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Quaternionic quantum mechanics has been revealed to be a very useful framework to describe quantum
phenomena. In the case of two qubit compound systems we show that the complex projection of quaternionic
pure states and quaternionic unitary maps permits the description of interesting phenomena such as decoher-
ence and optimal entanglement generation. The approach, however, presents severe limitations for the case of
multipartite or higher dimensional bipartite quantum systems as we point out.
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I. INTRODUCTION

In 1936, using theoretical lattice arguments, Birkhoff and
von Neumann �1� concluded that it is possible to consider the
set of states of a quantum system as a vector space over real,
complex, or quaternionic fields. While the real number for-
mulation of quantum mechanics is essentially equivalent to
complex quantum mechanics �CQM� �2�, the research on
quaternionic quantum mechanics �QQM� began much later
with a series of papers by Finkelstein et al. �3�, in the 1960’s,
and has been pursued since. A systematic study of QQM is
given in Ref. �4�, which also contains an interesting list of
open problems.

At present, the most serious problem of QQM concerns
the description of compound systems, since in this theory the
usual definition of Kronecker product of matrices does not
hold. Also, the standard definition of tensor product of Hil-
bert spaces cannot be used, owing to the noncommutativity
of the skew field Q. �In order to overcome this difficulty, the
concept of the tensor product of quaternionic Hilbert mod-
ules has been proposed �5� which allows the description of
compound systems on a mathematically well founded basis;
unfortunately, the results obtained in this way do not agree in
the complex limit with those of standard quantum mechanics
�6�.�

Experimental tests on QQM were proposed by Peres �7�
and carried out by Kaiser et al. �8� searching for quaternionic
effects manifested through noncommuting scattering phases
when a particle crosses a pair of potential barriers. The null
result of such tests was understood �9�, since the S matrix in
quaternionic scattering theory is complex, and different tests
were later proposed. For a review of the experimental status
of QQM we refer to Ref. �10�.

Hence, the possibility of a generalization of quantum me-
chanics based on quaternion fields instead of complex fields
is still controversial. However, the rich structures emerging
from such a generalization may be very useful in the descrip-

tion of entanglement, dynamical maps, and decoherence phe-
nomena in quantum physics. From this perspective we ap-
proach the analysis of some interesting applications of
quaternionic quantum mechanics such as decoherence mod-
eling and optimal entanglement generation for low dimen-
sional systems.

The most general dynamics of the quantum state repre-
sented by a complex density matrix �� can be described in
terms of a dynamical map �11�

�� → B���� .

The dynamical map represents the effect of the coupled
�complex� unitary evolution of the system and its environ-
ment. In other words,

��
A → ��

A�t� = TrB�U��
A

� ��
BU†� = B���

A� ,

where ��
A is the state of the system and ��

B is that of the
environment.

The connection between complex and quaternionic maps
has been recently analyzed �12–14� following a seminal idea
by Kossakowski �15�, and some general results were ob-
tained, together with various hints about two-dimensional
states.

In this paper we intend to apply such results to a very
general framework of a two qubits dynamics, outlined in
Ref. �16�, to which we refer for physical motivations �and
notations� �see also Ref. �17��. The plan of the paper is the
following. In Sec. II we briefly introduce quaternionic quan-
tum mechanics and, in particular, the density matrix formal-
ism and the differential equation that rules their complex
projections. In Sec. III a link is drawn between the rank of
quaternionic density matrices and that one of their complex
projections �proposition 1� and the limitations of our ap-
proach for multidimensional quantum systems are also dis-
cussed. Then, in Sec. IV, we describe �complex� dynamical
maps for the reduced unitary evolution of two qubits in terms
of the complex projection of unitary dynamics between
quaternionic pure states in two interesting regimes �i.e., de-
coherence modelling schemes and the creation of maximally
entanged Bell states�. Finally, some concluding remarks are
drawn in the last section.
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II. BASIC NOTATION OF QQM
AND DENSITY MATRICES

We recall here some basic notations; properties of quater-
nionic matrices are exhaustively discussed in Ref. �18�. A
�real� quaternion is usually expressed as

q = q0 + q1i + q2j + q3k ,

where ql�R �l=0,1 ,2 ,3�, i2= j2=k2=−1, ij=−ji=k.
The quaternion skew-field Q is an algebra of rank 4 over

R, noncommutative, and endowed with an involutive antiau-
tomorphism �conjugation� such that

q → q̄ = q0 − q1i − q2j − q3k .

In a �right� n-dimensional vector space Qn over Q, every
linear operator is associated in a standard way with a n�n
matrix acting on the left. Moreover, in analogy with the case
of vector spaces over C, one can introduce the concepts of
unitarity, Hermiticity and so on. We observe that a vector
space over Q can be seen as a natural extension of a vector
space over C, since two further “imaginary units,” j and k are
used together with i.

Every linear operator A acting on Qn can be written as
A=A0+ iA1+ jA2+kA3, with Ar �r=0,1 ,2 ,3� real matrices, or
else A=A�+ jA�, where A�=A0+ iA1 and A�=A2− iA3.

In QQM, the Schrödinger equation becomes

d

dt
��� = − H��� ,

where H is an anti-Hermitian operator with spectral repre-
sentation H=�a �a�a�a�. The energy observable defined by
�H � =�a �a� �a � �a� admits only positive eigenvalues, and is
related to H by the relation H= I �H�, with I a phase operator
�4�.

The density matrix �� associated with a pure state ���
belonging to a quaternionic n-dimensional right Hilbert
space Qn is defined by �4�

�� = ������ �1�

and is the same for all normalized ray representatives. By
definition, density matrices �� associated with pure states,
are represented by rank one, positive definite quaternionic
Hermitian operators on Qn with unit trace. In analogy with
CQM, quaternionic mixed states are described by positive
quaternionic Hermitian operators �density matrices� � on Qn

with unit trace and rank greater than 1.
The expectation value of a quaternionic Hermitian opera-

tor A on a state ��� can be expressed in terms of �� as �4�

�A�� = ���A��� = Re Tr�A������� = Re Tr�A��� . �2�

Expanding A=A�+ jA� and �=��+ j�� in terms of com-
plex matrices A�, A�, ��, and ��, it follows that the expecta-
tion value �A�� may depend on A� or �� only if both A� and
�� are different from zero. Indeed,

�A�� = Re Tr�A�� = Re Tr�A��� − A�
*��� , �3�

where an asterisk denotes complex conjugation.
Thus, the expectation value of an Hermitian operator A on

the state � depends on the quaternionic parts of A and �, only

if both the observable and the state are represented by genu-
ine quaternionic matrices.

However, if an observable O is described by a pure com-
plex Hermitian matrix, its expectation value does not depend
on the quaternionic part j�� of the state �=��+ j��. More-
over, the expectation value predicted in the standard �com-
plex� quantum mechanics for the state �� coincides with the
one predicted in quaternionic quantum mechanics for the
state �, since

Tr�O��� = Re Tr�O��� = ReTr�O�� .

This simple observation is actually very important in our
approach, in that it enables us to merge CQM in the �more
general� framework of QQM, without modifying any theo-
retical prediction �as long as complex observables are taken
into account�, eluding therefore, or postponing �see Sec. V�
any comparison between these theories.

Let us denote by M�Q� and M�C� the space of n�m
quaternionic and complex matrices, respectively, and let M
=M�+ jM��M�Q�. We define the complex projection

P: M�Q� → M�C�

by the relation

P�M� =
1

2
�M − iMi� = M�. �4�

Moreover, the probability Pc
� that a quaternionic state �

=��+ j�� is complex can be defined as follows:

Pc
�: = Re Tr�P����� = Tr���

2� . �5�

When we consider time-dependent quaternionic unitary
dynamics

��t� = U�t���0�U†�t� , �6�

where

U�t� = �U� + jU���t� = Toe−	0
t duH�u� �7�

and To denotes the time ordering operator, the differential
equation associated with the time evolution for � reads

d

dt
��t� = − �H�t�,��t�� , �8�

where H�t�=H�+ jH�=−� d
dtU�t��U†�t�. Finally, Eqs. �6� and

�8� reduce to

���t� = U����0�U�
† + U�

*��
*�0�U�

T + U���
*�0�U�

T − U�
*���0�U�

†

�9�

and

d

dt
�� = − �H�,��� + H�

*�� − ��
*H�, �10�

respectively, for the complex projection of the density matrix
�13�.
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III. THE COMPLEX PROJECTION OF QUATERNIONIC
DENSITY MATRICES

In this section, we focus our attention on the complex
projection �� of quaternionic density matrices �=��+ j��.
First of all, from the Hermiticity of � and �� we immediately
get

Tr �� = Re Tr �� = Re Tr� = Tr � ,

i.e., the complex projection of quaternionic density matrices
is trace preserving �alternatively, �� is traceless, being skew
symmetric in order to preserve Hermiticity of j���. More-
over, we recall that �13� the complex projection �� of any
quaternionic density matrix �=��+ j�� is a complex density
matrix. The following statement give us information about
the rank of the complex projection �� of any quaternionic
density matrix �=��+ j��.

Proposition 1. Let �=��+ j�� be a n-dimensional quater-
nionic density matrix, and let rank�=m. Then, m� rank��

� 2m.
Proof. Let us denote by �p the nonzero eigenvalues of �

�18�, arranged in increasing order. By hypothesis, there is a
quaternionic unitary transformation U=U�+ jU� such that

�m: = U�U† = diag�0, . . . ,0,�n−m+1, . . . ,�n� .

Then,

� = �� + j�� = U†�mU

= U�
†�mU� + U�

†�mU� + j�U�
T�mU� − U�

T�mU�� .

Now, the relaxed form of the Ostrowski theorem �19� im-
plies �with obvious notation�

�p�U�,�
† �mU�,�� = 	p�p��m�, 	p 
 0, p = 1,2, . . . ,n .

Since �p��m�=0 ∀p�n−m+1 we obtain

rank�U�,�
† �mU�,�� = l � m . �11�

On the other hand �20�,

�p�U�,�
† �mU�,�� � �p����, p = 1,2, . . . ,n . �12�

However, according Eq. �11�, �p�U�,�
† �mU�,���0 whenever

p
n− l+1
n−m+1 so that, from Eq. �12� we immediately
get m �rank ��.

Let us finally show that rank ���2m. From the rank in-
equality,

rank�A + B� � rankA + rankB

and Eq. �11� we immediately get

rank �� � rank U�
†�mU� + rank U�

†�mU� � 2m . �

We recall that also a converse result holds as a conse-
quence of the following proposition �14�.

Proposition 2. Let �� be a n-dimensional complex density
matrix with rank ��=m�1 and let �x� denote the integer part

of x. Then, for any m� with � m+1
2

��m��m there exists a
�skew-symmetric� complex matrix �� such that �=��+ j�� is
a density matrix with rank �=m�.

As a consequence of the above two propositions, we can
conclude that any complex density matrix �� can be obtained
as the complex projection of a quaternionic pure density ma-
trix �=��+ j�� if and only if rank ��=2. Then, given any
complex density matrix �� such that rank ��=2, we can build
up a quaternionic density matrix �, by adding a suitable j��

such that rank�=1; two dimensional examples of this fact
were given in Refs. �12,13�.

Now, let us consider an arbitrary pair of complex density
matrices, �� and ��� such that rank���2 and rank��� �2, and
let be B a complex dynamical map

B: �� → ��� = B���� .

According to proposition 2 we can “purify” the complex
states �� and ��� by adding suitable purely quaternionic terms
j�� and j��� respectively. Moreover, since any pair of quater-
nionic Hermitian matrices admitting the same eigenvalues
are unitary equivalent, we immediately obtain that the map B
can be described as the complex projection of a quaternionic
unitary map between quaternionic pure states �=��+ j�� and
��=��� + j���:

U: � → �� = U�U†, UU† = U†U = 1 ,

where ��� =B����= P����.
In this way, stochastic dynamics of �complex� quantum

mechanical systems can be interpreted in terms of the com-
plex projection of unitary dynamics between quaternionic
pure states whenever the rank of their complex density ma-
trices is less or equal than 2. Clearly, our approach can also
be applied to higher dimensional bipartite quantum systems
whenever the rank of the complex density matrices of their
components, obtained via partial traces, is not higher than 2
for any time. For multipartite systems the approach applies
also whenever the subdynamics obtained by partial traces of
all components is described by complex density matrices
with rank lower or equal to 2. The simplest example of such
case will be examined in the next section.

IV. MIXED C QUBITS AND PURE Q QUBITS

Because of the relevance of two qubit quantum gates in
quantum information processing, we shall now consider the
dynamical maps for the reduced unitary evolution of two C
qubits given in Ref. �16�, describing them as the complex
projections of unitary dynamics between pure Q qubits. We
recall that, in virtue of Eq. �3�, the expectation value of com-
plex observables on the complex mixed state �� or on the
quaternionic pure state �=��+ j�� coincide.

According with propositions 1 and 2 in the preceding sec-
tion, any complex �mixed� state
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�� =
1

2

 1 + a3 a1 − ia2

a1 + ia2 1 − a3
� �ai � R, 1 − a1

2 − a2
2 − a3

2 � 0�

�13�

can be purified �in its most general form�, by adding the
purely quaternionic Hermitian term

j�� = j
e−i	�1 − a1

2 − a2
2 − a3

2

2

0 − 1

1 0
�, 	 � R . �14�

We outline now a procedure which allows to obtain in a
simple way quaternionic unitary transformation connecting

two pure Q qubits. Let ��0� and ��t� denote the initial and
final pure Q qubits, respectively,

��t� = U�t���0�U†�t� . �15�

Then, with reference to the notation in Eq. �13�, there exists
�4� a suitable �time-dependent� unimodular quaternion p�t�
such that

p�t��a1�t� − ia2�t� − je−i	�1 − a1
2�t� − a2

2�t� − a3
2�t��p̄�t�

= a1�t� + i�1 − a1
2�t� − a3

2�t� .

As a consequence,

�c�t� = p�t���t�p̄�t� =
1

2

 1 + a3�t� a1�t� + i�1 − a1

2�t� − a3
2�t�

a1�t� − i�1 − a1
2�t� − a3

2�t� 1 − a3�t�
�

is a pure complex state.
Then, we obtain from Eq. �15�

p̄�t��c�t�p�t� = U�t�p̄�0��c�0�p�0�U†�t�

and finally

�c�t� = �p�t�U�t�p̄�0���c�0��p�0�U†�t�p̄�t�� = Uc�t��c�0�Uc
†�t� ,

�16�

where Uc�t�= p�t�U�t�p̄�0� obviously denotes a complex uni-
tary matrix which satisfy Eq. �16�. By solving Eq. �16� and
coming back, the quaternionic unitary matrix immediately
follows:

U�t� = p̄�t�Uc�t�p�0� . �17�

This computation procedure developed will allows us, in
the next subsections, to describe the complex dynamical
maps introduced in Ref. �16�, in terms of the complex pro-
jection of quaternionic unitary dynamics of quaternionic pure
states. As we mentioned in the Introduction, we refer to the
cited paper for an exhaustive, physical discussion of this
problem. The system we will study is composed of two C
qubits A and B, parametrized by the Bloch vectors a�

�a1 ,a2 ,a3� and b� �b1 ,b2 ,b3�, respectively, according to
Eq. �13�. The most general Hamiltonian for two qubits �in
the interaction picture� can be written as

H = �
i

i�i
A

� �i
B,

where the parameters 1, 2, and 3 are constant if one as-
sumes that there is no free evolution for individual qubits.
The evolution operator U of the overall state �AB assumes in
this case the simple form

U = �
j=1

3

�cos� jt�1A
� 1B − isin� jt�� j

A
� � j

B� . �18�

Some particular forms of operator �18� will be looked into in
the next subsections.

A. Decoherence modeling

In this subsection, we shall study a kind of evolution
whose dynamical map is used in some decoherence model-
ing schemes. Assume some interaction characterized by 1

=0, 2=3=1, and consider two initially simply separable
states where, in particular, ��

A�0� is �complex� pure while
��

B�0� is fully mixed. The parameters ai and bi characterizing
��

A�0� and ��
B�0�, respectively, according with Eq. �13�, are

then

a1 = 1, a2 = a3 = b1 = b2 = b3 = 0.

More explicitly, the initial complex C qubits are

��
A�0� =

1

2

1 1

1 1
�, ��

B�0� =
1

2

1 0

0 1
�

and the evolution operator of the overall system �AB is given
by
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U = �cos t1A
� 1B − isin t�2

A
� �2

B��cos t1A
� 1B − isin t�3

A
� �3

B�

=�
e−itcos t 0 0 i�cos t − sin t�sin t

0 eitcos t − i�cos t + sin t�sin t 0

0 − i�cos t + sin t�sin t eitcos t 0

i�cos t − sin t�sin t 0 0 e−itcos t
� . �19�

Hence, the final states �obtained by partial traces from the
time-evolved density matrix of the whole system� are �16�

��
A�t� =

1

2

 1 �cos 2t�2

�cos 2t�2 1
�,

��
B�t� =

1

2

 1 �sin 2t�2

�sin 2t�2 1
� .

As it is evident from the formulas above, subsystems A
and B alternatively oscillate between pure and fully mixed
states, swapping purity each other. Hence a process of deco-
herence modelling can be obtained considering a C qubit A
in a pure initial state, which interacts successively with a
chain of identical samples Bi of the C qubit B. If the time
interaction � is short enough, in each step the state of A loses
so to say a lot of purity, so that we can obtain as output of
these repeated interactions, a fully mixed state. Just this
physical situation has been fully exploited in a recent paper
�21�, where the authors shown rigorously �under some natu-
ral assumptions� that the system A approaches an asymptotic
state which does not depend on the initial state and satisfies
an average second law of thermodynamics.

Let us now describe this dynamics as the complex projec-
tion of a quaternionic unitary dynamics between quaternionic
pure Q qubits. By purification, the initial and final pure Q
qubits, respectively, can be easily obtained �see Eqs. �13�,
�14��

�A�0� =
1

2

1 1

1 1
�, �B�0� =

1

2

 1 − je−i	

je−i	 1
�, 	 � R

and

�A�t� =
1

2

 1 �cos 2t�2

�cos 2t�2 1
�

+ j
e−i��1 − �cos 2t�4

2

0 − 1

1 0
�, � � R , �20�

�B�t� =
1

2

 1 �sin 2t�2

�sin 2t�2 1
�

+ j
e−i	�1 − �sin 2t�4

2

0 − 1

1 0
� . �21�

The quaternionic unitary evolution operators can be im-
mediately computed by using the computation procedure
outlined at the beginning of this section

UA�t� = U�
A + jU�

A = 
�cos 2t�2 − je−i��1 − �cos 2t�4 0

0 1
� ,

�22�

UB�t� = U�
B + jU�

B = 
�1 − �sin 2t�4 + je−i	�sin 2t�2 0

0 1
� .

�23�

The corresponding anti-Hermitian quaternionic Hamiltonians
�4� are, respectively, given by

HA�t� = H�
A + jH�

A = − 
 d

dt
UA�t��UA†�t�

= � j
4e−i�sin 2tcos 2t

�sin 2t��1 + �cos 2t�2 0

0 0
� �24�

and

HB�t� = H�
B + jH�

B = − 
 d

dt
UB�t��UB†�t�

= � j
− 4e−i	sin 2tcos 2t

�cos 2t��1 + �sin 2t�2 0

0 0
� . �25�

The expectation value of the �Hermitian� energy observ-
ables �HA�t�� and �HB�t�� �4� on the states �A�t� and �B�t�,
respectively, reads

��HA�t����A�t� = Re Tr��HA�t���A�t�� =
2�cos 2t�

�1 + �cos 2t�2
,

��HB�t����B�t� = Re Tr��HB�t���B�t�� =
2�sin 2t�

�1 + �sin 2t�2
.

From Eqs. �15� and �20�–�23�, the complex dynamical maps
for the complex projection states ��

A and ��
B can be given in

terms of U�
A, U�

B, U�
A, U�

B and ��
A, ��

B, according with the
general formula �9� in Sec. II.

A deeper and more evident physical insight is obtained if
one takes into account the differential evolution equation as-
sociated with the complex projections of the quaternionic
unitary dynamics for the density matrices ��

A�t� and ��
B�t� �see

Eq. �10��, which assume the form
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d

dt
��

A�t� = − �H�
A,��

A� + H�
A*��

A − ��
A*H�

A = − sin 4t
0 1

1 0
� ,

�26�

d

dt
��

B�t� = − �H�
B,��

B� + H�
B*��

B − ��
B*H�

B = sin 4t
0 1

1 0
� .

�27�

Equations �26� and �27� clearly show that the evolutions of
subsystems A and B are strictly correlated, as we expects
from a physical point of view.

Finally, the probabilities Pc
�A

�t� and Pc
�B

�t� that the quater-
nionic states �A�t� and �B�t� are complex are respectively
given by �see Eq. �5��

Pc
�A

�t� = Re Tr�P��A�t���A�t�� =
1

2
�1 + �cos 2t�4� , �28�

Pc
�B

�t� = Re Tr�P��B�t���B�t�� =
1

2
�1 + �sin 2t�4� �29�

and coincide with the probabilities that the reduced complex
density matrices ��

A�t� and ��
B�t� become pure �16�, since at

the same time the quaternionic terms ��
A,B vanish �see Eqs.

�20� and �21��.

B. Optimal entanglement generation

Another interesting regime to study is related to the cre-
ation of maximally entangled Bell states. Assume that we
have initially two complex pure states, with Bloch vectors

a� �1,0 ,0� and b� �0,1 ,0�, respectively. Assume some in-
teraction associated with the following parameters:

3 = 1, 1 = 2 = 0.

The initial complex C qubits are given, respectively, by
�16�

��
A�0� =

1

2

1 1

1 1
�, ��

B�0� =
1

2

1 − i

i 1
�

and the evolution operator of the overall system assumes in
this case the form

U = cos t1A
� 1B − i sin t�3

A
� �3

B =�
e−it 0 0 0

0 eit 0 0

0 0 eit 0

0 0 0 e−it
� .

�30�

Then, we obtain by partial traces the final states

��
A�t� =

1

2

 1 cos 2t

cos 2t 1
�,

��
B�t� =

1

2

 1 − icos 2t

icos 2t 1
� .

At the time tBell=� /4, the purity of each C qubit goes to a
minimum and �if we choose a suitable basis for �B� the over-
all state �AB�t= tBell� is equivalent to a Bell state 1

�2
��00�

+ �11��. We recall that an entanglement optimization proce-
dure can be then implemented as described in Ref. �16�.

As above, let us describe this dynamics as the complex
projection of a quaternionic unitary dynamics between
quaternionic pure Q qubits. By purification the initial and
final pure Q qubits, respectively, can be easily obtained:

�A�0� =
1

2

1 1

1 1
�, �B�0� =

1

2

1 − i

i 1
�

and

�A�t� =
1

2

 1 cos 2t

cos 2t 1
� + j

e−i�

2

 0 − sin 2t

sin 2t 0
� ,

� � R , �31�

�B�t� =
1

2

 1 − icos 2t

icos 2t 1
� + j

e−i	

2

 0 − sin 2t

sin 2t 0
� ,

	 � R . �32�

The quaternionic unitary evolution operators read

UA�t� = 
cos 2t + je−i�sin 2t 0

0 1
� , �33�

UB�t� = 
cos 2t + ke−i	sin 2t 0

0 1
� �34�

and the corresponding anti-Hermitian quaternionic Hamilto-
nians turn out to be constant:

HA�t� = − 
 d

dt
UA�t��UA†�t� = 
− 2je−i� 0

0 0
� �35�

and

HB�t� = − 
 d

dt
UB�t��UB†�t� = 
− 2ke−i	 0

0 0
� . �36�

The expectation value of the �Hermitian� energy observ-
ables �HA,B�t�� on the states �A,B�t� reads

��HA,B�t����A,B�t� = Re Tr��HA,B�t���A,B�t�� = 1.

We remark that, in this case, the quaternionic unitary op-
erators UA�t� and UB�t� satisfy a one-parameter semigroup
composition law U�t�U�t��=U�t+ t�� for all t, t�. The time
evolution of the density matrices ��

A,B�t� is ruled by the dif-
ferential equations

d

dt
��

A�t� = − �H�
A,��

A� + H�
A*��

A − ��
A*H�

A = sin 2t
0 1

1 0
� ,

�37�
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d

dt
��

B�t� = − �H�
B,��

B� + H�
B*��

B − ��
B*H�

B = sin 2t
0 1

1 0
� .

�38�

The probabilities Pc
�A

�t� and Pc
�B

�t� that the quaternionic
states �A�t� and �B�t� are complex are, respectively, given by
�see Eq. �5��

Pc
�A

�t� = Re Tr�P��A�t���A�t�� =
1

2
�1 + �cos 2t�2� , �39�

Pc
�B

�t� = Re Tr�P��B�t���B�t�� =
1

2
�1 + �cos 2t�2� �40�

and coincide with the probabilities that the reduced complex
density matrices ��

A�t� and ��
B�t� become pure �16�, since at

the same time the quaternionic terms ��
A,B vanish �see Eqs.

�31� and �32��.

V. CONCLUDING REMARKS

The main implication of the above results is very surpris-
ing. For any compound system made of two C qubits, each
subsystem can be described by a pure Q qubit, which under-
goes a unitary quaternionic time evolution. Hence, one can

attribute to each subsystem “individual” properties, in con-
trast to what happens in the realm of CQM where reduced
density matrices do not allow a similar interpretation. Nev-
ertheless, the correlations between subsystems do not disap-
pear at all, but are implicitly taken into account in such in-
dividual evolutions, as the examples analyzed above point
out. These results point to an apparently puzzling situation,
in which the same state of a physical system is entangled in
CQM, while it seems to be “separable” in QQM. Moreover,
the physical interpretation of the interaction discussed in Sec.
IV A that can be given in the realm of CQM �“decoherence
modeling”� is untenable in QQM, where the two Q qubits are
described by pure states all the time even under the effect of
interaction. The apparent purity loss can be simply attributed
to experimental inadequacies �we recall once again that the
influence of quaternionic terms �� can only be revealed by
measuring genuinely quaternionic observables, see Sec. II�.
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