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Quantum trajectories in complex space in the framework of the quantum Hamilton-Jacobi formalism are
investigated. For time-dependent problems, the complex quantum trajectories determined from the exact ana-
lytical wave function for the free Gaussian wave packet and the coherent state in the harmonic potential are
used to demonstrate that the information transported by the particles in the complex space can be used to
synthesize the time-dependent wave function on the real axis. For time-independent problems, the exact
complex quantum trajectories for the Eckart potential are obtained by numerically integrating the equations of
motion. The unusual structure of the total potential �the sum of the classical and the quantum potentials� for the
stationary states for the Eckart potential is pointed out. The variations of the complex-valued kinetic energy,
classical potential, and quantum potential along the complex quantum trajectories are analyzed. This paper not
only analyzes complex quantum trajectories for time-dependent and time-independent systems but also pro-
vides a unified description for complex quantum trajectories for one-dimensional problems in the quantum
Hamilton-Jacobi formalism.
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I. INTRODUCTION

One of the several formulations of nonrelativistic quan-
tum mechanics is Bohmian mechanics, developed by Bohm
in 1952 �1�. The wave function is first written in terms of the
real amplitude and the real action function as �
=R exp�iS /��. Substituting this wave function in polar form
into the time-dependent Schrödinger equation yields a sys-
tem of two coupled partial differential equations, the conti-
nuity equation and the quantum Hamilton-Jacobi equation
�QHJE�. These are basic equations of quantum hydrodynam-
ics. In Bohm’s analytical approach, real-valued quantum tra-
jectories are generated by integrating equations of motion
including the contribution of the quantum potential deter-
mined from a precomputed wave function. Some physical
processes such as atom diffraction by surfaces and the disso-
ciation of molecules at metal surfaces have been studied by
computing and interpreting real quantum trajectories through
this analytical method �2,3�. On the other hand, new compu-
tational methods have been developed to compute real quan-
tum trajectories and the wave function concurrently. The
quantum trajectory method �QTM� has been introduced to
integrate the hydrodynamic equations on the fly to generate
the probability density by evolving ensembles of real quan-
tum trajectories �4�. The QTM has been applied to model
collinear reactions and to multidimensional wave packet
scattering problems in Ref. �5�, and the references cited
therein. In addition, a related approach, the quantum fluid
dynamics �QFD� has been developed to solve the same hy-
drodynamic equations �6�. Comprehensive exposition is pre-
sented in Holland’s book �7� and recent developments of this
formulation have been presented in Wyatt’s book �5�.

The quantum Hamilton-Jacobi formalism, developed by
Leacock and Padgett in 1983, provides an alternative formu-

lation of nonrelativistic quantum mechanics �8,9�. In this for-
malism, the wave function is expressed by the complex ac-
tion function �=exp�iS /��. As in Bohmian mechanics,
substituting the wave function in this polar form into the
time-dependent Schrödinger equation yields the complex-
valued QHJE �this version is not the same as that in Bohm’s
formalism�. By separating out the time for stationary states,
we obtain the stationary-state version of the QHJE. The main
feature of this formalism is that the bound state energy ei-
genvalues can be determined by the quantum action variable
without explicitly solving the dynamical equation. This
method has been used to obtain the energy eigenvalues for
many one-dimensional bound state problems and separable
problems in higher dimensions for solvable potentials
�8–11�. Furthermore, an accurate computational procedure
for the complex-valued QHJE for one-dimensional bound
state and scattering problems has been proposed by Chou
and Wyatt to obtain the wave function and the reflection and
transmission coefficients �12,13�.

Besides the determination of energy eigenvalues, the
quantum Hamilton-Jacobi formalism has been used to obtain
quantum trajectories in the complex space. In Bohm’s for-
malism, the particle is usually at rest for stationary states
because the particle velocity turns out to be zero everywhere.
On the contrary, the complex quantum trajectory of a particle
can be obtained in the quantum Hamilton-Jacobi formalism
for both stationary and nonstationary states through the
quantum momentum function �QMF�, which is extended to
the complex space. John has applied this formalism to sev-
eral simple analytical examples for time-dependent and time-
independent problems �14�. In addition, for stationary states,
complex quantum trajectories satisfying the complex-valued
QHJE have been analytically studied for the free particle, the
potential step, the potential barrier, the harmonic potential,
and the hydrogen atom �14–21�. For nonstationary states, a
simple analytical study for the free Gaussian wave packet
has been presented �14�, and a computational method has*wyattre@mail.utexas.edu
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been developed to obtain the complex quantum trajectories,
the wave function, and tunneling probabilities for the scatter-
ing of a Gaussian wave packet from an Eckart barrier �22�.

In recent studies by Rowland and Wyatt, the real-valued
and complex-valued derivative propagation methods have
been applied to one-dimensional and multidimensional scat-
tering problems employing either Eckart or Gaussian barriers
�23,24�. Deep tunneling and higher energy barrier transmis-
sion probabilities were compared with the exact results. The
dynamics of the complex quantum trajectories and the prop-
erties of the complex-extended barrier potentials were de-
scribed and analyzed in detail. It was found that barrier trans-
mission probabilities obtained using a low-order derivative
propagation method and even classical complex trajectories
are in excellent agreement with the exact results.

A significant difference between the quantum Hamilton-
Jacobi formalism and the conventional Bohmian mechanics
is that the quantum trajectory of a particle can be obtained in
the quantum Hamilton-Jacobi formalism for both stationary
and nonstationary states, while the particle is usually at rest
for stationary states in Bohmian mechanics. In addition, the
relationship of the quantum potential between these two for-
malisms has been presented in the Appendix of Ref. �12�.
The equations of motion for real-valued and complex-valued
quantum trajectories have been compared in the Appendix of
Ref. �23�. A brief comparison of the quantum Hamilton-
Jacobi formalism with Bohmian mechanics has been pre-
sented, and the necessity of extending quantum trajectories
to complex space has been discussed by Yang �15,21�.

On the other hand, the extension of classical trajectories
to the complex space have been applied to a diverse range of
physical problems. For example, complex classical trajecto-
ries have been used to calculate the S matrix in reactive
molecular collisions �25–27�. The propagation of Gaussian
wave packets has been extended into the complex phase
space �28–30�. A WKB-type procedure of semiclassical
propagation of wave packets using classical trajectories
evolving in complex phase space has been proposed �31�.

The purpose of this paper is to present a unified descrip-
tion of quantum trajectories in the complex space for time-
dependent and time-independent problems. The equations of
motion for complex quantum trajectories for time-dependent
and time-independent problems are connected in the frame-
work of the quantum Hamilton-Jacobi formalism. For time-
dependent problems, we present analytical studies for quan-
tum trajectories in the complex space through two exactly
solvable problems. In these examples, the particles transport
information such as the complex action along the complex
quantum trajectories. The information transported by par-
ticles crossing the real axis simultaneously can be used to
synthesize the wave function. Here, the concept of “isoch-
rone” will be used. That means that the particles launched
from a specific isochrone will arrive at the real axis simulta-
neously. The concept behind isochrone has been used for the
scattering of a Gaussian wave packet �22�, and the term “iso-
chrone” has been introduced and described in Refs. �23,24�.
For time-independent problems, we demonstrate complex
quantum trajectories obtained numerically by either forward
or backward integrations for the Eckart potential. Addition-
ally, the unusual and complicated structure of the state-

dependent total potential �the classical and the quantum po-
tentials� is presented. The variations of the kinetic energy, the
classical potential, and the quantum potential along the com-
plex quantum trajectory for stationary states are analyzed. In
the backward integration, we find that some complex quan-
tum trajectories spiral into attractors in the barrier region.

This paper is organized as follows: We begin by deriving
the equations of motion for complex quantum trajectories for
time-dependent problems in Sec. II. In Sec. III, analytical
studies for the complex quantum trajectories for the free
Gaussian wave packet and the coherent state in the harmonic
potential are presented. It is also described how the particles
launched from the isochrone transport the complex action to
the real axis to obtain the time-dependent wave function. In
Sec. IV, the equations of motion for complex quantum tra-
jectories for time-independent problems are derived. In addi-
tion, the difficulties to solve time-dependent and time-
independent problems are compared. In Sec. V, some
remarks for bound state problems are made, and numerical
studies for complex quantum trajectories scattering from the
Eckart potential are presented. Finally, we make some com-
ments and conclude with a discussion about future research
directions for complex quantum trajectories.

II. EQUATIONS OF MOTION FOR QUANTUM
TRAJECTORIES: TIME-DEPENDENT PROBLEMS

The Hamilton-Jacobi formulation of quantum mechanics
was proposed by Leacock and Padgett in 1983 �8,9�. The
complex-valued QHJE is readily obtained by substituting the
polar form of the complex-valued wave function,

��x,t� = exp� i

�
S�x,t�� , �1�

into the time-dependent Schrödinger equation to obtain

−
�S

�t
=

1

2m
� �S

�x
�2

+ V�x� +
�

2mi

�2S

�x2 , �2�

where S�x , t� is the complex action, and this equation is de-
scribed in Tannor’s book �32�. As in Bohmian mechanics, the
QMF is given by the guidance equation p�x , t�=�S�x , t� /�x.
In order to find a quantum trajectory, we may rearrange this
equation as

dx

dt
=

1

m

�S�x,t�
�x

. �3�

However, since the action S�x , t� is complex valued and time
remains real valued, the trajectory requires a complex-valued
coordinate. Therefore, the QMF p�x , t� and the complex ac-
tion S�x , t� are extended to the complex space by regarding x
as a complex variable. Thus, a complex quantum trajectory is
defined by

dz

dt
=

p�z,t�
m

, �4�

where x has been replaced by a complex variable z �the com-
plex variable will be denoted by z=x+ iy, where x and y are
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the real and imaginary parts, respectively�. In addition, the
first, second, and third terms on the right side of Eq. �2�
correspond to the kinetic energy, the classical potential, and
the quantum potential in the complex space, respectively.

Through Eq. �2�, we can obtain the equations of motion
for z�t�, p�z , t�, and S�z , t� for quantum trajectories in the
complex space

dz

dt
=

p

m
, �5�

dp

dt
=

�p

�z

dz

dt
+

�p

�t
= −

dV�z�
dz

−
�

2mi

�2p

�z2 , �6�

dS

dt
=

�S

�z

dz

dt
+

�S

�t
=

p2

2m
− V�z� −

�

2mi

�p

�z
. �7�

These equations of motion have been described and applied
by Tannor and co-workers �22�. Therefore, we can determine
the quantum trajectories of particles in the complex space by
integrating these equations and the wave function can be
synthesized by Eq. �1�.

For time-dependent problems, the initial state ��z ,0� is
used to determine the initial condition (z0 , p�z0 ,0� ,S�z0 ,0�)
where z0 is the starting point of the trajectory. Additionally,
we can also find that the integration of the equations of mo-
tion involves the spatial derivative for p�z , t�. Therefore, the
equations of motion are not closed and general numerical
methods for a system of ordinary differential equations can-
not be applied to the integration of the equations of motion
for quantum trajectories. However, the derivative propaga-
tion method �DPM� has been developed to overcome a simi-
lar difficulty in Bohmian mechanics by solving a truncated
system of equations for amplitude, phase, and their spatial
derivatives �33�. Through use of the DPM, a computational
approach for solving the equations of motion in the complex
space using the iteration of the spatial partial derivatives of
p�z , t� has been developed recently by Tannor and co-
workers �22�.

We can obtain quantum trajectories in the complex space
with arbitrary initial positions, and the initial conditions for
the quantum trajectories are determined by the initial state.
Namely, a particle can start its motion at any position and it
will transport information such as the complex action along
the complex quantum trajectory. When the particle crosses
the real axis, we can record the information. Thus, for those
particles which cross the real axis simultaneously, the wave
function on the whole real axis can be synthesized using the
information transported by these particles. Because the cor-
rect wave function at a specific time on the real axis must be
determined by the information transported by particles arriv-
ing simultaneously at the real axis, we define a curve for the
special initial positions of these particles in the complex
space as an “isochrone.” The concept and use of isochrones
have been applied in Refs. �22–24�. In the following section,
these concepts will be demonstrated.

III. TIME-DEPENDENT EXAMPLES

In this section, we will present analytical studies for exact
complex quantum trajectories and two exact solvable sys-
tems will be examined thoroughly.

A. Gaussian wave packet

We now consider a free Gaussian wave packet with a
momentum �k0. The wave packet is given initially by a nor-
malized Gaussian centered at the origin with a plane wave
component as follows:

��x,0� =
1

��L2�1/4e−x2/2L2
eik0x. �8�

The exact time-dependent wave packet is given analytically
�34� by

��x,t� =
1

��L2�1/4

1

�1 + i�t/mL2�1/2ei�k0x−��k0
2/2m�t�

�e−�x − �k0t/m�2/�2L2�1+i�t/mL2��. �9�

Substituting this wave function into the definition of the
QMF in the complex space gives

p�z,t� =
�

i

1

��z,t�
���z,t�

�z
=

�

i
�ik0 −

z − �k0t/m

L2�1 + i�t/mL2�� ,

�10�

where z is a complex variable. Similarly, the quantum and
total potentials are easily determined by

Q�z,t� =
�

2mi

�p�z,t�
�z

=
�2

2

1

i�t + mL2 , �11�

Vtot�z,t� = V�z� + Q�z,t� =
�2

2

1

i�t + mL2 , �12�

where V�z�=0 in this problem. The quantum and total poten-
tials are independent of position and depend only upon the
time.

Because we start with the analytical form of the wave
function, the spatial partial derivatives in Eqs. �5�–�7� can be
expressed analytically in terms of z and t. Thus, the set of the
equations of motion for quantum trajectories becomes closed
and the equations of motion in the complex space are given
by

dz

dt
=

��z − ik0L2�
�t − imL2 , �13�

dp

dt
= 0, �14�

dS

dt
=

�2�m�iz + k0L2�2 − �i�t + mL2��
2�i�t + mL2�2 , �15�

where Eq. �13� has been presented in Ref. �14�. From Eq.
�14�, we note that the classical and the quantum forces are all
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equal to zero. The initial conditions for the equations of mo-
tion with an arbitrary initial position z for a complex quan-
tum trajectory (z , p�z ,0� ,S�z ,0�) are determined by the ini-
tial state given in Eq. �8�. Therefore, p�z ,0� and S�z ,0� are
given by

p�z,0� =
�

i

1

��z,0�
���z,0�

�z
= �k0 −

�z

iL2 , �16�

S�z,0� =
�

i
ln ��z,0� =

i�z2

2L2 + �k0z +
i�

4
ln��L2� . �17�

The last term of Eq. �17� comes from the normalization con-
stant of the initial Gaussian wave packet given by Eq. �8�,
and it actually can be dropped because the wave function
synthesized at later times from Eq. �1� can be renormalized.

In this example, the equation of motion for the complex
quantum trajectory given by Eq. �13� can be analytically
solved and the exact solution is given by

z�t� =
�t

mL2 �iz0 + k0L2� + z0, �18�

where z0 is the starting point at t=0, and this solution has
been presented in Ref. �14�.

The isochrone equation can be determined by setting
Im�z�t��=0, and it is given by

x0�t

mL2 + y0 = 0, �19�

where x0 and y0 are the real and the imaginary parts of the
starting point z0. From this equation, we find that if a particle
starts its motion with an initial position �x0 ,y0�, then the
imaginary part of its position will become zero at
t=−y0mL2 /x0� and this means that the particle arrives at the
real axis. Therefore, the arrival time tA is proportional to the
slope of the isochrone as follows:

tA = −
mL2

�

y0

x0
. �20�

The system of the equations of motion given by Eqs.
�13�–�15� is closed; therefore, general numerical methods for
differential equations can be used. The complex quantum
trajectories and the probability densities are shown in Figs. 1
and 2. All the relevant physical quantities will be used in the

following dimensionless units: z̄=z /L, k̄0=k0 / �1/L�, t̄

= t / �mL2 /��, p̄= p / �� /L�, S̄=S /�, and V̄=V / ��2 /mL2�. We
will denote the value of a given dimensionless physical
quantity with the same symbol as the quantity itself. The
quantum trajectories were determined using the fourth-order
Runge-Kutta integration method and the initial conditions
given by Eqs. �16� and �17� with the time step size �t=0.1.
First, we consider a special case with k0=0: a nontranslating
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FIG. 1. �Color online� Nontranslating free Gaussian wave
packet �k0=0�: �a� Complex quantum trajectories starting from the
isochrone arrive at the real axis at t=1; �b� Complex quantum tra-
jectories �black curves� on the complex plane; probability densities
of the Gaussian wave packet: t=0 �red curve�; t=1 �exact� �green
curve�; t=1 �numerical� �blue circles ����.
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FIG. 2. �Color online� Translating free Gaussian wave packet
�k0=1�: �a� Complex quantum trajectories starting from the isoch-
rone arrive at the real axis at t=1; �b� complex quantum trajectories
�black curves� on the complex plane; probability densities of the
Gaussian wave packet: t=0 �red curve�; t=1 �exact� �green curve�;
t=1 �numerical� �blue circles ����.
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Gaussian wave packet. From Eqs. �19� and �20�, we know
that the isochrones are straight lines and the arrival time is
just the negative sign of the slope. Figure 1�a� shows that the
particles on the isochrone will arrive at the real axis at t=1.
The information such as positions and complex actions that
they transport can be used to synthesize the wave function at
t=1 along the real axis. For general cases, since the numeri-
cally obtained final positions of the particles may be not
exactly on the real axis, interpolation can be used to approxi-
mate the complex action values �22�. In Fig. 1�b�, the syn-
thesized probability density at t=1 is in excellent agreement
with the exact result. Additionally, this figure shows the
spreading of the probability density of the Gaussian wave
packet with a peak value that decreases in time. Subse-
quently, we consider a translating Gaussian wave packet with
k0=1. Figure 2�a� shows that the particles on the isochrone
arrive at the real axis at t=1. In Fig. 2�b�, the synthesized
probability density at t=1 is in excellent agreement with the
exact result. Additionally, this figure shows the translation
and the spreading of the Gaussian wave packet in time.

Furthermore, Fig. 3 shows the quantum trajectories in the
vicinity of the origin in Fig. 2�a� and also the quantum tra-
jectories starting on the isochrone with the slope equal to −2.
For a nontranslating Gaussian wave packet, the particles
launched from the isochrone on the left side of the imaginary
axis will arrive at the left side of the real axis. Correspond-
ingly, the particles launched from the isochrone on the right
side of the imaginary axis will arrive at the right side of the

real axis. Additionally, the particle starting at the origin will
remain static. Differing from those complex quantum trajec-
tories for the nontranslating free Gaussian wave packet
shown in Figs. 1�a�, some of the complex quantum trajecto-
ries starting on the left side of the imaginary axis shown in
Fig. 3 can pass the imaginary axis to reach the real axis. This
phenomenon reflects the translation to the right of the wave
packet. Moreover, because the particle starting at the bifur-
cation point zb �see Fig. 3� will arrive at the origin at t= tA,
we can determine this point as a function of the arrival time
tA by setting the trajectory equation given in Eq. �18� to be
zero. Thus, the bifurcation point is given by

zb�tA� = −
k0L2

i + mL2/�tA
. �21�

For the nontranslating Gaussian wave packet �k0=0�, zb�tA�
=0 for any arrival time and the bifurcation point remains at
the origin. For the translating Gaussian wave packet �k0=1�,
the bifurcation point is zb=−1/2+ i /2 for tA=1 and
zb=−2/5+4i /5 for tA=2. These points are shown in Fig. 3.

B. Gaussian wave packet in a harmonic potential:
Coherent state

We subsequently consider a more complicated example: a
Gaussian wave packet in the harmonic potential V�x�
= �1/2�m�2x2. The time-dependent Schrödinger equation for
this system can be solved analytically for the exact solution
�35� as follows:

��x,t� = N exp�−
�2

2
�x −

ip0

��2 cos �t�2

+
p0x

�
sin �t −

i�t

2

−
ip0

2

4�2�2 sin 2�t� , �22�

with an initial Gaussian wave packet centered at the origin

��x,0� = N exp�−
�2

2
�x −

ip0

m�
�2� , �23�

where the prefactor N is the normalization constant and
�2=m� /�.

From the solution given by Eq. �22�, we can obtain the
QMF and then the equations of motion can be expressed by

dz

dt
=

e−i�tp0 + im�z

m
, �24�

dp

dt
= − m�2z , �25�

dS

dt
= −

1

2

�m�z − ip0e−i�t�2

m
−

1

2
m�2z2 −

��

2
. �26�

From Eq. �25�, we find that the term on the right side comes
from the classical force and the quantum force is actually
equal to zero. Additionally, the quantum potential Q�z , t�
=�� /2 and is equal to the ground state energy of the har-
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FIG. 3. Translating free Gaussian wave packet �k0=1�: �a� Com-
plex quantum trajectories starting from the isochrone �thick black
line� arrive at the real axis at t=1; �b� complex quantum trajectories
starting from the isochrone �thick black line� arrive at the real axis
at t=2. The bifurcation points zb are also shown ���.
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monic oscillator. To numerically integrate the equations of
motion, we need the initial conditions (z , p�z ,0� ,S�z ,0�)
determined from Eq. �23�,

p�z,0� = im��z −
ip0

m�
� , �27�

S�z,0� =
�p0 + im�z�2

2im�
, �28�

where the constant term of Eq. �28� has been dropped.
The quantum trajectory equation given in Eq. �24� can be

analytically solved and the exact quantum trajectory with an
arbitrary starting point z0 is given by

z�t� =
p0

m�
sin �t + z0ei�t. �29�

Similarly, the isochrone equation determined by setting the
imaginary part of Eq. �29� to be zero is then given by

x0 sin �t + y0 cos �t = 0. �30�

Again, the isochrone is a straight line. Furthermore, the ar-
rival time for particles launched from an arbitrary isochrone
to reach the real axis is

tA =
1

�
tan−1�−

y0

x0
� . �31�

In this case, the arrival time is a function of the slope of the
isochrone.

In this example, all the relevant physical quantities will be
used in the following dimensionless units: z̄=z /	� /m�, t̄

= t / �1/��, p0= p0 / �	�m��, p̄= p / �	�m��, S̄=S /�, and V̄
=V / ����. We will denote the value of a given dimensionless
physical quantity with the same symbol as the quantity itself.
The complex quantum trajectories and the probability densi-
ties obtained by numerically solving the equations of motion
�using the fourth-order Runge-Kutta method with the time
step size �t=0.1� are shown in Figs. 4 and 5. From Eqs. �30�
and �31�, we know that the isochrones are straight lines and
if a particle starts its motion with an initial position �x0 ,y0�,
then it will reach the real axis at the arrival time tA. Figure
4�a� shows that the particles on the isochrone with the slope
equal to −tan 2 at t=0 will arrive at the real axis at t=2.
Again, we can see from Fig. 4�b� the synthesized probability
density at t=2 is in excellent agreement with the exact result
and the Gaussian wave packet moves to the right. Figure 5
shows that the particles on the isochrone with the slope equal
to −tan 4 at t=0 will arrive at the real axis at t=4, and the
Gaussian wave packet moves to the left. If we continue to
record the information of particles as they cross the real axis,
the synthesized Gaussian wave packet will oscillate back and
forth and maintain its width in time. In this example, the
Gaussian wave packet is a coherent state and it oscillates
without spreading. Moreover, Fig. 6 shows the quantum tra-
jectories in the vicinity of the origin in Figs. 4�a� and 5�a�.
The particles starting on the isochrone show complicated

motion to reach the real axis. The arrows in Fig. 6 show the
direction of these particles moving from the isochrone to the
real axis.

Similarly, the bifurcation point determined by setting the
trajectory equation given in Eq. �29� to be zero is given by

zb�tA� = −
p0

m�
sin �tAe−i�tA. �32�

As shown in Fig. 6, the particles starting on the isochrone
from two different sides of the bifurcation point will arrive at
the corresponding sides of the real axis. In particular, the
particle starting at the bifurcation point shows a linear mo-
tion along the isochrone to the origin.

IV. EQUATIONS OF MOTION FOR QUANTUM
TRAJECTORIES: TIME-INDEPENDENT PROBLEMS

In previous sections, the equations of motion and two
examples for time-dependent problems have been presented
and analyzed. We now consider time-independent problems.
For stationary states with eigenenergy E, the complex action
can be reexpressed by S�z , t�=W�z�−Et and the QMF
becomes
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FIG. 4. �Color online� Coherent state: �a� Complex quantum
trajectories starting from the isochrone �thick black line� arrive at
the real x axis at t=2; �b� complex quantum trajectories �black
curves� on the complex plane; probability densities of the Gaussian
wave packet: t=0 �red curve�; t=2 �exact� �green curve�; t=2
�numerical� �blue circles ����.
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p�z,t� =
�S

�z
=

dW�z�
dz

= p̄�z� , �33�

where W�z� is called the quantum characteristic function and
p̄�z� has been used to denote the stationary-state QMF. More-
over, the stationary-state QMF is related to the stationary-
state wave function by

p̄�z� =
�

i

1

��z�
d��z�

dz
. �34�

Then, using the expression S�z , t�=W�z�−Et and rewriting
the QHJE in Eq. �2� in terms of the stationary-state QMF
yield the stationary-state QHJE

1

2m
p̄�z�2 + V�z� +

�

2mi

dp̄�z�
dz

= E . �35�

Similarly, we can obtain the equations of motion for station-
ary states from Eqs. �5�–�7�,

dz

dt
=

p̄

m
, �36�

dp̄

dt
=

2i

�
�E − V�z� −

p̄2

2m
�p̄ , �37�

dW

dt
=

p̄2

m
, �38�

where the stationary-state QHJE in Eq. �35� has been used.
Equations �36� and �37� have been described and applied by
Yang �19�.

When solving equations of motion for quantum trajecto-
ries, we will encounter different difficulties for time-
dependent and time-independent problems, respectively. For
time-dependent problems, the system of equations of motion
given in Eqs. �5�–�7� is not closed because the QMF is
coupled to its spatial derivative. Therefore, general numeri-
cal methods for differential equations cannot be applied di-
rectly. For time-independent problems, although the system
of equations of motion given in Eqs. �36�–�38� is closed, it is
evident from Eq. �34� that only solving the equations of mo-
tion with the correct initial quantum momentum p̄�z0� can
yield the correct quantum trajectories belonging to the cor-
responding stationary states. Moreover, it is found that from
Eqs. �36�–�38� the quantum characteristic function W�z� is
not coupled to z and the QMF p̄. Therefore, we only need to
use Eqs. �36� and �37� to solve for quantum trajectories. In
addition to determining quantum trajectories, we want to ob-
tain the wave function along the real axis. A computational
method for time-independent one-dimensional bound and
scattering state systems has been developed to obtain the
wave function along the real axis �12,13�. In summary, the
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FIG. 5. �Color online� Coherent state: �a� Complex quantum
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difficulty to solve time-dependent problems arises from the
integration of the equations of motion, while the the diffi-
culty to solve time-independent problems arises from the
specification of the initial conditions.

V. TIME-INDEPENDENT EXAMPLES

In this section, two time-independent examples will be
presented for bound and scattering state systems. For bound
state problems, the harmonic oscillator will be used to illus-
trate the difficulty encountered when we solve for the com-
plex quantum trajectories. For scattering-state problems, we
will determine the complex quantum trajectories for the Eck-
art potential by either forward or backward integrations.

A. Bound states: Harmonic oscillator

The quantum trajectories in the complex space in a given
quantum state have been explored analytically for the free
particle, the harmonic potential, the potential step, the poten-
tial barrier, and the hydrogen atom �14–19�. Starting with the
eigenfunction, we can determine the stationary-state QMF
directly from Eq. �34�. Then, the problem is reduced to solv-
ing Eq. �36� for complex quantum trajectories numerically or
analytically. For the harmonic oscillator, the complex quan-
tum trajectories for the ground and the first-excited states
have been obtained in an analytical form, and general prop-
erties of the quantum harmonic oscillator in the complex
space have been thoroughly studied �14,19�.

For general bound state problems, it will be difficult to
synthesize the wave function along the real axis from the
information transported by particles if we cannot make a
good approximation to the initial condition when solving the
equations of motion for complex quantum trajectories. For
time-independent problems, the stationary-state QMF and
the quantum characteristic function are only a function of z.
Namely, when particles evolve in the complex space with
time, the QMF and relevant functions depend only on their
positions, not on time. For the harmonic potential V�x�
= �1/2�m�2x2, the quantum trajectories and the probability
densities for the ground and the first-excited states are shown
in Fig. 7. Here, the relevant physical quantities are used in
the dimensionless units: z̄=z / �	� /m��, p̄= p / �	�m��, t̄

= t / �1/��, and Ē=E / ����. We denote the value of a given
dimensionless physical quantity with the same symbol as the
quantity itself. Although particles propagate in the complex
space, the values of their QMFs and relevant functions are
actually determined by their positions. As we can see from
Fig. 7, the probability densities do not change in time. There-
fore, we do not need to use the same method for time-
dependent problems to synthesize the wave function by start-
ing from the isochrone, and we can synthesize the bound
state wave function along the real axis as long as we can
obtain the stationary-state QMF or the quantum characteris-
tic function along the real axis. An accurate computational
method to obtain both the QMF and the wave function along
the real axis for one-dimensional bound state problems from
the stationary-state QHJE has been developed, and it has also

been applied to the harmonic oscillator and the Morse poten-
tial �12�.

In addition, the quantum trajectories for the first-excited
state of the harmonic oscillator are shown in Fig. 8. There
are two types of complex quantum trajectories. One is the
localized trajectory enclosing only one of the two equilib-
rium points on the real axis. If a particle starts its motion at
the equilibrium point, it will remain static at the position.
Thus, equilibrium points are special points. The information
such as the complex action at equilibrium points cannot be
transported to other positions by particles, and similarly, par-
ticles launched from other positions cannot transport their
information to equilibrium points. The other is the delocal-
ized trajectory enclosing all of the equilibrium points on the
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FIG. 7. �Color online� Complex quantum trajectories �black
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real axis. Furthermore, the origin is a singularity, which is
the pole of the QMF corresponding to the node of the wave
function, and it is undefined for the QMF. These two types of
the trajectory are separated by the bifurcation curve, which is
also shown �dashed line� in Fig. 8. The complex quantum
trajectories for other excited states show the same structure.
Detailed analysis of the complex quantum trajectories for the
harmonic oscillator can be found in Refs. �14,19�.

B. Scattering states: Eckart potential

We now present complex quantum trajectories for station-
ary states with eigenenergy E for the Eckart potential, which
is given by V�x�=V0 sech2�x /2a�. The exact scattering wave
function with energy E can be determined analytically �36�,

��x� = �− 1�if�2s�−1/2 exp�− �f�w−if�1 − w��is+if� � 2F1„�1/2

− if − ig − is�,�1/2 − if + ig − is�,�1 − 2is�;�1 − w�−1
… ,

where 2F1 is the hypergeometric function, w=−exp�x /a�, f
=	E /�, g= �4V0 /�− �1/4��1/2, and s=	E /�, where �
=�2 / �2ma2�. The exact QMF and the quantum potential in
the complex plane can be calculated by making an analytic
continuation of this wave function from x to z. Here, we

calculated complex powers using the principal value of the
argument of a complex number z by specifying that −�
	arg�z�
�. From w=−exp�z /a�, the exponential function
is periodic with period 2�i along the y direction. The argu-
ment function arg�z� has a branch cut discontinuity in the
complex plane running from −� to 0, so this leads to the
discontinuity of the exact QMF along y
= ±�i , ±3�i , ±5�i , . . . for x	0. Similarly, the analytic con-
tinuation of the Eckart potential reveals periodicity along the
direction of the imaginary axis. For example, this potential
gives the same value for z=x+ iy and z=x+ i�y+2��. There-
fore, for this problem, the complex plane can be divided into
an infinite number of zones with the boundaries y
= ±�i , ±3�i , ±5�i , . . ..

The quantum trajectories can be obtained by solving the
equations of motion given in Eqs. �36�–�38�. However, we
need to choose appropriate initial conditions. In this section,
the quantum trajectories will be determined by two methods:
either forward or backward integrations. For the forward in-
tegration, the exact QMF calculated from the scattering wave
function will be used as the initial condition to determine the
quantum trajectories. For the backward integration, the
asymptotic QMF in the transmission region will be used as
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the initial condition to determine the quantum trajectories by
integrating the equations of motion backwards. In addition,
the relevant physical quantities will be used in the dimen-

sionless units: z̄=z /a, p̄= p / �� /a�, t̄= t / �ma2 /��, Ē=E /2�,
and V0=V0 /2�. We will denote the value of a given dimen-
sionless physical quantity with the same symbol as the quan-
tity itself.

1. Forward integration

Figures 9 and 10 show the quantum trajectories and the
corresponding complex-valued total potential with E=1.2
and V0=1. We numerically integrate the equations of motion
with the exact initial QMF from t=0 to t=15 by starting the
integration in the reflection region �38�. We chose the initial
positions with the same real part but with different imaginary
parts: z=−7+ i�� /10+k� /5�, where k=0, ±1, ±2, . . .. Be-
cause the motion of the particle is governed by the complex-
valued total force, the quantum trajectories and the real and

the imaginary parts of the total potential are shown in Figs. 9
and 10. From these figures, we can see the periodicity of the
total potential along the direction of the imaginary axis and
the different structure of the total potential between the re-
flection and the transmission regions. The classical potential
only has singularities along the imaginary axis; hence, the
singularities and the “channel” structure on the left side of
the imaginary axis are contributed by the quantum potential.
In Figs. 9�b� and 10�b�, some particles start their motion on
the left side of the barrier, and then they pass the potential to
the transmission region. In addition, some particles launched
from the initial positions move toward the left. In particular,
there are some loops or closed trajectories on the “walls” of
the “channel” structure.

In Fig. 11, we present the total energy, the kinetic energy,
the classical potential, and the quantum potential for the tra-
jectory launched at z=−15−�i /5 from t=0 to t=20. For this
trajectory, the particle starts its oscillatory motion from the
left side of the potential and then passes the barrier to the
transmission region. The quantum trajectory in the complex
plane satisfies the stationary-state QHJE given in Eq. �35�, so
the sum of the complex-valued kinetic energy, the complex-
valued classical, and the complex-valued quantum potentials
is conserved and it is equal to the real-valued total energy. In
this figure, we can see that the kinetic energy and the quan-
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FIG. 11. �Color online� Analysis of quantum trajectory for E
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tum potential �green� along the quantum trajectory: �b� Real part;
�c� imaginary part. The trajectory was integrated from t=0 to t
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tum potential on the left side of the barrier compensate each
other and the classical potential is equal to zero there. After
the particle passes the barrier, the classical and the quantum
potentials gradually become zero and finally all the total en-
ergy is concentrated into the real-valued kinetic energy.

Figures 12 and 13 show the quantum trajectories and the
corresponding complex-valued total potential for the tunnel-
ing energy E=0.8 and V0=1. We numerically integrate the
equations of motion with the exact initial QMF from t=0 to
t=20 by starting the integration in the reflection region. The
initial positions were z=−7+ i�� /20+k� /5�, where k
=0, ±1, ±2, . . .. In Figs. 12�b� and 13�b�, fewer trajectories
link the left and right regions of these figures than those for
E=1.2. Additionally, some particles move toward the barrier,
but they rebound instead of passing to the transmission re-
gion. Similarly, some particles launched from the initial po-
sitions move to the left side and some closed trajectories are
imbedded in the “walls” of the “channel” structure. In Fig.
14, we present the total energy, the kinetic energy, the clas-
sical potential, and the quantum potential for the trajectory
launched from the position z=−10−7�i /20. For this trajec-
tory, the particle starts its oscillatory motion from the left
side of the barrier and then bounces back to the reflection

region. When the particle is far from the barrier, the classical
potential approaches zero and the kinetic energy and the
quantum potential compensate each other. Again, the total
energy is conserved.

2. Backward integration

We know that the scattering wave function approaches eikx

asymptotically when x tends to � along the real axis. Hence,
the asymptotic form of the scattering wave function in the
transmission region can be used to determine the initial con-
ditions for the trajectory. Then, we can numerically integrate
the equations of motion backwards from the transmission
region. Thus, substituting this asymptotic form into the defi-
nition of the stationary-state QMF gives p̄�x�=�k. Then, this
equation can be used as the initial condition for the equations
of motion. Although the QMF tends to the constant �k as-
ymptotically for large x along the real axis, it actually ap-
proaches the same constant in the transmission region on the
complex plane provided that the position is far enough away
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from the imaginary axis. We can also apply the Möbius in-
tegrator �37� to the Riccati-type stationary-state QHJE in Eq.
�35� to determine the approximate initial QMF off the real
axis. It is found that the constant �k is an excellent choice for
the initial QMF in the transmission region.

Figure 15 shows the quantum trajectories and the corre-
sponding contour map of the complex-valued total potential
with E=1.2 and V0=1. The complex-valued total potential
for E=1.2 has been shown in Figs. 9�a� and 10�a�. We nu-
merically integrate the equations of motion with the initial
condition p̄�z�=�k backwards from t=0 to t=−40 by starting
the integration in the transmission region. The initial posi-
tions were z=40+k�i /5, where k=0, ±1, ±2, . . .. Similarly,
we find that some trajectories link the left and right regions
of these figures. Other trajectories are traced back to posi-
tions near the barrier region and spiral into “attractors.”

In Fig. 16, we present the total energy, the kinetic energy,
the classical potential, and the quantum potential for the tra-
jectory integrated backwards from the initial position z=40
+ �� /5�i for E=1.2. The trajectory is traced back to the at-
tractor. From the viewpoint of the particle’s forward motion,

it starts at the position of the attractor and then slides down
the potential to the transmission region. We note from this
figure that the kinetic energy equals zero when the particle is
located at the position of the attractor. In addition, the kinetic
energy is almost equal to zero from t=−45 to t=−35, the sum
of the real parts of the classical and the quantum potentials is
equal to the real-valued total energy, and the imaginary parts
of the classical and the quantum potentials cancel each other.
Then, some of the total potential energy is transferred into
the kinetic energy to initiate the particle’s motion. The final
kinetic energy arises from the initial total potential energy,
and the total energy is conserved all the time.

The quantum trajectories and the corresponding complex-
valued total potential with the tunneling E=0.8 and V0=1 are
shown in Fig. 17. The complex-valued total potential for E
=0.8 has been shown in Figs. 12�a� and 13�a�. The initial
positions were z=40+ i�� /10+k� /5�, where k
=0, ±1, ±2, . . .. We note from these figures that most quan-
tum trajectories are traced from the transmission region back
to the attractors in the barrier region. Additionally, the trajec-
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tories spiraling into the attractor at z=0.518+5.262i are
shown in Fig. 18.

VI. SUMMARY AND CONCLUSIONS

In this study, a unified description of complex quantum
trajectories was presented. In the quantum Hamilton-Jacobi
formalism, the quantum momentum function is extended to
the complex space and the energy eigenvalues can be deter-
mined by the quantum action variable. Similarly, the com-
plex quantum trajectory can be obtained through the guid-
ance equation by extending the position coordinate to the
complex space. Then, the equations of motion for complex
quantum trajectories for time-dependent and time-
independent problems were derived in the framework of the
quantum Hamilton-Jacobi formalism.

For time-dependent problems, complex quantum trajecto-
ries and the concept of isochrone were demonstrated by two
exactly solvable systems: the free Gaussian wave packet and
the coherent state in the harmonic potential. We also showed
that the particles may exhibit complicated motions in the
complex plane and that the information transported by the

particles launched from isochrones can be used to synthesize
the time-dependent wave function.

For time-independent problems, difficulties that arise
when determining complex quantum trajectories for station-
ary states were discussed. Subsequently, we determined the
complex quantum trajectories for the Eckart potential using
two methods: the forward and the backward integrations. In
the forward integration, we used the exact initial condition in
the reflection region to solve the equations of motion. The
total potential �the sum of the classical and the quantum
potentials� calculated from the exact scattering wave func-
tion is periodic along the direction of the imaginary axis and
reveals a complicated channel structure in the reflection re-
gion. Some trajectories link the reflection and transmission
regions, and some form closed loops imbedded in the walls
of the channel structure. Some particles start their motion
from the left side of the barrier and then bounce back to the
reflection region. In the backward integration, the asymptotic
quantum momentum function in the transmission region was
used as the initial condition to numerically solve the equa-
tions of motion backwards. Some trajectories in the transmis-
sion region were found to spiral into a set of attractors in the
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FIG. 17. �Color online� Backward integration for E=0.8, V0

=1: Quantum trajectories �blue curves� and the contour map of the
total potential �black curves�: �a� Real part; �b� imaginary part.
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FIG. 18. �Color online� Backward integration for E=0.8, V0

=1: quantum trajectories �blue curves� near an attractor and the
contour map of the real part �a� and the imaginary part �b� of the
total potential.
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barrier region. The sum of the complex-valued kinetic en-
ergy, classical potential, and quantum potential is equal to
the real-valued scattering energy. We also described the time
dependence of these energies along several trajectories.

In this study, we have presented a unified treatment of
complex quantum trajectories in the quantum Hamilton-
Jacobi formalism. For time-dependent problems, we analyti-
cally studied exactly solvable systems to understand how the
information transported by the particles launched from iso-
chrones can be used to synthesize the time-dependent wave
function. Tannor and co-workers recently proposed a compu-
tational method to obtain the complex quantum trajectories
and the wave function �22�. For time-independent problems,
complex quantum trajectories have been determined for the
free particle, the potential step, the potential barrier, the har-
monic potential, and the hydrogen atom from the exact ana-
lytical wave functions �14–21�. Here, we determined the
complex quantum trajectories by numerically integrating the
equations of motion for the Eckart potential. In addition, we

recently proposed an accurate computational method for the
stationary-state version of the QHJE for one-dimensional
bound state and scattering problems �12,13�. Thus, our
present paper complements these studies and provides a uni-
fied description for complex quantum trajectories for one-
dimensional problems under the framework of the quantum
Hamilton-Jacobi formalism. In the future, the computational
method to determine the appropriate initial QMF for com-
plex quantum trajectories for stationary states needs to be
developed. Additionally, complex quantum trajectories and
relevant computational methods for multidimensional prob-
lems deserve further investigation.
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