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Noncommutative Anandan quantum phase
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In this work, we study the noncommutative nonrelativistic quantum dynamics of a neutral particle, which
possesses permanent magnetic and electric dipole moments, in the presence of external electric and magnetic
fields. We use the Foldy-Wouthuysen transformation of the Dirac spinor with a nonminimal coupling to obtain
the nonrelativistic limit. In this limit, we study the noncommutative quantum dynamics and obtain the non-
commutative Anandan geometric phase. We analyze the situation where the magnetic dipole moment of the
particle is zero, and we obtain the noncommutative version of the He-McKellar-Wilkens effect. We demon-
strate that this phase in the noncommutative case is a geometric dispersive phase. We also investigate this
geometric phase by considering the noncommutativity in the phase space, and the Anandan phase is obtained.
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I. INTRODUCTION

In 1959, Aharonov and Bohm [1] demonstrated that a
quantum charge circulating a magnetic flux tube acquires a
quantum topological phase. This effect was observed experi-
mentally by Chambers [2,3]. Aharonov and Casher showed
that a particle with a magnetic moment moving in an electric
field accumulates a quantum phase [4], which has been ob-
served in a neutron interferometer [5] and in a neutral atomic
Ramsey interferometer [6].

He and McKellar [7] and Wilkens [8] independently pre-
dicted the existence of a quantum phase acquired by an elec-
tric dipole while it is circulating around and parallel to a line
of magnetic monopoles. A simple practical experimental
configuration to test this phase was proposed by Wei et al.
[9], where the electric field of a charged wire polarizes a
neutral atom and a uniform magnetic field is applied parallel
to the wire.

In a recent paper, a topological phase effect was proposed
by Anandan [10], which describes a unified and fully relativ-
istic covariant treatment of the interaction between a particle
with permanent electric and magnetic dipole moments and
an electromagnetic field. This problem has been investigated
in nonrelativistic quantum mechanics by Anandan [11] and
Furtado and de Lima Ribeiro [12].

Recently, the study of physics in noncommutative space
has attracted much interest in several areas of physics [13].
Noncommutative field theories are related to M theory [14],
string theory [15], and the quantum Hall effect [16—18]. In
quantum mechanics, a great number of problems have been
investigated in the case of noncommutative space-time.
Some important results obtained are related to geometric
phases, such as the Aharonov-Bohm effect [19-23], the
Aharonov-Casher effect [24,25], and Berry’s quantum phase
[26,27], and others involve the dynamics of dipoles [28]. In
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this paper, we analyze the noncommutative quantum topo-
logical phase effect proposed by Anandan for a quantum par-
ticle with permanent magnetic and electric dipole moments
in the presence of external electric and magnetic fields, and
study the appearance of a geometrical quantum phase in their
dynamics. We investigate the nonrelativistic geometric
phase, proposed by Anandan, for a quantum particle with
permanent magnetic and electric dipole moments in the pres-
ence of external electric and magnetic fields in noncommu-
tative quantum mechanics. We also investigate the He-
McKellar-Wilkens phase in noncommutative space.

This paper is organized in the following way. In the next
section, we discuss the quantum dynamics of a neutral par-
ticle in the presence of an external electromagnetic field. In
Secs. III and IV, the noncommutative nonrelativistic quan-
tum dynamics of an quantum dipoles in the presence of an
external field is investigated. In Sec. V, we study the non-
commutative Aharonov-Casher effect; in Sec. VI, we extend
the study for the He-McKellar-Wilkens phase in a noncom-
mutative space-time. In Sec. VII, we discuss this quantum
phase, considering momentum-momentum noncommutativ-
ity or phase space noncommutativity. Finally, in Sec. VIII,
the conclusions are presented.

II. THE NONRELATIVISTIC LIMIT

Now we consider the relativistic quantum dynamics of a
single neutral spin-half particle with nonzero magnetic and
electric dipoles moving in an external electromagnetic field,
which is described by the following equation (we used 7%
=c=1):

| .
(iy#(?”+ E,U,O'aﬂFaﬁ—édaaﬁ)/SF“ﬁ—m)zp:O, (1)

where u is the magnetic dipole moment and d is the electric
dipole moment. We use the following convention for field
strength [29]:
F“={E,B}, FM=_F",
FO-E  Fi=_ ijkBk7
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gij= 5(%’7]' - Yj%) =YY= eijlzl’ (3)

and our ;5 choice for convenience is

0 -1
75=(_1 0>’ (4)

where 0 and —1 are the corresponding 2 X 2 matrices [30].
Hence, we may write Eq. (1) as
id(iG-E-3 - B)ys—

[iy*, + ulia-E-3 - B) - ml=0,

(5)

with the Dirac matrices given by

A_yo_(1 0) ._(o crf> Q_U_<0 &)
F=7=lo 1) YF\lo o) PG o)

- 5 0 O 5 0
2=<0- _))’ H=BE=(O- ")’
0 o 0 -0

where o/ are the Pauli matrices obeying the relation {c’c’
+0/0}=-2g". Then the Hamiltonian given by Eq. (5) is re-
duced to the form

J I
i;tﬂ:H{ﬁ:(ﬂ"a+MH-B+dH-E+[3m)1,D, (6)

where 7=—i(V+uBE-dB B).

From now on, we will use the Foldy-Wouthuysen method.
This a very convenient method of description of the relativ-
istic particle interaction with an external field; the transition
to the semiclassical description is the Foldy-Wouthuysen
(FW) transformation [31]. The Foldy-Wouthuysen represen-
tation provides the best opportunity for the transition to the
classical limit of relativistic quantum mechanics. The Hamil-
tonian in Eq. (5) takes the form

H=pBm+8&+0, (7)

where é=ull-B+dIl-E and O=1-& are the even and odd
terms in the Hamiltonian. Hence we introduce the transfor-
mation

H = eig(l:l— ic?o)e_ig, (8)

where § is a Hermitian matrix. The purpose is to minimize
the odd part of the Hamiltonian, or even to make it vanish.
Thus, we have
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PP FPUEPRPURN [FPURPURPEA
H'=H+i[S,H]- E[S’[S’H]] - gi[S,[S,[S,H]]]
1 ninn s
+ g SIS [8, BTl + -+ )

where & and O above obey the relations éﬁ*:ﬁé and é,é:
-B0.

For nonrelativistic particles in an electromagnetic field,
the FW transformation can be performed with the operator

3’=—(i/2m),[§é, such that we have
=Bm+é’+é’, (10)

where O’ is on the order of 1/ 2m, and we calculate the

second-order FW transformation with §'=—(i/2m)B0". This
yields

H'=Bm+é& +0", (11)

where 0"~ 1/m?. After that, the third FW approximation
with 3’”:—(1’ / 2m),éé” makes the odd part of the nonrelativ-
istic expansion vanish; so finally we find the usual result
Cym P AP 1 A2 1 A4 P
H'=pm+e =p\m+_—0"-——=0"|+¢€
2m 8m

- (000,41 (12)

After replacing & and O in (12), we will consider only

terms up to order 1/m. We obtain the following Hamiltonian:

A 1 = o~ = Lo E?

H" = ,3<m - 2—[V —ipB(E X E) +idB(X X B)]* - “2—
m

M,B** dB -

d232
- E+2—V B +,uH B+dlIl-E.

2m 2m

(13)

Equation (13) is the nonrelativistic quantum Hamiltonian for
four-component fermions. However, for several applications
at low energies in nonrelativistic quantum mechanics, the
two-component spinor field is considered; we may write (13)
for two-component fermions in the form

. 22 2B
H" =m—-——[V—-i(i X E) +i(d x B - = - =
2m 2m
-—V-E+—V-B+u-B+d-E, (14)

2m 2m

where u=uo, d=do, and o=(0y,0,,03); and o; (i
=1,2,3) are the 2 X2 Pauli matrices. The Hamiltonian (14)
describes the system formed by a neutral particle, which pos-
sesses permanent electric and magnetic dipole moments, in
the presence of electric and magnetic fields. Several topo-
logical and geometrical effects may be investigated by
changing the field-dipole configuration [7-9].
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III. NONRELATIVISTIC QUANTUM DYNAMICS
OF DIPOLES

We consider the nonrelativistic quantum dynamics of a
particle corresponding to the Hamiltonian (13), which de-
scribes several physical situations such as the Aharonov-
Casher effect for u# 0 and d=0, the He-McKellar-Wilkens
effect for =0 and d#0, and the Anandan phase in the
general case u#0 and d#0. It is obvious that all these
effects occur in specific field-dipole configurations. We ana-
lyze the quantum dynamics of a particle governed by the
Hamiltonian (14). We consider that the electric and magnetic
fields in which the particle is immersed are cylindrically ra-
dial [7-12]. The electric and magnetic dipoles are aligned in
the z direction. The Hamiltonian (14) that describe the elec-
tric and magnetic dipoles in external electric and magnetic
fields can be written in the following way:

1 -
H=——(V=b,) + by; (15)

here, the interaction with the electric and magnetic fields is
similar to that of a particle minimally coupled to a non-
Abelian gauge field with potential b,,, where
22 p2p2
E° d°B - > d= - L - - -
bo=— = 2 B £y “V.B+i-B+d-E,
2m 2m  2m 2m

(16)

and b;=(u X E)+(d X B). The first two terms in b, can be
considered as an external potential and do not contribute in
the study of the geometric phase [9]. Observe that the poten-
tial by, which depends on E? and B, represents a local influ-
ence on the wave function. We are interested in studying the
asymptotic states for the dynamics. Thus we will not con-
sider this term, because it represent a local effect [9]. Also,
Anadan [11] has demonstrated that terms of the order O(E?)
and O(B?) can be neglected in the study of the geometric
phase. The last four terms in the potential b, in the Hamil-
tonian (15) give null contributions to the dynamics of this
dipole in the field configuration, since the dipoles are aligned
with the z direction [11,10,12]. We assume that the particle
moves in the plane x-y, in the presence of the external elec-
tric and magnetic fields [9]. We also suppose that the fields
generated by the source are radially distributed in the space.
Now, we consider the commutative space version of this geo-
metric phase. Thus the only terms that contribute to the geo-
metric phase in (15) are

O T 2B PR
H=-—[V-i(ax E)+i(dx B)Pp-E=—_2=.
2m 2m 2m

(17)

the other terms of (13) do not contribute to the quantum
phase because of the choice of specific dipole-field configu-
rations. The terms in the dynamical part of the Hamiltonian
yield no force on the particle, while in quantum mechanics
they affect the wave function of the particles by attaching to
it a nondispersive geometric phase. The momentum operator
can be written as
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ki=mv;=[p;— (i X E);+ (d X B)]. (18)
The Schrédinger equation for this problem takes the form
1 = . s s s B> d°B
(— —[Voi(axE)+idx BP-E=— = |w=fFw.
2m 2m 2m
(19)
To obtain the quantum phase we use the following ansatz:
W =Woe?, (20)
where W is the solution of the equation
1 22 PPR2
(- — v B2 _C2 g = kv, 1)
2m 2m 2m
and the phase ¢ is given by
¢= ijg [(/& X E) - (d X B)ldr; (22)

this phase was studied by Anandan [10]. It is a nondispersive
effect due to the independence of particle velocity [33]. Con-
sidering d=0 in (22), we have the Aharonov-Casher geomet-
ric phase. On the other hand, in the case d#0 and u=0 in
(22) we have the He-McKellar-Wilkens phase,

brnw= ijg [-(d X B)]dr, (23)

which is usually known as a topological phase, but really is a
geometric phase [39].

IV. NONCOMMUTATIVE QUANTUM DYNAMICS
OF DIPOLES

The usual noncommutative space canonical variables sat-
isfy the following commutation relations:

[ ]=i0y  [pup]=0, [x.pil=id;,  (24)

where xA, and g;i are the momentum and coordinate operators
in a noncommutative space. The time-independent
Schrodinger equation in the noncommutative (NC) space can
be written in the form

H(x,p)x¢=Ey, (25)

where H(x,p) is the usual Hamiltonian and the Moyal-Weyl
product (or star product) is given by

U‘*g)(x) = exp( é‘(aijﬁxi(yxj)f(xi)g(xj) . (26)

Here f(x) and g(x) are arbitrary functions. On the NC space,
the Moyal-Weyl product may be replaced by a Bopp shift
[32], i.e., the Moyal-Weyl product can be changed into the
ordinary product by replacing H(x,p) with H(X,p). This
approach has been used by Li et al. [23]. Hence, the
Schrodinger equation can be written in the form
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1
H(%;,p;) =H<xi_ 5®ij17i,Pi)¢=E¢, (27)

where x; and p; are the generalized position and momentum
coordinates in the usual quantum mechanics. Therefore, Eq.
(27) is then actually defined on the commutative space, and
the NC effect may be calculated from the terms that contain
®. Note that ® in quantum mechanics may be taken as a
perturbation, considering that ©;<1.

When we have the presence of electric and magnetic
fields as in (19), Eq. (25) becomes

1 = . s s s B> &°B?
(——[V—i(,uXE)+i(d><B)]Z_'u“__— *P
2m 2m 2m
=EV. (28)
To map Eq. (28) from NC space to commutative space, we

replace x; and p; by a Bopp shift [32], as well as the fields E;
and B;, which will be replaced by a shift of the form

(i X E)— (ji X E) + é@)lm[& — (i X E)]nfi X E)
(29)

and

(d X B) — (d X B) + é@,,,,[,z- (d X B)]ia,(d X B),
(30)
where k; is the eigenvalue of the momentum operator in the

presence of the electric or magnetic field on NC space, and is
defined as

[pi=(u X E)+(d X B) x4y = k;th, 31)
where «;=muv; and v, is the ordinary gradient. The relations
(29) and (30) may be obtained in the same form by Taylor

expansion up to first order of (26); for example, let us take
the magnetic dipole case

[(f2 X E)*i](x) = exp[éta,.jaxiax_i} (X E)(x)x))
= (@ X Eyy+ 5,0, X B (32)
From (31) we have

dap=[r— (@ X E)]p. (33)

Therefore, using (33) in (31), we obtain (29). In the same
way, we may obtain (30). Thus, the NC equation (28)
mapped on commutative space is
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1 - . - i N N . -
- 2—<V —i(t X E) = ~0,,[k;~ (1 X E)|]9,,(n X E)
m 2

- - 1 - - - - 2
+i(d X B) + é@lm[K, —(d X B),]d,,(d X B)) Yy=E.

(34)

In the same way as in the usual quantum mechanics, the
solution for (34) may be written as

=)y exp(¢h), (35)

where ¢y, is a solution of the Schrodinger equation in the
absence of electric and magnetic fields, and ¢ is the Anandan
geometric phase given in the form

¢=i3§ [(ﬁxé>—<c7xé>]~dr*+§®,m

X 35 {[k= (fi X E)jd,(fi X E) —[k— (d X B)],

Xd,(d X B)}- dF. (36)

The first term of the integral in Eq. (36) is the usual Anandan
phase in commutative quantum mechanics. The other terms
are the corrections due to NC effects. In the three-
dimensional commutative space, we define the vector €
=(0;, 0,,6) with ©,;=¢€;;.6,. Thus we rewrite the total phase
(36) in the form

¢:i3€[<ﬁxé)_<3x§>].d7+§m3£ 0.6 xS
X E);ldr, - ém§ 0-[(fi X E) X V(ii X E);ldr;
5m3€ 5[5 x v*(gxémdrﬁ;mj@ 5.1 % B)

X V(d X B);Jdr;. 37)

The phase (37) is a noncommutative version of the nonrela-
tivistic quantum Anandan phase. Notice the dependence on
phase in the electric and magnetic fields. A further property
of Eq. (37) is that the geometric phase depends on the veloc-
ity of the particle. The noncommutativity of space introduces
this dependence in the phase. In the next section, we will
discuss some special limits of this geometric phase.

V. NONCOMMUTATIVE AHARONOV-CASHER EFFECT

First we consider the case in the expression (36) where
d=0. In this case, we obtain the Aharonov-Casher (AC)
phase given by

I | -z -z R
Pac= i% (P« X E+ E®lm[Kl_ (1 X E) ], X E)) ~dr.
(38)

The first term in the integral in Eq. (38) is the usual AC
phase in commutative quantum mechanics. The second term
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is the NC correction to the AC phase. In the three-
dimensional commutative space, we define the vector 6
=(0,, 6,,6;) with ©,;=¢;;6;. Thus, we rewrite the total phase
(38) in the form

f=ifﬁ(ﬁxé)-d7+ém§f 0-[6XV-(ixE)] dr

-%mff;5-[(ﬁxé)x€.(ﬁxé)].df. (39)

This geometric phase is the same obtained in [23,24] in the
relativistic case. Note that this is a dispersive geometric
phase that depends on the velocity of the particle [33].

VI. NONCOMMUTATIVE HE-McKELLAR-WILKENS
EFFECT

Now let us analyze the particular case of (22) in the non-
commutative situation. This case is the noncommutative He-
McKellar-Wilkens quantum phase in the nonrelativistic limit.
He and McKellar [7] and Wilkens [8] independently demon-
strated that the quantum dynamics of an electric dipole in the
presence of a radial magnetic field exhibits a geometric
phase. The method to obtain the NC He-McKellar-Wilkens
(HMW) effect is similar to the AC case. We take u=0 in the
Pauli term in Eq. (13). Hence, we find the NC Schrodinger
equation for the electric dipole in the presence a magnetic
field. Applying this limit in the phase (36) we obtain the
following expression

- iﬁg (3 X B+ %@)]m[x,- (d X B);]9,(d X 5)) - dF
(40)

The first term in (40) is the usual commutative HMW
quantum phase. The second term is the NC correction to the
HMW phase. In the same way as in the AC case, in the
three-dimensional commutative space we define the vector
0=(6;,0,,06;) with ©;=¢;0,. Thus we rewrite the total
phase (40) in the form

¢mm;_i§(gx§ydf_§n§5¢5x6@>uayd;
+§m3€é.[(JxE)xﬁ.(éxé)].df. (41)

This equation gives the expression for the noncommutative
version of the He-MacKellar-Wilkens effect.

VII. NONCOMMUTATIVE DYNAMICS OF DIPOLES
IN PHASE SPACE

In the previous section, we discussed the noncommutative
version of the geometric phase in the quantum dynamics of a
neutral particle that possesses permanent electric and mag-
netic dipole moments. Now we will discuss the case where
we take into account momentum-momentum noncommuta-
tivity. The Bose-Einstein statistics in noncommutative quan-
tum mechanics requires both space-space and momentum-
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momentum  noncommutativity  [23,25,34-36].  This
formulation has been called phase-space noncommutativity.
In this case, the momentum commutation relation in (24) is
replaced by

[l;i,l;j] = i@ijs (42)

where ® is the antisymmetric matrix; its elements represent
the noncommutativity of the momenta. Thus the Schrodinger
equation (25) is written in the form

1 - I
- 2—[V— (L X E)+i(d X B)*¥ =EV¥. (43)
m

In noncommutative phase space, the star product can be re-
placed by a generalized Bopp shift [32]; in this way, the star
product can be changed into an ordinary product by shifting
coordinates x,, and momenta p, by

1

xA,»= \x; — 2)\®,ij (44)
and
1
)\pl 2)\®l]xj’ (45)

where the scale factor N\ is an arbitrary constant parameter.
The fields in the equation change according to the formula
(27) and assume the following form:

R > . - i R - . -
(X E) = Npu X E) + ﬁ@)zm['q — (1 X E)Jd,(p X E),
(46)

and the magnetic field term changes to the form

(d X B) — \(d X B) + i@,m[,q —(d X B)]9,(d X B).

(47)

Now the Schrodinger equation for the neutral particle be-
comes

1 i . s
2m<)\V+ )\@ljx,—lk(,uXE)

1 .- N -
+ XG)Zm[KZ = (@ X E)19,,(u X E) +iN(d X B)

1 R R N N 2
- X®lm[’(1 - (d X B)l]&m(d X B)) lr//: E¢ (48)

We can rewrite the Schrodinger equation in the following
form:

1
v X E
T om’ ( +2>\2 ~ i X E)

— 0Lk~ (& X E)]0,(fi X E) +i(d X B)

2)@

N R L \2
- 53Ol (@ X B, X B)) U=Ed. (49)
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where m’=m/\. In the same way as in the usual quantum
mechanics, the solution for (49) may be written as

=y exp(dps) (50)

where ¢ is the solution of the Schrodinger equation for a
particle of mass m' in the absence of an electromagnetic
field, and ¢pg is the Anandan geometric phase in noncom-
mutative phase space given in the form

I -2 - 2 -
¢Ps=ij€ (M X E- W@)zm['ﬁ— (1 X E) ], (1 X E)) -dr
.1 .. I

2)\2 @,jxjdx (51)

The previous expression (51) has a contribution due to a
quantum phase in commutative space, an other contribution
due to the noncommutative space, and one more contribution
due to the noncommutative phase space. We can write the
quantum phase (51) in the following form:

Dps= dap+ dncs+ Puepss (52)

where ¢,p and the ¢y g are the Anandan phase contribution
and the contribution due to the space-space noncommutativ-
ity to the general dipole phase in the expression (51). The
term ¢ycps i the contribution due to noncommutativity of
the momenta and is given by

¢NCPS == 2)\2 % @lJXde

1-\2 .= UV,
o jg {Opulr— (X E)]0,(e X E)} - dr
122 e
o 3g {0l x; = (d X B),19,,(d X B)} - dr.

(53)

This is the contribution to the noncommutative geometric
phase due to noncommutativity in phase space. In this way,
we can write the He-McKellar-Wilkens phase in noncommu-

tative phase space for the particular case where @=0, and
this expression is given by

Dumwps=— 2)\2 # ®ijdx

1-\2 - - . e
TN § 10l ;= (d X B),19,(d X B)} - dr.

(54)

Therefore, we obtain the contribution due to the NC phase
space to the He-McKellar-Wilkens phase. We can see that
this phase depends on the magnetic field and also on the
velocity of the particle. The first term in (54) is similar in
appearance to the spin factor that occurs in the partition func-
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tion of a spinning particle. The connection of this spin factor
with the geometric phase was investigated by Kalhede et al.
[37] and Lévay [38]. This similarity with the spin factor and
the physical implications of this term is the topic of a future
presentation.

VIII. CONCLUDING REMARKS

In this paper, we study the nonrelativistic quantum dy-
namics of a neutral particle that possesses permanent electric
and magnetic dipole moments, in the presence of electric and
magnetic external fields. We use the Foldy-Wouthuysen ex-
pansion to make the transition from the classical limit of
relativistic to nonrelativistic quantum mechanics. In this
limit, we investigate the Aharonov-Casher and the He-
McKellar-Wilkens effects in the noncommutative coordinate
space. Here, we replace the star product by the Bopp shift
[32] in the field terms, and then we obtain the AC and HMW
quantum phases with NC corrections. We obtain the noncom-
mutative Anandan phase and demonstrate that this is a geo-
metric dispersive phase. Usually, a geometric phase is a local
effect, while a topological phase is nonlocal. Peshkin and
Lipkin [39] have shown that the Aharonov-Bohm effect is
nonlocal, because its value depends upon a physical quantity
in a region outside the closed path. It is a topological effect.
The Aharonov-Bohm phase is proportional to the winding
number of the path around the flux. It is a topological invari-
ant, and this phase depends on topology not on distance;
hence it must be nonlocal. Therefore there are no electro-
magnetic fields along the paths of the charged particle and
there are no changes of physical quantities. They remarked
that, in the case of the Aharonov-Casher effect, there are
fields along the paths of the beams; then they concluded that
the Aharonov-Casher effect is local due to the local interac-
tions, and is nontopological because the phase shift depends
on the local fields along the paths. In contrast with the topo-
logical phase, the geometric phase, in general, is a local ef-
fect, because it depends on the geometry and topology in the
space of the parameters, but not on the topology in space-
time. Here the quantum phase depends on the fields and the
velocity of the particle. This fact characterizes the noncom-
mutative Anandan quantum phase as a geometric phase due
to its dependence on the fields, and dispersive because of the
dependence on the velocity [33]. The NC Aharonov-Casher
effect is obtained with a limit case of (37) and agrees with
the results in the literature [24,25]. The NC version of the
He-McKellar-Wilkens phase is calculated for the NC quan-
tum dynamics of electric dipoles and is a geometric disper-
sive phase. The noncommutative phase-space versions of
Anandan’s phase and the He-McKellar-Wilkens phase are
obtained in this paper, and we conclude they are geometric
dispersive phases.
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