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With the quantum interference between two transition pathways, we demonstrate a scheme to coherently
control the momentum entanglement between a single atom and a single photon. The unavoidable disentangle-
ment is also studied from the first principle, which indicates that the stably entangled atom-photon system with
superhigh degree of entanglement may be realized with this scheme under certain conditions.
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I. INTRODUCTION

Atom-photon entanglement, for its fundamental impor-
tance in quantum nonlocality �1� and quantum information
�2�, has been extensively studied both on the discrete internal
degree of freedom �3� and in the continuous momentum
space �4–9�. As the continuous Hilbert space provides infi-
nite quantum bases, it makes high degrees of entanglement
possible. As in Fig. 1�a�, due to the momentum conservation,
a photon emitted along a single quantum path will be en-
tangled to the recoiled atom with the degree, i.e., the
Schmidt number K �10�, inversely proportional to the line-
width of the transition �4�. Therefore, it is possible to pro-
duce superhigh momentum entanglement with a narrow
spectral line �5,6�.

A highly entangled state can also be produced with quan-
tum interference �11�. As shown in Fig. 1�b�, for a nearly
degenerate three-level atom, the interference in the two-
pathway spontaneous emission may strongly enhance the en-
tanglement and make K�1/�2 �11�, where � is the separa-
tion between the upper levels. However, as the atomic
coherence is difficult to be precisely controlled on the nearly
degenerated levels, the “phase entanglement” effect �11� will
make some entanglement information inaccessible for direct
momentum detections in the experiments �9�. In order to
obtain well detectable high momentum entanglement under
realistic conditions, we propose a scheme with the configu-
ration in Fig. 2�a�. It has been known that �12,13� the inter-
ference in this two-path scattering may effectively squeeze
one of the spectral lines, and we find, further, that this nar-
row line can also be used to produce a highly entangled state
under certain conditions when the kinetic motion of the atom
is taken into account. Compared to the spontaneous emission
model in Fig. 1�b� �11�, the proposed scheme does not need
control of internal atomic coherence and the produced en-
tanglement is completely detectable with momentum mea-
surements �9�; also, the two upper levels can be chosen as
well separated. Moreover, this scheme could be more effi-
cient than the single-path scattering models �5,6� since the
controlling light is classical and need not be far detuned.

In the following, we studied the unavoidable process of
disentanglement caused by the momentum exchange with

background photons in the environment. For the detectable
entangled states in this and other possible schemes �4–6�, we
use the experimental R ratio �cf. Eq. �12�� to evaluate this
process analytically. From the first principle, we obtain the
master equation and the characteristic time scale for the dis-
entanglement, which shows that the more highly entangled
system is more fragile in the environment. With comparison
to the entangling process, we yield an upper limit for the
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FIG. 1. �a� For the typical single-path spontaneous emission
model with linewidth �, one has Schmidt number as K�1/� �4�.
�b� In the two-path emission model �11�, the quantum interference
may enhance the entanglement as K�1/�2, where � is the separa-
tion of the nearly degenerate upper levels.
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degree of entanglement that may be steadily produced with
this scheme, which shows that, under realistic conditions
�12�, the robust atom-photon entangled pair can be produced
with detectable superhigh degree.

II. ENTANGLEMENT GENERATION WITH QUANTUM
INTERFERENCE

Concerning the kinetic degrees of freedom, the Hamil-
tonian for the system depicted in Fig. 2�a� can be written
with the rotating wave approximation �RWA� as

Ĥ =
��p�̂�2

2m
+ �

k�
��k�âk�

†âk� + �
j=1

2

�� jc�̂ j j + ��bc�̂bb

+ ��
k�

�g1�k���̂c1âk�
†e−ik�·r� + g2�k���̂c2âk�

†e−ik�·r� + H.c.�

+ ���1e−i�0teik�0·r��̂1b + �2e−i�0teik�0·r��̂2b + H.c.� , �1�

where �p�̂ and r� denote the atomic center-of-mass momentum
and position operators. �̂	
 is the atomic operator �	��
�
�	 ,
=1,2 ,b ,c�, and âk� �âk�

†� is the annihilation �creation�
operator for the kth photonic mode with wave vector k� and
frequency �k� =ck, where the polarization index is ignored for

simplicity. gj�k�� which we treat as constant is the coupling
coefficient for the transition �j�→ �c� and � j denotes the Rabi
frequency for the coupling �j�↔ �b� �j=1,2�. �0 and k�0 de-
notes the frequency and the wave vector of the coupling
light, and �	
 represents the difference, �	
	�	−�
. As
the evolution is now considered in a close system, the atom-
photon state can be expanded in the Schrödinger picture as

��� = �
q�

�a1�q���q� ,0,1� + a2�q���q� ,0,2� + b�q���q� ,0,b��

+ �
q� ,k�

c�q� ,k���q� ,k�,c� , �2�

where the arguments in the kets denote, respectively, the
wave vector of the atom, the photon, and the atomic internal
state.

To eliminate the momentum exchange with the coupling
light, we restrict the detections in one dimension which is
perpendicular to the propagation of the coupling field, as
depicted in Fig. 2�b�. Then with the transformations,

a1�q�� = e−i�T�q��+�1c�tA1�q�� , �3�

a2�q�� = e−i�T�q��+�2c�tA2�q�� , �4�

b�q� − k�0� = e−i�T�q�−k�0�+�bc�tB�q� − k�0� , �5�

c�q� ,k�� = e−i�T�q��+�k��tC�q� ,k�� , �6�

where T�p��	�p�2 /2m and � j 	� jb−�0 �j=1,2�, one may
yield close dynamic equations from the Schrödinger equation
with the Born-Markov approximation,

i
dA1,2�q��

dt
= �1,2ei�1,2tB�q� − k�0� −

i�1,2

2
A1,2�q��

−
i
�1�2

2
A2,1�q��e±i�12t, �7�

i
dB�q� − k�0�

dt
= �1

*e−i�1tA1�q�� + �2
*e−i�2tA2�q�� , �8�

i
dC�q� ,k��

dt
= g1ei�T�q��−T�q�+k��+�k�−�1c�tA1�q� + k��

+ g2ei�T�q��−T�q�+k��+�k�−�2c�tA2�q� + k�� , �9�

where �1,2 denote the linewidths for the two upper levels �1�
and �2�; and 	�� 1 ·�� 2 / ��� 1� · ��� 2� with �� j being the dipole
moment for the transition �j�→ �c� �j=1,2�.

Equations �7�–�9� are solved in the “dressed-state picture”
in the Appendix. Due to the coupling field, the scattering
along �1� and �2� can be seen as emissions from three well-
separated dressed states which one may see in Fig. 3�a�. It is
known �13� that if dipoles of the transitions are parallel, the
linewidth for the intermediate dressed state can be signifi-
cantly squeezed when the field is tuned to �1 /�2→−�1 /�2.
With considerations to the kinetic degree of freedom, in the
following, we will show that it is possible to produce a

FIG. 2. �a� Atomic configuration with two well-separated upper
levels. The momentum entanglement can be controlled by the clas-
sical coupling field through the interference. �b� Schematic diagram
for the momentum detections. The detectors for the atom and pho-
ton are restricted in one dimension which is perpendicular to the
propagation direction of the coupling light.

RUI GUO AND HONG GUO PHYSICAL REVIEW A 76, 012112 �2007�

012112-2



highly entangled state with this interference-induced narrow
line.

For the interference condition in the realistic experiment
�12�, we assume =1, �1=�2=�, �1=�2=�; and �2=−�,
�1= �1+���, where � is a dimensionless small term con-
trolled by the detuning of the coupling field. The atom is
assumed to be excited from �b� with initial wave function
G�q���exp�−�q� /�p�2�, where �p denotes its momentum vari-
ance. From Eqs. �7�–�9�, under the weak pumping approxi-
mation �see the Appendix�, we yield the steady atom-photon
state in a well-known entangled form �4,5,7�,

C�q,k,t → �� � �0
exp�− ��q/��2�

− �1/� + i��q + �k�
, �10�

where the complex dressed-state frequency �1, and the defi-
nitions of �q, �k, � are given in the Appendix, �0 is a
normalization factor.

Mathematically, the entanglement of a pure bipartite sys-
tem can be completely evaluated with the Schmidt number K
�10�, which is defined as an estimation of the number of
modes that make up the Schmidt decomposition. For the
state in Eq. �10�, we have �4,5�

K � 1 + 0.28� �

�Re��1/���
− 1 �

0.28�

����/�,�/����2 ,

�11�

with the function ��� ,�� depicted in Figs. 3�c� and 3�d�.
From Eq. �11�, one sees the entanglement is approximately
inversely proportional to the dressed-state linewidth
��Re��1��= ���� ,����2�, which can be effectively squeezed
by controlling the coupling light due to the interference in
the two-pathway scattering process. We plot in Fig. 4 the
degree of entanglement K with respect to the detuning

�=�0−�2b and Rabi frequency � of the coupling field.
From these results and Eq. �11�, one then sees that the en-
tanglement can be greatly enhanced by controlling the cou-
pling field, and when �0→�2b+�12/2 �where �→0�, we
have K→�.

FIG. 3. �a� Distribution of
�C��q ,�k��2 with �=1, �=10, �
=1, �=0.01, �=0.001. One sees
that the central peak dominates
the three-peaks structure which
corresponds to the three dressed
states. �b� Plot of the local ampli-
fication of �a�, which shows that
�q and �k are highly correlated in
the central peak. �c� Plot of the
function ���� with � specified as
5, 15, 40, for the bold, thin, and
dashed lines, respectively. �d� Plot
of ���� with � specified as 0.5,
3, 10, for the bold, thin, and
dashed lines, respectively, �=1.

FIG. 4. Relations between the Schmidt number K and the cou-
pling field with �=1, �12=20, �=0.001. �a� The bold, thin and
dashed lines are plotted with �=0.1, �=2 and �=4, respectively.
�b� The bold, thin and dashed lines are plotted with �=9.97,
�=9.98, and �=9.99, respectively.
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In the experiments �9�, the degree of entanglement can be
measured with the ratio �R� of the unconditional and condi-
tional variances in the momentum detections �6–8�, i.e.,

R 	 �qsingle/�qcoin, �12�

�qsingle 	 �p̂2�single − �p̂�single
2 , �13�

�qcoin 	 �p̂2�coin − �p̂�coin
2 , �14�

where �qsingle is the variance of the atomic momentum with
single-particle detection, and �qcoin denotes the variance ob-
tained by coincidence detection on both the atom and the
photon. From Eqs. �10� and �12�, we yield

R �
�

1.6�Re��1/���
=

�

1.6����/�,�/����2 � 2.2K . �15�

The simple linear relation between K and R in Eq. �15� in-
dicates that the entanglement is completely detectable for the
direct experiments �9� with the R ratio �6–8�.

Different from the single-path scattering models �5,6�, the
superhigh entanglement is due to the sharp-linewidth dressed
state created by the quantum interference in the two-pathway
scattering. Compared with the nearly degenerate model �11�
as in Fig. 1�b�, this interference will not produce the “phase
entanglement” and leave all the entanglement detectable in
momentum measurements as we stated above. Therefore,
this scheme can most probably be used to produce highly
entangled atom-photon pairs in realistic applications.

III. DISENTANGLEMENT

As in the preceding section, to study the generation of
momentum entanglement �4–7�, it is usually convenient to
assume the entangled system a close pure state system. How-
ever, in a realistic environment with T�0 K, the interaction
with environment will make the entangled system into a
mixed state, and as a result, cause the disentanglement. Ac-
tually, only when the disentangling process is much slower
than the generation of entanglement, the system can be ap-
proximated by a pure state. Comparing these two time scales,
it is then possible to give out an upper bound for the en-
tanglement that could be produced reliably in the environ-
ment.

Concerning the momentum entanglement, the disen-
tanglement is caused by the momenta exchange with the en-
vironment which may be composed of background atoms
and photons. Theoretically, the influence from the back-
ground atoms can be eliminated by using a high vacuum
system; therefore, in order to study the unavoidable disen-
tanglement, we can simplify the environment as a heat bath
of background photons, coupled only to the entangled atom,
as shown in Fig. 5�a�. In order to give a general analysis for
this incoherent process, the atom is simplified as a two-level
system with resonant frequency �a, then the Hamiltonian of
the total system under RWA is

Ĥtot = ĤS + ĤB + ĤI, �16�

ĤS =
��p̂�2

2m
+ ��a�̂22 + �

k

��kb̂k
†b̂k, �17�

ĤB = �
k

��kâk
†âk, �18�

ĤI = ��
k

�g�k��̂12âk
†e−ikr + H.c.� , �19�

where ĤS, ĤB, and ĤI denote the Hamiltonians for the sys-
tem �the entangled atom-photon pair�, the heat bath, and the

interaction between them, respectively. b̂k �b̂k
†� is the annihi-

lation �creation� operator for the entangled single photon in
its kth mode, whereas âk and âk

† are those for the photons in
the heat bath.

It is known that the density matrix of the total system �tot
obeys the Liouville equation

�̇tot = Ltot��tot� = �LS + LB + LI��tot, �20�

where the superoperators Ltot, LS, LB, and LI are defined as

Ltot���	− i
� �Ĥtot , � �, etc. In order to reveal the dynamic evo-

lution for the entangled system, we should adiabatically

FIG. 5. �a� Schematic diagram of the disentanglement. The atom
is treated as a two-level system and the environment is simplified as
a heat bath of photons which is coupled to the atom through mo-
menta exchange. �b� R�t� is plotted with �q0

single=16ka
2 and

R0=3000. The temperature of the environment is specified as
T=300 K for the bold line, T=270 K for the thin line, and
T=250 K for the dashed line.

RUI GUO AND HONG GUO PHYSICAL REVIEW A 76, 012112 �2007�

012112-4



eliminate the heat-bath terms from Eq. �20� to obtain the
master equation for the entangled system.

To proceed, we define the reduced density matrix for the
system as �	TrB��tot� and a “projection state” as v
	TrB��tot� � �B, where the trace “TrB” is taken over the heat-
bath space and �B denotes the initial state of the heat bath. As
the coupling is weak, from Eq. �20�, we yield the equation
for the projection state as

v̇ = LSv − i�B

� TrB�LI�
0

�

d���
k

g�k�âk
†e−iwk����� + H.c.,� � �B� ,

�21�

where the Markov approximation and the nonrelativistic ap-
proximation �k /mc�1 are used, and ����
	e−iĤS�/��̂12e

−ikreiĤS�/�.
From Eq. �21�, we yield the master equation with the

Lindblad form �14� as

�̇ = −
i

�
�ĤS,�� − �a�D��̂11� + ��̂11� + �1 + D���̂22� + ��̂22��

+ �1 + D��a��̂12e
−ikar��̂21e

ikar + �̂12e
ikar��̂21e

−ikar�

+ D�a��̂21e
ikar��̂12e

−ikar + �̂21e
−ikar��̂12e

ikar� , �22�

where D	TrB�âka

† âka
�B� is the average number of the reso-

nant photons in the heat bath; the atomic linewidth is given
as �a	�k2��g�k��2���−�a�. It is natural to assume that the
heat bath is initially in the thermal equilibrium, i.e., �B

=e−ĤB/kBT /TrB�e−ĤB/kBT�, then we have D=1/ �e��a/kBT−1�,
where T is the temperature of the heat bath.

The master equation, Eq. �22�, describes the process of
disentanglement, where the system is now in a mixed state.
Mathematically, the entanglement of a mixed bipartite sys-
tem can be evaluated with the “entanglement of formation”
�15� which is not analytically defined. However, as the pro-
duced entanglement is completely detectable, we can use the
experimental R ratio �cf. Eq. �12�� as the evaluation of en-
tanglement, which, as will be seen in the following, gives
analytical and physically reasonable results.

As in Eqs. �13� and �14�, the momentum variance of the
single-particle �the atom� measurement is calculated as

�qsingle = Tr�p̂2�� − �Tr�p̂���2, �23�

while that of the coincidence measurement is

�qcoin =

�
i=1

2 � dqq2��q,k0,i,q,k0,i�

�
i=1

2 � dq��q,k0,i,q,k0,i�

−��
i=1

2 � dqq��q,k0,i,q,k0,i�

�
i=1

2 � dq��q,k0,i,q,k0,i� �
2

, �24�

where ��q ,k , i ,q� ,k� , i�� denotes the matrix element

�q ,k , i �� �q� ,k� , i��, and the photon is assumed to be detected
with some momentum k0.

With Eqs. �22�–�24�, it is straightforward to obtain

R�t� = R0
�q0

single/4Dka
2 + �at

�q0
single/4Dka

2 + R0�at
, �25�

where R0 and �q0
single are defined as their initial values, R0

	R�t=0� and �q0
single	�qsingle�t=0�. It can be seen from Fig.

5�b� that, R�t� decreases monotonously with time, therefore,
the characteristic time scale �tdis for the disentanglement can
be defined as R�t=�tdis�= 1

2R0. As R0�1, we yield

�tdis �
�q0

single

4DR0ka
2�a

. �26�

From Eq. �26�, one sees that the “disentangling time” �tdis
is inversely proportional to the average number of the reso-
nant photons in the heat bath �D��a��. Therefore, by decreas-
ing the temperature of the environment it is possible to sig-
nificantly increase �tdis and then make the entangled system
quite robust in the environment. However, as the temperature
can never reach absolute zero, this kind of disentanglement
is “unavoidable.” Furthermore, as in Eq. �26�, the disentan-
gling time is also dependent on the initial entanglement, i.e.,
�tdis�1/R0, which indicates that, the better entangled system
is more fragile in the environment. Since �tdis→0 when
R0→�, the ideal continuous EPR state �1� can never be
reached in a realistic environment in this sense.

The physical meaning for the dependence on ka and �a in
Eq. �26� is apparent: with larger energy and shorter lifetime
for the transitions, the environment will exchange more mo-
menta with the entangled atom per unit time, and as a result,
accelerate the disentanglement. When temperature is low, the
denominator in Eq. �26� has a sharp peak for the coupled
frequency �a, which ensures the two-level approximation
reasonable for our treatment.

As stated at the beginning of this section, the entangle-
ment generated with Eqs. �11� and �15� is applicable only if
the disentangling time is much longer than the time scale for
producing the entanglement, i.e., �tdis��tent. Therefore,
with Eqs. �26� and �A8�, we yield the inequality

R0 � 0.2
 �k1c�p
3

Dmka
2�a

, �27�

which gives an upper bound for the entanglement that can be
produced in the realistic environment with this scheme.

As in some reported experiments �12�, the atomic con-
figuration with SGC as in Fig. 2�a� can be realized by so-
dium dimers. With the experimental conditions
��10−7 �1c, �12�10�, ���, when the coupling field is
tuned to ���12/2�5� with �=10−2, from Eq. �A8�, we
have �tent�1 ms. Take the time of flight into account �5�,
the initial momentum variance can be prepared as ��p /m
=1 m/s, and then from Eq. �15� we obtain a superhigh de-
gree of entanglement as R�4600 and K�2100. To consider
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the disentanglement, we take �a=5�1014 Hz and �a
=107 Hz for estimations. With the environment temperature
T=150 K, from Eq. �26�, we have D�10−11 and
�tdis�104 s. One sees that the relation �tent��tdis can be
well fulfilled. Therefore, under these conditions, the robust
highly entangled atom-photon pairs can be steadily produced
in the environment. Actually, from Eq. �27�, we have an up-
per bound as R�107, which implies a strong ability of pro-
ducing entanglement with this scheme. On the other hand, if
the environment is at a high temperature, e.g., T=400 K, the
disentanglement will be strongly enhanced and we now have
�tent��tdis. With direct detections �9�, it is then possible to
observe all these phenomena in experiment.

IV. CONCLUSION

In this paper, we demonstrate that for the configuration in
Fig. 2�a�, the interference-induced narrow spectral line �13�
can be used to produce superhigh atom-photon entanglement
if the atomic momentum is taken into account. By control-
ling the coupling field, a highly entangled state can be pro-
duced under realistic conditions. Further, we find that the
interference in this model will not induce the “phase en-
tanglement” �11� and leaves the entanglement completely de-
tectable for the momentum measurements in experiment �9�.

The disentanglement, as we studied from the first prin-
ciple, will give a natural upper limit for the entanglement one
may obtain with the possible schemes �4–6�, since the more
highly entangled state will be more fragile as seen from our
analytical results. This demonstrates, from another point of
view, that the ideal EPR state �1� is physically unavailable.
With a low-temperature vacuum system where the momen-
tum exchange with the environment is restricted, it is shown
that a robust and highly entangled atom-photon pair can be
produced with this proposed scheme. Since we analyze the
two different physical processes separately and both from the
first principle, most of our conclusions can directly apply to
other models �4–7�.

To give a more precise upper bound than Eq. �27�, one
must consider the generation of entanglement together with
the disentanglement at the same time, which is necessary to
rigorously analyze the system when �tent��tdis. However,
this method is more complicated to be generalized and will
not change our above conclusions qualitatively. We plan to
give the details of this method elsewhere in a future work.
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APPENDIX: STEADY SOLUTIONS OF EQS. (7)–(9)

The solutions of the system can be obtained by transfer-
ring the states �1�, �2�, �b� and the field into the dressed-state
picture. By diagonalizing the transition matrix M,

M =�
�1

2
+ i�1


�1�2

2
i�1


�1�2

2

�2

2
+ i�2 i�2

i�1
* i�2

* 0
� �A1�

one gets the three dressed states denoted by the eigenvectors
�	 j ,
 j ,� j�T, and their complex frequencies � j �j=1,2 ,3�
with the real and imaginary parts representing the linewidths
and transition frequencies, respectively. Then from Eqs.
�7�–�9�, the steady state solution of the entangled wave func-
tion can be written as

C�q� ,k�,t → ��

= �
j=1

3
i�g1	 j + g2
 j�pjG�q� + k� − k�0�

− � j + i�T�q�� − T�q� + k�� + �k� − ��bc + �0��
,

�A2�

where pj is determined by the initial conditions, and when
the atom is initially in �b�, the restrictions are

�
j=1

3

pj	 j = 0, �
j=1

3

pj
 j = 0, �
j=1

3

pj� j = 1. �A3�

As the detection is restricted in one dimension, the solution
can be simplified as

C�q,k� � �
j=1

3
�g1	 j + g2
 j�pje

−��q/��2

− � j/�2 + i��q + �k�
�A4�

	�
j=1

3

Lj��q,�k� , �A5�

where the effective wave vectors are defined as

�q 	
���bc + �0�

mc�2
�q −

�bc + �0

c
 , �A6�

�k 	
ck − ��bc + �0�

�2
, �A7�

and �	���bc+�0��p /m�2c. We use L1,2,3��q ,�k� here to
denote the three different terms that make up the summation
in Eq. �A4�. From Eq. �A4�, it can be proven that

� d�qd�k�L2,3��q,�k��2 = o��2/�2� when � → 0,

which indicates that the L1��q ,�k� dominates the summa-
tion when the coupling field is weak, as shown in Figs. 3�a�
and 3�b�; therefore, Eq. �A4� can be well approximated by
the single-peak function as in Eq. �10�.
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To give further analysis for the entanglement, from
Eq. �A1�, we yield Re��1 /������ /� ,� /���2, where
the value of ��� /� ,� /�� is of order 0.1 or smaller as
shown in Figs. 3�c� and 3�d�. Moreover, the time scale for
producing the entanglement can be characterized as

�tent=1/ �Re��1� � =1/� �� ��2, with Eq. �15�, it may be writ-
ten as

�tent �
1.6R

��
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