in Sec. IV, is applicable to unequal piston displace-
ments and confirms that the force on each individual piston
is outward, so there are no other, asymmetrical modes that
are partly attractive.� This repulsive effect cannot be attrib-
uted to mixed boundary conditions, since all the conditions
are of the Neumann type. �However, replacing all the pistons
with Dirichlet pistons while maintaining Eq. �12� would in-
terchange the roles of the two types of eigenvalues and pro-
duce attraction for all B�1.�

IV. PERIODIC-ORBIT CALCULATIONS
FOR GENERAL GRAPHS

For a general quantum graph, e.g., for a star graph with
unequal bond lengths or with more complicated boundary
conditions, no simple expressions for the normal-mode fre-
quencies �n are available, and thus the vacuum energy and
Casimir forces cannot be computed in closed form. Comput-
ing the spectrum numerically, as discussed below, allows for
an accurate evaluation of the vacuum energy for any specific
quantum graph, but this type of brute force calculation must
be repeated anew for every geometry and does not provide
much physical insight regarding the attractive or repulsive
character of Casimir forces in different cases. Instead, much
intuition may be obtained using a classical-orbit approach,
where the sign and magnitude of every contribution to the
vacuum energy are seen to be directly related to bond lengths
and boundary conditions at the vertices.

It is convenient to describe boundary conditions at every
vertex � by a unitary v�	v� scattering matrix 
� �which
acts on the space of undirected bonds meeting at vertex ��.
For example, a Neumann or Dirichlet boundary condition at
a vertex of valence v�=1 corresponds to a scattering matrix

�= �+1� or �−1�, respectively, while the Kirchhoff boundary
condition is described by �
�� j j�= 2

v�
−� j j�. Together these

constitute a 2B	2B scattering matrix S for the entire graph
of 2B directed bonds �11,13� or bond ends �20–22�. To make
the following arguments valid, we must assume that S is
independent of energy or frequency �k-independent�, as is
true for the Dirichlet, Neumann, and Kirchhoff boundary
conditions we treat here �but not for the more general
Kirchhoff-type boundary conditions where a potential is at-
tached to each vertex �11,12,17,23��. Then one can construct
�11,13� a trace formula relating the spectrum of a graph
�away from the point �=0, which makes no contribution to
vacuum energy anyway� to its periodic orbits

�
n

��� − �n� =
L

�
+ Re

1

�
�

p
�
r=1

�

�Ap�rLpeir�Lp. �16�

�Variations on the trace formula have been found in Refs.
�10,22,16�, and elsewhere.� In Eq. �16� the values �n are the
normal-mode frequencies, L=� j=1

B Lj is the total length of the
graph, which determines the smooth �Weyl� contribution to
the spectrum, and the sum over p is a sum over primitive
periodic orbits �orbits that cannot be written as repetitions of
shorter orbits�. Each p takes the form p= j1j2¯ jn, where
every ji is a directed bond. The corresponding amplitude of
the primitive periodic orbit is given by a product of scatter-
ing factors Ap=Sj1j2

¯Sjn−1jn
Sjnj1

, the metric length of the
primitive orbit is Lp=Lj1

+ ¯ +Ljn
, and each r is a different

repetition number of our base primitive orbit.
Substituting the spectrum given by Eq. �16� into Eq. �1�,

we obtain

E�t� =
L

2�t2 − Re
1

2�
�

p
�
r=1

�
�Ap�r

Lpr2 + O�t� . �17�

As discussed previously, the finite vacuum energy, which is
relevant for computation of Casimir forces, is obtained by

•

FIG. 2. A star graph with a piston installed in each edge. �The
pistons are actually points; the edges have no thickness.�
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dropping the divergent Weyl term and taking the limit t→0,

Ec = −
1

2�
Re �

p
�
r=1

�
�Ap�r

Lpr2 . �18�

A mathematically rigorous derivation and proof of �condi-
tional� convergence of Eq. �18� will appear in Ref. �19�.

Equivalently, we may begin with the free cylinder kernel
in one dimension

T0�x,x�,t� =
t

�

1

�x − x��2 + t2 , �19�

apply the method of images to include scattering from the
vertices, take the trace

T�t� =� dxT�x,x,t� =
t

�

L

t2 + Re �
p

�
r=1

�
t

�

2Lp�Ap�r

�rLp�2 + O�t2� ,

�20�

and finally use Eq. �1� to obtain the result �17�. �This con-
struction, which generalizes the study of the heat kernel in
Ref. �10�, is described in detail in Ref. �16�.�

The Casimir force on any piston may be obtained easily
by differentiating Eq. �18� term by term with respect to the
appropriate bond length Lj.

We note that the expansion �18� of the vacuum energy is
exact and involves periodic orbits only. The derivation of Eq.
�20� hinges on the identity �
��2= I for the scattering matrix
at each vertex. This condition holds for any k-independent
scattering matrix �20,21�, including real scattering matrices
of the form used here, but also complex energy-independent
scattering matrices in the case of time-reversal symmetry
breaking by magnetic fields. It is the crucial ingredient in
proving that closed but nonperiodic paths �i.e., paths that
start and end at x but with opposite momenta� make no net
contribution to the vacuum energy. When S depends on k,
two complications arise. First, the method of images cannot
be so easily applied to “time-domain” integral kernels such
as T and the heat kernel, because the reflection law becomes
nonlocal in t. Second, the identity �
��2= I no longer applies,
and the nonperiodic paths make a nontrivial contribution to
the vacuum energy �and to the density of states, �16�, even
when ��0�. Both effects are visible in the investigations of
the simplest special cases in Refs. �17,24�.

To evaluate the accuracy of the periodic-orbit expansion
in situations where no analytic expression for the vacuum
energy is available, we may compare with a brute-force cal-
culation where the spectrum is evaluated numerically. For a
general V-vertex graph, the normal-mode frequencies are
given by solutions of a characteristic equation det h���=0,
where h��� is a V	V matrix �11�. For the special case of a
star graph with irrationally related bond lengths, we have

�
j=1

B

tan��Lj + � j� = 0, �21�

where � j =0 or � for a Neumann or Dirichlet piston on bond
j, respectively. In any case, given a method for obtaining a
numerical spectrum �n, we may evaluate

Efinite�t� = �
n

1

2
�ne−�nt −

L

2�t2 �22�

to any desired accuracy by summing over all �n
�max
where �max�1/ t. Since the divergent term associated with
the Weyl density of states, or equivalently with the free one-
dimensional geometry, has already been subtracted, we only
need take the numerical limit t→0 to obtain the true vacuum
energy Ec. Expressing the regularized vacuum energy as a
power series

Efinite�t� = Ec + �1t + �2t2 + ¯ , �23�

we may apply Richardson extrapolation to approximate the
vacuum energy to any desired order of accuracy Ec
=Ec

numerical+O�ts�, by evaluating Efinite�t� at s distinct values
of the regularization parameter t.

V. RATE OF CONVERGENCE OF PERIODIC-ORBIT
EXPANSION

We consider a star graph with Kirchhoff boundary condi-
tion for B bonds meeting at the central vertex, and a Dirichlet
or Neumann piston on each bond at a distance aj from the
central vertex �i.e., the pistons may be located at different
distances from the center�. The leading contribution to the
vacuum energy is given by the shortest primitive orbits, each
of which travels back and forth along a single bond. Includ-
ing all repetitions of such orbits, we obtain

Ec
shortest = −

1

4�
�
j=1

B

�
r=1

�
1

r2� 2

B
− 1	rcos�r� j�

aj
, �24�

where � j =0 for a Neumann piston or � for a Dirichlet piston.
For example, for all Neumann pistons the sum over r can be
evaluated as a dilogarithm, which in turn can be expanded in
powers of 1 /B as

-0.1

-0.05

0

0.05

0.1

2 3 4 5 6 7 8 9 10

C
as

im
ir

fo
rc

e
F

on
ea

ch
pi

st
on

Number of bonds B

Neumann, contribution from shortest orbit
Neumann, exact
Dirichlet, contribution from shortest orbit
Dirichlet, exact

FIG. 3. The force on a piston in a star graph with B bonds of
length 1, Kirchhoff boundary condition at the center, and either
Neumann or Dirichlet boundary condition at each piston is com-
puted using only the shortest periodic orbit �Eq. �24�� and compared
with the exact answer. Positive values indicate repulsive forces. All
quantities plotted in this and subsequent figures are dimensionless.
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Ec
shortest =

�

48
�1 −

24 ln 2

�2B
+ ¯ 	�

j=1

B
1

aj
. �25�

This approximation compares well to the analytic result
�
48

�1− 3
B

� B
a for B equal-length bonds �Eq. �14��.

The results are illustrated in Fig. 3, where the exact force
on each piston in a star graph having either all Dirichlet or
all Neumann pistons is compared with the contribution to the
force from the shortest periodic orbit. The repulsive behavior
in the Neumann case, as well as the attractive behavior in the
Dirichlet case, are well explained by considering only the
shortest periodic orbit, i.e., the bounce between the piston
and the central vertex.

To obtain a better approximation, we may systematically
include contributions from longer orbits. In Fig. 4, we show
the convergence of the sum �18� when all orbits, including
primitive orbits and repetitions, of total length rLp
Lmax are
included in the summation. In this example, a star graph with
B=4 bonds, all Neumann pistons, and unequal bond lengths
is used, so the exact answer is obtained to the necessary
accuracy from a numerical spectrum as described in Sec. IV.
We note that the rate of convergence is given by


Ec
Lmax − Ec
 �

1

Lmax
, �26�

consistent with the fact that each contribution to Eq. �18�
from orbits of length rLp� �Lmax,Lmax+�� scales as Lmax

−2 for
large Lmax, and all such contributions appear preferentially
with the same �negative� sign.

In more general situations, involving non-star topologies,
more complicated boundary conditions, or nonzero gauge
fields, orbits of different length are expected to contribute
with random signs to the sum �18�. The error made by omit-
ting orbits of length greater than Lmax takes the form �n=0

� Dn,
where Dn, associated with all orbits of total length rLp
� �Lmax+n� ,Lmax+ �n+1���, scales as Dn��Lmax+n��−2,
but the Dn appear with random �uncorrelated� signs. The

mean squared error then scales as �n=0
� Dn

2��n=0
� �Lmax

+n��−4�Lmax
−3 , and the root mean square error decays as


Ec
Lmax − Ec
 �

1

Lmax
3/2 . �27�

As an example, in Fig. 5, we consider the convergence of the
periodic-orbit sum for the same four-bond star graph, but
with a Dirichlet instead of Neumann piston on one of the
bonds. The behavior is consistent with the faster rate of con-
vergence predicted by Eq. �27�.

VI. SUMMARY

We have seen that unambiguously repulsive as well as
unambiguously attractive Casimir forces arise in simple
quantum-graph models, and that the sign of the force in a
given geometry may often be easily understood in terms of
the short periodic orbits of the system. We have also exam-
ined �numerically� the rate of convergence of the periodic-
orbit expansion. Classical-orbit approximations may also be
useful for understanding the sign of Casimir forces in higher-
dimensional piston systems where no analytic solution ex-
ists, for example, in two-or three-dimensional chaotic bil-
liards.
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APPENDIX: INFINITELY PERMEABLE PISTON

In principle, a repulsive piston can be constructed in the
more realistic case of the electromagnetic field in dimension
3, in analogy with our original one-dimensional model. If the
electromagnetic analog of the Dirichlet condition is a perfect
conductor, then the analog of the Neumann condition is a
material with infinite magnetic permeability, and the Casimir
force between slabs of these two different types is repulsive
�25�. �A list of references on this topic appears in Ref. �26�.�
The existence of real materials with sufficient permeability
to exhibit Casimir repulsion in the laboratory is controversial
�27–29�. Here we merely check that the piston effect discov-
ered by Cavalcanti �3� and the MIT group �4� does not de-
stroy the repulsion shown by less sophisticated calculations.
This is not trivial, since the effect arises from the action of
the shaft walls on the transverse behavior of the field.

Following Lukosz �1�, but in a notation closer to Caval-
canti’s �see Fig. 1�, we consider a rectangular box with di-
mensions a, b1, and b2. As previously exemplified, we can
calculate a finite vacuum energy naively, in full confidence
that the discarded divergent terms will cancel when a force is
calculated for the piston system as a whole. We are interested
in the case where the piston �the surface that is free to move�
is infinitely permeable but the shaft and the baffle �the rest of
the box� are perfect conductors. By the Rayleigh-Dowker

argument �30�, the energy Ēa of such a box is

Ēa = E2a − Ea, �A1�

where Ea is the energy of a totally conducting box also of
length a. By differentiation with respect to a �not 2a�, this
relation extends to forces and pressures. �Throughout this
discussion “pressure” simply means “force per area” without
necessarily implying a local pressure independent of position
on the wall.� Thus Eq. �11� follows from Eq. �6� by virtue of

−
�

24a
�1

2
− 1
 = −

�

24a
�−

1

2

 , �A2�

and the three-dimensional analogs will involve quantities
proportional to

1

a3�1

8
− 1
 =

1

a3�−
7

8

 . �A3�

When a�bj, Lukosz calculates an attractive pressure

Pa = −
�2

240a4 , �A4�

which implies by Eq. �A1� Boyer’s formula �25�

P̄a = +
7

8

�2

240a4 �A5�

for the box with one permeable wall. The external �long� part
of the shaft has length L−a�b1=b2=b. For this limit, Lu-
kosz finds a repulsive pressure �involving Catalan’s constant�

P = +
0.915965

24b4 . �A6�

Just as in Ref. �4�, the resulting force is inversely propor-
tional to the cross-sectional area and is independent of L−a,
so the corresponding energy term is proportional to L−a.
Therefore, application of Eq. �A1� gives

P̄L−a = PL−a = +
0.915965

24b4 �A7�

�as ought to be the case, since the nature of the plate at the
distant end of the long shaft ought to be irrelevant�. To find
the total force on the piston, we must reverse the sign of Eq.
�A7�, add it to Eq. �A5�, and multiply by the area b2. The
point is that the total force is positive if a�b; the long ex-
ternal part of the shaft has negligible effect in that case.

On the other hand, for a cube Lukosz found that the per-
fectly conducting box was already repulsive. The formula
�A1� does not yield a simple factor − 1

2 in that case, because
the doubled box is no longer a cube. Nevertheless, the graph
presented in Ref. �31� shows that E2a is closer to 1

2Ea than to
Ea. We conclude that the permeable piston is attractive in the
cubical configuration.
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