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Electron-positron pair creation by Coulomb and laser fields in the tunneling regime
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Electron-positron pair creation due to combined nuclear Coulomb and strong laser fields is investigated for
the tunneling regime. The energy spectra and angular distributions of the pair are found analytically. The
energy spectrum for each lepton exhibits a sharp maximum located well above the threshold for any polariza-
tion of the laser field. The angular distributions of leptons depend on the polarization: for linear polarization,
both leptons move predominantly along the laser beam direction; for circular polarization, leptons are emitted
in a thin-walled cone centered on the laser beam. The spectral and angular distributions found are governed by
the intensity and frequency of the field, and the frequency-independent total pair creation rates comply with the
previously known results. A method of calculation—the vicinal approximation—that uses the fact that the pair
production takes place in the close vicinity of the nucleus is suggested.
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I. INTRODUCTION

We consider the electron-positron pair creation due to a
strong laser field and the Coulomb field of a nucleus. This
combination of fields may create electron-positron pairs via a
multiphoton process, sometimes called the nonlinear Bethe-
Heitler process [1]. Such a scheme of electron-positron pair
creation has received attention over the last decade due to
advances in laser technology, which may permit it to be
tested in an x-ray free-electron laser (XFEL) experiment [2].

The multiphoton pair creation by combined strong laser
and Coulomb fields was first treated by Yakovlev [3]. He
considered total and partial cross sections of the pair creation
process in the case of a circularly polarized laser field.
Mittleman [4] later calculated the cross section and pair cre-
ation rate for the low-intensity linear polarization case. More
recently, Refs. [5-7] have considered the closely related
problem of multiphoton pair creation due to an ultrarelativ-
istic nucleus colliding with a strong, circularly polarized la-
ser field. The energy spectra and angular distributions of the
produced leptons were calculated numerically over a range
of Lorentz factors of the nucleus. Reference [7] also treated
the linear polarization case and the scenario in which the pair
is created in a bound state of the nucleus, and Ref. [8] con-
sidered pair creation in the vicinity of heavy ions. Reference
[9] derived the total creation rate due to a circularly polarized
laser field incident on a nucleus, and also calculated numeri-
cally the lepton energy spectrum for strong fields.

One approach widely used in the literature treats the in-
teraction of leptons with the laser field exactly by use of the
Volkov states [10,11]. It is analogous to the Keldysh approxi-
mation used for the problem of multiphoton ionization of
atoms or ions [ 12-19]. Alternatively, Milstein et al. [20] have
recently derived pair creation rates and cross sections for
different cases of polarizations and different parameters of
the laser field by application of the optical theorem and use
of the polarization operator of a photon in a laser field.
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Overall, the total rates of pair creation in the problem
considered have been studied in detail by different methods,
which all result in clear, simple analytical expressions. How-
ever, the more detailed characteristics of the problem,
namely, the spectral and angular distributions of the leptons,
have not been examined with the same level of detail. Mean-
while, considering future experimental studies on pair cre-
ation, which is one of the possible purposes of the XFEL
facilities, will require thorough knowledge of these charac-
teristics and their dependence on the parameters of the laser
field.

In the present work, we address the problem of pair cre-
ation in the tunneling regime. We propose a variant of the
Keldysh approach, the so-called vicinal approximation,
which takes into account important physical properties of the
system and simultaneously greatly simplifies the calculations
required. We then find a complete analytical solution to this
problem, deriving analytical expressions for the angular dis-
tributions and energy spectra of the created leptons, as well
as photon absorption spectra. The linear and circular laser
polarizations are studied in detail, and a brief outline of the
general elliptic case is presented. Our preliminary results
were discussed in Ref. [21].

II. THEORETICAL FRAMEWORK
A. Laser parameters

The laser frequency w is assumed to be small, so that it
satisfies the adiabatic condition

w<<m,

(2.1)

where m is the electron mass. Unless stated otherwise, we
use relativistic units i=c=1, e?=a, ¢>0, where —e is the
electron charge. Second, the laser electric field strength £ is
considered to be small in comparison with the QED critical

field <5'L.=1712/eE 1.3X 10" V m™!, so that their ratio
F=EIE.<1. (2.2)

Third, the adiabatic (intensity) parameter of the problem ¢ is
presumed to be large,
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(2.3)

Equations (2.1)—(2.3) together describe the tunneling regime
for pair production. This regime may be achievable in future
experiments, since it is expected [2,22] that XFEL facilities
will be able to produce electric field strengths up to &£
=10"'6, at frequency w=0.002m—-0.02m. Conditions
(2.1)-(2.3) may be equivalently expressed by the combined
inequality

1< é<mlo. (2.4)

B. Amplitude and probability

Consider the field produced by a plane electromagnetic
(e.m.) wave and the Coulomb field of a bare nucleus in the
nuclear rest frame, with the nucleus placed at the coordinate
system origin. The nuclear Coulomb potential for an electron
at radius r is thus —Za/r, where Z is the atomic number of
the nucleus.

The amplitude of a multiphoton process is given by a
matrix element averaged over the period T=27/w of oscil-
lations of the e.m. plane wave (see, e.g., Refs. [17,19]). Spe-
cifically, for the case of pair creation, the amplitude reads

M, TJ (i (D]~ Zatr|ys, [(D)dt. (2.5)

Here #, and ¢p+ are the wave functions of the electron and
positron. The subscripts — and + henceforth denote electron
and positron variables, respectively, and the superscript *
denotes a complex conjugate. Note that the electron and pos-
itron states are indexed by their momenta p,. The Floquet
theorem guarantees that we may always write the wave func-
tion ¢, of these particles in the form

¢P¢(r’t) = cppt(r,t)exp(— iE.1), (2.6)
where E, is the mean quasienergy for the particle (see Sec.
I D), and ¢, (r.?) is a periodic function of ¢ with the period
T.

The matrix element (||} in the integrand in Eq. (2.5)
means a conventional integral over spatial coordinates, that
is,

« « « d’r
(s, D11y, ()= J Y r0)y (o)== (2.7)
Both the electron and positron states are described here by
complex-conjugated wave functions, since they both repre-
sent the created particles. Together with the momenta p.,
each wave function here is characterized also by the spinor
index A,, which is not depicted explicitly.

The probability of the multiphoton process is proportional
M, A which should be
multiplied by appropriate, conventlonal statistical factors
(see, e.g., [17,19] for details). Using this rule, one writes the
rate of pair creation, W, as
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) d% dp,
W= 277% g 5(E +E _nw)E | p.p_ |2 (2 )3 2 )3
(2.8)

Here n is the number of photons absorbed, summation over
s, takes into account two spin states of each lepton s_,s.
==+1/2, while summation over A, refers to the spinor indices
(for the sake of simplicity this summation is not presented in
the following formulas explicitly). The Dirac & function im-
poses the energy conservation law

E.+E_=now. (2.9)

In the case w<<m, Eq. (2.8) may be simplified by noting that
the sum over n can be replaced by a corresponding integral,
which gives the creation rate the asymptotic form

2 &dp_ d&p
=— M, , ——=—=.
> f Mool Gy Gy

Taking partial summations and integrations here, one finds
expressions for the differential probabilities dW, which de-
scribe the energy spectra and angular distributions for the
pair, as well as the photon absorption spectra.

(2.10)

C. Volkov wave functions

Presuming that the nuclear charge is not large, i.e.,

Za<1, (2.11)

we treat the interaction of leptons with the Coulomb field
perturbatively to first order. The lepton state ¢, in this ap-
proach, which stems from Refs. [3,12], can be described by a
Volkov wave function that takes into account the lepton in-
teraction only with the e.m. plane wave.

Let A=A(d) be the four-vector potential of the electro-
magnetic plane wave, where the scalar ®=(kx), k being here
the light four-wave-vector, k>=0, and x=(t,x,y,z) the usual
spacetime coordinate. We use the conventional notation that
a*b,=(ab), and a“aﬂ=a2. In the Lorentz gauge (dA)=0, the
state of the electron in the e.m. plane wave is described by
the Volkov wave function W_ (see, e.g., Ref. [23] for a deri-
vation)

\If_:<1 > )('yk)(yA)>exp(lS) —, (2.12)

where ¢>0; p=(e,p) is the electron four-momentum (for
clarity we temporarily drop the = subscripts for it), p
=(Pr>PysP2); v=(¥",y) are the Dirac matrices; u, is a free

Dirac four-spinor, which satisfies
(yp)u, = muy; (2.13)

and S_ is the classical action for the electron in the electro-
magnetic wave,

(kx)
——(px)+J & )((pA)+—A2>dCI) (2.14)

Henceforth, we assume that the electromagnetic wave propa-
gates along the z direction. Then k=(w,0,0,w), so that
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(kp)=w(e-p,), P=w(t-z), and it is convenient to define

n=e-p.. (2.15)

Equation (2.13) implies that p>=m?, so that the leptons are
created on the mass shell. It follows that >0 and

m*+ K> = 1 M+
27n B 2n

where «’= p§+p§. The four-vector potential of the electro-
magnetic wave may be written as

p.= , (2.16)

bl

A(D) = Ea(<I>) = E[O,a(<1>)], (2.17)
w w

where a(®) is the polarization of the wave and we have

chosen A°=0. This polarization satisfies a(®)-k=0. We may

now write the electron wave function (2.12) and action

(2.14) in a clearer form:

v_= (1——(%) y)(ya))exp(,S)_, (2.18)

:_(px)+—f e ((pa)+—§a )dCI) (2.19)

Similarly, the positron wave function and the action read

v, = (1 P f)(ya))exp(i&)—ﬁ"—, (2.20)
27 V2e

o(t-2)
- (px) - m_gf ((pa) - m—gaz)dfb. (2.21)
wn 2

The spinor i, satisfies the Dirac equation (2.13) describing
the propagation of a free positron, but in calculations it is
convenient to express it conventionally, via the spinor that

describes an electron in the “lower” continuum using an op-
erator of the charge conjugation Ciy=v>y/",

ﬁp(sp) = ’quip(— 8p)

Here we have to specify an energy +e,=*(p*+m?)""? of the
state described by the corresponding spinor; the spinor
uip(—sp) describes an electron state with negative energy,
i.e., the state in the lower continuum. (For clarity, spinors are
presented below without reference to the energy of the state
they describe.)

(2.22)

D. Vicinal approximation

The interaction of leptons with the Coulomb field must be
strong, for otherwise the probability of pair creation would
be very small. We therefore presume that the most important
events during pair creation take place in the close vicinity of
the nucleus, i.e., we presume that the pair is created at dis-
tances that are comparable to or smaller than the Compton
radius r.=1/m. We will verify later that this presumption is
correct by direct calculation [see Egs. (3.26) and (4.26)].

Having this presumption in mind, we can presume now
that |z|<1/m in Egs. (2.18) and (2.19). Importantly, in the
adiabatic regime w<<m, so it follows that
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wlz] < 1. (2.23)

We call inequality (2.23) the vicinal approximation, since it
arises from the close vicinity of pair creation to the nucleus.
Since wz is small, we can expand the action (2.19) in a
Taylor series about @ = wr to first order in wz, and replace the
argument w(z—z) with wf in the preexponential term of the
wave function (2.18). Thus, in the vicinal approximation, the
Volkov wave function of the electron is greatly simplified:

W(r,t) = O(wt) ,—exp{ ( (t)-r—ftE(s)ds)},
(2.24)

where Q(wr) is the matrix

0(wr)=1- ’;iij— Phalen],  (225)

P()=(py,py.pL(1)) is the quasimomentum, and E(s) is the
quasienergy. We call p;(¢) the longitudinal quasimomentum.
Further applying Egs. (2.16) to the Taylor expansion permits

us to present the longitudinal quasimomentum and quasien-
ergy as

m*+ [k F éma(wt)]? — 7
27

pra(t) = , (2.26)

m* + [k ¥ éma(wt) > + 7

Ei(t) = 27]

, (2.27)

where k=(p,,p,,0). Again, for the sake of clarity we have
suppressed the labels = in all variables on the right-hand
sides of these equations, except in front of & where it is
essential.

The mean quasienergy E can then be derived from Eq.
(2.27), via its definition

_ 1 (T
i:}Jo

Note that from Eq. (2.24) we then may write W(r,?)
—iEt

E.(s)ds. (2.28)

o(r,1) just as we did in Eq. (2.6), where ¢(r,t) is a
perlodlc function of ¢ with period 7.

The advantage of the vicinal approximation is that the
time and space variables are decoupled in the wave function
(2.24), greatly simplifying evaluation of the integrals in the
amplitude (2.5). That is, the amplitude becomes

1 (T
M,, = }fo K(OV()expliS(z)]dt, (2.29)
where the factor () includes the spinor variables,
1 _ = * ok
K(t) = 2(8_—8+)1,2[MI,_Q_(wt) 70Q+(wt)up+], (2.30)

V(t) is the Fourier transform of the Coulomb potential,
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d7a
p.(0) +p-(1)]*

and S(r) is the contribution of the total quasienergy E(r)
=E,(1)+E_(1) to the action,

S(1) = ftE(s)ds.

II1. LINEAR POLARIZATION

V(1) = - (2.31)

(2.32)

Consider an electromagnetic plane wave with linear po-
larization

a(®) =(0,—sin $,0,0). (3.1)

In this sectlon we write the lepton momenta as p.
=(e,, K%, K, " p..)=(e..p.). The € and H superscripts denote
the electrlc and magnetic field directions, respectively, which
correspond to the x and y coordinate directions. Further, .

( H) is the lepton momentum transverse to the wave
Vector

A. Probability

For the polarization given by Eq. (3.1) the total quasien-
ergy found from Eq. (2.27) may be rewritten in the simple
form

E(t) = M((sin wt + B)* + x?), (3.2)
in which
2.2 1 1
x:é—m(—+— , (3.3)
2\ -
1 &in - iEn,
B=—— (3.4)
mé M+,
1 e+ 17 12
X=—(m2+ N+ = (m&p)*)
mé N+ 7,
(3.5)
From Eq. (3.2), the mean total quasienergy is clearly
E=N172+ B+ X). (3.6)

The mean quasienergy has a minimum when k,=x_=0, 7,
=n_=m(1+&/2)"2. At this minimum,
\Emg

E=2m(1 + &) = (3.7)

in the tunneling regime. This minimum is the threshold en-
ergy required for pair creation, and it grows linearly with &:
E=2m(1+£12)?=\2mé.

Also from Eq. (3.2), one finds the action (2.32) is

A .
wt — — cos wt(sin wt + 4,8)). (3.8)
2m

5(z)=ﬂ(5
w\m

Equation (2.1) ensures that the coefficient m/w in front of
this expression is large. Consequently, the integral over time
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in Eq. (2.29) can be evaluated by the saddle point method.
Labeling the saddle points as t, j=1,2,..., we find for the
amplitude

1/2
EIC(t)V( )( ) ¢S (3.9)

iE' (1))

where the prime denotes differentiation with respect to .
The saddle points must satisfy the following condition:

S'(t) = E() =0. (3.10)

In other words, the pair is produced at the moment it has zero
quasienergy. From Eq. (3.2), this condition is equivalent to

sin wt;=— Biy. (3.11)

We are interested only in the saddle points with the real parts
of #; lying in [0,T], so there are only two pairs of complex
solutions of Eq. (3.11): one solution of each pair lies in the
upper half complex plane and another in the lower half com-
plex plane. Since pair creation requires absorption of energy
from the laser field, the theory of adiabatic transitions
[24,25] specifies that only the saddle points lying in the up-
per half complex plane contribute to pair creation. Hence we
have two saddle points,

ot; =sin" (B+ix)+ 7 mod 2, (3.12)
oty =sin"'(= B+iy) mod 2. (3.13)
These saddle points have the properties that
Im(wt,) = Im(wt,) >0 (3.14)
Re(wt,) = m—Re(wt;) mod 2. (3.15)

Examination of Eq. (3.8) reveals that the action S(#;) conse-
quently satisfies

Im[S(t;)]=Im[S(t,)] > 0 (3.16)

Re[S(1))]=——-Re[S(t;)] mod 27.  (3.17)

The preexponential terms of the sum in Eq. (3.9) prove to
be the same for either saddle point. This fact combined with
Egs. (3.16) and (3.17) permits us to express the amplitude in
terms of only one saddle point, for example ¢,. By substitut-
ing Egs. (3.16) and (3.17) into Eq. (3.9), the probability be-
comes

w_z |’C(f1)|2V(f1)2

|E,(tl)| exp{— 2 Im[s(tl)]}

M, |*=

X {1 + cos{i(éw— 2w Re[S(tl)])] }
(3.18)

The phase within the cosine is large, being proportional to
m/ w, so that, as the lepton momenta vary slightly, we expect
the cosine term to oscillate very rapidly. As a result, we may
neglect the contribution of this term to the integral in Eq.
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(2.10), and hence to any of the spectra or rates discussed in
the present work. We therefore ignore this term henceforth.

B. Pair creation rate
It now follows from Eq. (3.18) that the pair creation rate
(2.10) is

M -2 lS(ey )]}dp dp*
£ @m> >

(3.19)

W:sz

Let us find the minimum of Im[S(#,)] as a function of
electron and positron momenta For thlS purpose, it is con-
venient to define P= (K+,K+ , 7]+,Kg k", m_) and to write all
functions as explicit functions of both P and ¢, noting that the
saddle point #,=7(P). The minimum of Im[S(z;,P)] then
satisfies VpIm[S(#y, Py)]=0, and corresponds to the most
probable configuration of electron and positron momenta.

It is instructive to compare the current problem to the
well-known static case for homogeneous electric and mag-
netic fields, where the fields are orthogonal and equal in
magnitude: i.e., E-B=0, B>=E?. In this case, any charged
particle would accelerate mostly in the E X B direction re-
gardless of the sign of its charge. We may expect therefore
that the minimum of Im[S(¢;, P)] is achieved when the elec-
tron and positron move along the z direction.

By considering the partial derivatives of Im[S(7,, P)] with
respect to Ki and KZ;, it is straightforward to verify that at the
minimum of Im[S(z;, P)],

K,=Kk_=0. (3.20)
Further, from the symmetry of the problem, we expect that
the electron and positron momenta should be equal at the
minimum of Im[S(z;, P)], so we expect 7,=7_, since 7 de-
fines the z-direction momentum p, by Egs. (2.16). This con-
dition together with Eq. (3.20) permits the form of the
quasienergy (2.27) to be simplified, and so the action (2.32)
becomes

S(tm) =~ f 1+ & sinX(wr')] + o)t
n
(3.21)

at the minimum of Im[S(z,, P)].

Applying Eq. (3.20) to Egs. (3.4), (3.5), and (3.11), we
also find that 8=0, y=(m>+ 77)">/mé, and sin(wt,) =iy, re-
spectively. We presume that at the minimum 7~m [we
verify this in Eq. (3.24) below]. Then, for £> 1, we find

1 12
w|t1|=—(1+ﬁ2> <1. (3.22)
3 m
It follows from the inequality that sin(wt')=wt' in Egq.

(3.21). After applying Eq. (3.22) to the action (3.21), we then
have
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2 (m*+ 772)3’2

S(n) =
()135’: m>n

(3.23)

The imaginary part of this expression is minimal at 7
=m/+\2, so Im[S(t,,P)] is minimal at

P—(ooﬂooﬂ> (3.24)
00— bl ,\/59 s ’\;”2 .
with minimum
'3
Im[S(7),Py)] = L (3.25)

It is important to note that from Eq. (2.26) the quasimo-
mentum at the minimum is

Blr).= (0,0,— %)
V2

Equation (3.26) shows that the typical momenta in the Cou-
lomb matrix element of Eq. (2.5) are [p|~ m. This indicates
that the distance from the nucleus within which the pair is
created is comparable to the Compton radius. That is, r
=<1/[p|~1/m. This estimate supports the validity of the
vicinal approximation introduced in Sec. II D.

We may expand Im[S(¢;,P)] in a Taylor series in powers
of P about the minimum P,. This expansion may be calcu-
lated by using Egs. (3.2)—(3.8) and (3.11). The result to sec-
ond order in P is

(3.26)

[
/

V3
Im[S(¢,,P)] = f+ (P Py)"Hp (P - Py)

_
V3

FL+AP)],

(3.27)

where H Py is the 6 X 6 Hessian matrix of second-order partial
derlvatlves of Im[S(ty,P)] at P=P,, and (P—P,)” denotes
the transpose of (P—Pg). In the regime &> 1, this matrix is

1 00 1 00
T2 42
0 20 0 00
7 1
~| o o< o o -
" V3 3 3
Po™ om2F
-5 00 1+—5 0 0
4& 4&
0 00 0 20
1 7
0 0 - 0 0 -
3 3

(3.28)

The higher-order 1/& terms are included in the matrix so
Hp, is not singular. From Egs. (3.27) and (3.28), we may
thus write for £> 1
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7(67/_ + 517+) + 2517_577+ 11)2 + (KH)Z
12m? 2m?

(kS + kD)7 (k= )

+ b
2 8Em>

A(P) =

™ (3.29)

where 67,.= .= m/ \2 is the variation of 7,.

The factor \3/F in Eq. (3.27) is large since F<1, so we
can apply the saddle point method in order to evaluate the
integral in the pair creation rate (3.19). We now change in-
tegration variables in the integral (3.19) from d’p_d°p, to
d®P, so the minimum point Py, is the only saddle point for the
new integral. The differential pair creation rate thus becomes

243 d°P
dw=51 -—A(P , 3.30
exp( 7 ( ))(277)6 (3.30)
where the coefficient
K(t)W(t ap. \2 2\3
E| (t)V(t))])? (&) exp(_ \ )

Sy |E (t1)| &77 PO ‘7:

(3.31)

and the saddle point 7, is evaluated at Py,

The only spin-dependent term in B is K(z;). In the Ap-
pendix, we verify that the spin-dependent factors give the
following contribution to the creation rate:

k(P =5 (3.32)

Further, Eqs. (3.26) and (2.31) permit us to calculate the
matrix element of the Coloumb potential,

27 \?
T “) , (3.33)

I e

and Egs. (3.2), (3.22), and (3.24) together produce E'(t;)
=i2\3Fm? in the £>1 regime. From Eq. (2.16), the partial
derivative dp,/dn=-3/2 at the saddle point. Hence,

8772Z2a2w Z\E
\3 o ——exp| -

T (3.34)

Straightforward integration of Eq. (3.30) produces the fol-
lowing result for the pair creation rate in the linear polariza-

tion case:
W Zza2m< F )3 ( 2\5)
=——|—%=) exp|-—.
77'\/5 2\@ P F

We will check later [see Eq. (4.37)] that this formula agrees
with the previously known results.

(3.35)

C. Positron spectrum

Let us find the energy spectrum of the positrons. We may
integrate the differential pa1r creation rate in Eq. (3.30) over
the electron momenta dx°dx’'d 7_, so that
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dW =W, dildkd,. (3.36)

Clearly, W, represents the differential positron creatlon rate,

as it is a function of only the positron momenta (k5 , k,", 77+)
We then have
3
W, =B, exp(— EA+(Kf, <, m)) , (3.37)

where G= F& and the exponent and coefficient are, respec-
tively,
(K‘g)2 ()&

+(K+’ K+ ’ 7’+) - m2 7m

8( 57]+)2§2
+

2 )

(3.38)

B,=—t Zza2<f>3/2 ( 2\6) (339)
L= (55 exp| = — | (-

2 5/2w5 ém

The positron energy spectrum is dW/dE,, where E, is the
positron mean quasienergy in the laser field. (An empirically
important property of the positrons created is their energy
outside the laser field. If one assumes that the positron leaves
the focus of the field adiabatically, then its energy outside the

laser field is exactly its mean quasienergy E,.)

In order to find the positron energy spectrum, we must
write dW (3.36) as a differential form which includes dE,, so
that a change of variables is required. The transformation of
dW under a change of variables v(y)=x from x=(x;,...,x,)
to y=(y;,...,y,) for the saddle point x,=1(y,) reads

Jy W = yo)ld"y,
(3.40)

dw = B+|Jy0V|€Xp[(y - yO)T(JyOV)TH+(

where JYOV is the Jacobian matrix of v evaluated at the saddle
point y,, and |Jyov| is its determinant. From Eq. (3.38), the
matrix H, is simply the diagonal 3 X 3 matrix

_
!’3

H,=-— diag{1,&.8¢/7}. (3.41)
gm

From Egs. (2.27), (2.28), and (3.1), and the fact that >0,
one finds that

N =E, —[E7 — i —m*(1 + &12)]"2. (3.42)

Equation (3. 42) deﬁnes the required coordinate transforma-

tion VE(K " E)= ( K. s " n+). At the saddle point, E,,
—m(3+§2)/2\2 m§2/2\2 for £>1. Substituting vz and
the saddle point into Eq. (3.40) and then integrating over Kf
and KIK, one finds the positron energy spectrum

dw 8 Zzaz( F )5’2 ( 2\6)
= — X - -
dE, @m*\71 € \2\3 T F

~/ = b3 2
y 3243 <E+ & )
exp| — — - .
P TFE\ m 2\5

(3.43)
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D. Angular distribution

Let us find the positron angular distribution dW/d(},
which indicates the direction of the mean velocity of the
positron within the focus of the laser field. (If parameters of
the field are known, one can extract from this information the
angular distributions of the leptons outside the laser field.)
We employ the spherical coordinates (|p,|,6,¢) and dQ)
=sin 8 d6f de. In this coordinate system,

Kf =|p.|cos ¢sin 6, KZj = |p,|sin ¢ sin 6,

7= (m + Ip+|2)l/2 = |p.lcos 6,

which follows from Eq. (2. 16) These together define the
transformation vq(|p,|, Ky s " 1,). The saddle point
in the spherical coordlnates is located at |p,|=m/2v2 and 6
=0. Note that the azimuthal angle ¢ is not well defined at
this saddle point, so we keep all orders of ¢ in the differen-
tial positron creation rate exponent A,. After application of

aw 1 Zzazm( F )2 ( 243 )
= —— ($).4 -
Q16w € \2v3) TP\T F

3
X exp| — @(cos2 o+ &sin’ ) ). (3.45)

(3.44)

We assume in this derivation that the parameter G= F¢& is
small, i.e., G<<1, so that the angular distribution is inte-
grable. The condition G<<1 represents a special case of the
tunneling regime, and it is equivalent to the additional in-
equality m/w> & [see Eq. (2.4)]. The operational param-
eters of an XFEL may fall just inside this regime [2].

E. Photon absorption spectrum

Let us find the spectrum of the number of absorbed pho-
tons in the pair creation process. In Sec. II B, we used the
adiabatic condition w<$m (2.1) to remove the sum over n
from the pair creation rate in Eq. (2.8). We now define the
photon absorption spectrum as

&’p, d’p_
Q2m)? 2m)?*
(3.46)

W, = 2772 f|Mp+,, PSE - nw)

where the total mean quasienergy E=E,+E_. Note that, by
comparison to the pair creation rate (2.8), =,W,=W, or
W, dn=W for o<m.

We now replace the Dirac 6 function by its Fourier trans-
form:

_ 1 =
SE-nw)=— f e MEnO) gy (3.47)
2

From Eq. (3.18) we then write
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_ _2 f mw,.|’C(tl)V(t1)|2

E' (1))

d’p, dp_

X exp{i7E — ZIm[S(fl)]}(z (2 )%

(3.48)

Just as shown in Sec. III B for the integral in Eq. (3.19),
the integral over momenta in Eq. (3.48) may be evaluated by
the saddle point method. From Egs. (3.2)—(3.5), the i7E term
in the exponent of Eq. (3.48) does not have a 1/F factor, so
that when F<<1 the saddle point P is the same as it was in
Eq. (3.24). Upon application of the saddle point method, the
i7E factor is instead expanded about P, to first order. Hence,

= d°p
W, =B | eMEPI19] exp[C(P, 7)]~——d
2m

2me"
(3.49)
where the exponent
- 2\6
C(P,7) =i7VpE(Py)(P — Py) — ?.A(P). (3.50)

With reference to the definition of .4 (3.27) and employing
some linear algebra, it can be shown that

W,= W% f explif E(Py) — nw]}

X exp(— ?[VPE(PO)]TH;’EVPE(PO))dT

(3.51)
From Egs. (3.3)—(3.6), (3.24), and (3.28), we then have that

for £>1
1) [ mé
W,=W— | exp|ir| = —nw
2 \r'z

-
'3
X exp(— 1\2—8}'m2§-472)d7. (3.52)

Evaluating this integral produces the photon absorption spec-
trum in the tunneling regime:

o P £l 2
" (277)3/2\6 & 2\6 P F
320? ( m§2)2:|

\Efmzf‘ " w\E ’

IV. CIRCULAR POLARIZATION

X exp{— (3.53)

Consider an electromagnetic plane wave with circular po-

larization,
a(®) =(0,-sin ®,cos P,0). 4.1)

In this section, it is natural to employ the cylindrical coordi-
nate system, so we write the lepton momenta as p
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=(e,kcos @,k sin ¢,p.)=(e,p), and further w=(x cos ¢,
K sin ¢). Here the subscripts = have been omitted for clarity.
It is also convenient to write the mean lepton angle and dif-
ference of lepton angles, respectively, as

¢t e

p=—T"— and o¢=

Py~ P
5 —_— .

> (4.2)

A. Probability

For the polarization given by Eq. (4.1), the total quasien-
ergy found from Eq. (2.27) may be written as

E(t) =\ x + Bsin(wt — ¢ — 0)], (4.3)
where \ is the same as in Eq. (3.3), and here
2 K, — N K_
B= _M’ (4.4)
mg o+ 7

2 2
K.1m_+ K-
x= + 7. 77+)’ (4.5)

<m2(1 +E) +pm+
/e

1
m2 52

_1< Kel-+ K74
o =tan -

KT — K_7],

tan d)). (4.6)
From Eq. (4.3) the mean total quasienergy of the lepton
pair is

E=\y. (4.7)

The mean total quasienergy is minimal at x,=x_=0 and
no=n_=m(1+ &), with minimum value

E=2m(1 + &) =2mé (4.8)

in the tunneling regime. This minimum is the threshold en-
ergy required for pair creation, and, just as in the linear po-
larization case, it grows linearly with &.

It also follows from Eq. (4.3) that the action (2.32) is

S(1) = T(£wr+ B os(wt— o a)>. (4.9)
w\m m

Just as in Sec. III, the action has a coefficient m/w, which is
large by Eq. (2.1). Hence, the integral over time in Eq. (2.29)
may be evaluated by the saddle point method. For saddle
points ¢, the amplitude M, a has the same form as in Eq.
(3.9).

The saddle points must satisfy E(7;)=S"(z;)=0, which
here is equivalent to

sin(or, - g— o) =— 2. (4.10)
B

The right side of Eq. (4.10) is real, and we presume |x/g|
>1 [verified in Eq. (4.20) below], so there is only a single
pair of saddle points with real part in [0,7]: one lies in the
upper half complex plane and the other in the lower half
complex plane. Just as in the linear polarization case, we

choose the saddle point lying in the upper half complex

PHYSICAL REVIEW A 76, 012107 (2007)

plane [24,25], and label it #,. With reference to Eq. (3.9),
since there is only a single saddle point, the probability be-
comes

M w? |lC(t0)|2V(t0)2

P+p_|2 = ;T |E/(t0)| exp{— 2 Im[S(tO)]}

(4.11)

B. Pair creation rate

From Eq. (4.11) the pair creation rate (2.10) is

WwEf

K (1) V(t9)*

3 3
R P s s AP~ 4P+
[iE' (1))

2m? 2w
(4.12)

This formula differs by a factor of 2 from the rate in the
linear polarization case (3.19) since there is only a single
saddle point #; here.

Let us find the minimum of Im[S(z,)] as a function of the
electron and positron momenta. For this purpose, it is con-
venient to define P=(x_,7_,k,,7,,P,¢) and to write all
functions as explicit functions of both P and #, noting that the
time saddle point zy=t,(P). The minimum of Im[S(z,,P)]
satisfies VpIm[S(z, P)]=0.

The circularly polarized e.m. plane wave imparts angular
momentum to the lepton pair, so we expect that «, and k_
are not zero at the minimum. By symmetry, we expect that at
the minimum the electron and positron momenta are the
same in size, and the total momentum of the pair is con-
served. Hence we deduce that at the minimum

(4.13)

K. =-K_,

N=7M-=17. (4.14)

Equation (4.13) implies «,=k_=k. Moreover, if we choose
the azimuthal angles so that ¢_e[0,27] and ¢, € [7,37],
then this condition means that

(P+:()D_+7T. (415)

It follows by Egs. (4.2) that at a minimum P, of Im[S(z,, P)]

¢=7 (4.16)

and

(4.17)

Applying conditions (4.13) to Egs. (4.4)—(4.6) at this mini-
mum, we also find that B=2«/mé, x=[m*(1+&)+7°
+K2]/m2§2, and o==+/2. The = sign here is due to the fact
that the angle o is not well defined under conditions (4.13).
The total quasienergy (4.3) is then simplified, so that the
action (2.32) becomes
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S(ty) = lJ ’ [m?(1 + &) + 77 + k* = 2mké cos(wt’ — @) ]dt’
n

(4.18)

at the minimum of Im[S(z,, P)].

Consider now the partial derivatives with respect to 7 and
« of Im[S(#y)] (4.18), which must be zero at the minimum.
This produces two further equations, which may be divided
by one another to derive the relation

K=m*(1+&) - (4.19)

Just as in the linear polarization case (Sec. III B), we pre-
sume n~m. In fact, since the circularly polarized wave is
equivalent to two distinct linearly polarized waves with par-
ticular phase and polarization, and since by its definition
(2. 15) wn is a frame invariant quantity, we expect 7
=m/\2 at the minimum. [This is verified below in Eq.

(4.24).] Then, from Eq. (4.19), k=m(1/2+&)"?=m¢, for
1.
At the minimum Eq. (4.10) now becomes
2 2
_x _mr+28)+ 7
cos(wty— @) = /—3= = Tzfz’ (4.20)

from which it can be seen clearly that |x/8|> 1. For £>1 we
find

7\
|wty— ¢ = <1+—) <. (4.21)
It follows from the inequality in Eq. (4.21) that
cos(wt’ — @) = F[1 - (wt' — $)/12] (4.22)

in the integral in Eq. (4.18). Applying Eq. (4.21) to the action
in Eq. (4.18), we find that

2 (24 )

S(n) =
()l]: m>n

[m2(1 +28) + 7]

(4.23)

The i 1mag1nary part of this expression [Eq. (3.23)] is minimal
at p=m/ P, Importantly, this minimum is independent of the
mean angle ¢, so the minimum P, is degenerate in ¢. This
can be verified by noting the partial derivative of the action
(4.9) with respect to ¢ is purely real. Hence, Im[S(z,, P)] is
minimal at

m | T S
Py=|mé, E,mf, ,2 2 2 7 , (4.24)

with minimum value

6
[ S(t9, Py)] = ~—. (4.25)
f
The quasimomentum (2.26) at the minimum is
- i m
plty) = (mf cos @,mé sin @,— _/—), (4.26)
242

so in the circular polarization the typical momentum in the
Coulomb matrix element of Eq. (2.5) is [p|~mé. This im-
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plies that, for &> 1, the distance from the nucleus within
which the lepton pair is created is much less than the Comp-
ton radius. That is, r=1/[p|<1/m. This estimate strongly
supports the validity of the vicinal approximation introduced
in Sec. II D.

From Egs. (4.9) and (4.10), Im[S(z,, P)] is independent of
@, so it is convenient to define P=(R, ¢) and write the imagi-
nary part of the action as Im[S(,,R)]. We now seek to ex-
pand Im[S(#y,R)] in a Taylor series about R,,. This expansion
is calculated using Eqgs. (4.3)—(4.10) and noting that Im[7,] is
a function of R,. To second order in R abut R, the result of
this expansion is

V301 T V/g
Im[S(t,R)] = ? + E(R -Ry) HRO(R -Ry) = ?[1 +A(R)],

(4.27)

where H, R, is the 5 X 5 Hessian matrix of second-order partial
derivatives of Im[S(7y,R)] evaluated at R,,. In the regime &
>1,

1000 O
7 1
0 -0 - 0
- 6 6
= ﬁo 010 0
Hp =~ T ) (4.28)
1 7
0 -0 - 0
6 6
0000 2m2§2
From Egs. (4.27) and (4.28), we then have
T(S% + S) +287.6m, Ok + Sk
A(R) = (67 77+)2 -7 | 0K, 2K_+§25¢2’
12m 2m

(4.29)

where 6n=n— m/\2 ok=k—-mé, and Sp=p—m/2.

The factor V3/F in Eq. (4.27) is large, so we may imme-
diately apply the saddle point method to evaluate the integral
in the pair creation rate (4.12). Clearly, the saddle point is the
minimum P,. The degeneracy of the saddle point Py in its ¢
component means that its contributions include an integral
over ¢ from 7 to S7/2. However, all terms in the integrand
of Eq. (4.12) prove to be independent of ¢, as expected by
the cylindrical symmetry of the problem, so this integral
merely contributes a factor of 27. Thus we have the differ-
ential pair creation rate

\6 d°R
dw=515 eXp(— ?A(R))W, (4.30)
where the coefficient
E |K:(t0)v(t0)|2 (ﬂpz) (9((P+a @—) 6_2\6/]:
~E@l \an) [y A ’
(4.31)

and the saddle point ¢, is evaluated at R,
The only spin-dependent term in B is K(#,). In the Ap-
pendix we verify that
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2
iy

From Egs. (2.31), (4.15), and (4.26), one finds the Coulomb
potential is

> K@) = (4.32)

2
2772“) . (4.33)

T

Equations (4.3) and (4.21) in the regime ¢>1 produce
E'(t))=i2\3Fm?, and, by Eq. (2.16), dp./ dn=—&* at R, Fur-
ther, the determinant |d(¢,,¢_)/d(¢,®)|=2. We then have
[see Eq. (3.34)]

8 Z*d*w ( 2\5)
= p

B=——Z2—"= _
€x f

434

Straightforward integration of Eq. (4.30) produces the fol-
lowing result for the pair creation rate in the circular polar-
ization case within the tunneling regime:

W 72a? ( F )5/2exp( 2\6)
27}” e - .
27 \243 F

This result is precisely the pair creation rate for a static
crossed field combined with a Coulomb field [26,27], which
is expected as the electric field strength is constant in a cir-
cularly polarized plane wave. The result is also in agreement
with the pair creation rate for a static homogeneous field
combined with a Coulomb field [28]. The pair creation rate
for a linearly polarized e.m. plane wave may be derived from
this result by assuming that the electric field in Eq. (4.35) can
be considered as time dependent, £=& cos(wt). The linear
pair creation rate will then be the average over one period of
the plane wave. We thus have the linear pair creation rate

1 (" 22 [ F 312
W= —f —=m| —=|cos(wt)|
243

TJy 2Nm
A)d,
Fleos(wt)|)

This can be evaluated by the saddle point method, since F
<1, with saddle points at 7=0,7. Hence,

W ZZzazm( F )ysz ( 2V§w2lz>dt
==\ exp| - ——
T ovr \23) .. P\ F 2

=———|—=| exp|-—],
2 2\3 P F

which is precisely the result derived above (3.35). The linear
polarization pair creation rate (3.35) is therefore also in
agreement with the static crossed field or homogeneous field
results.

The form of the circular polarization pair creation rate
(4.35) agrees with the form of the result derived without use
of the vicinal approximation [9], and both rates are also in
exact agreement with the result derived by use of the polar-
ization operator [20].

(4.35)

X exp( (4.36)

(4.37)
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C. Positron spectrum and angular distribution

Let us find the spectra of the positrons. We employ the
same approach to find these spectra as was done for the
linear polarization case in Sec. III C. In order to find the
differential positron creation rate W,, we integrate the differ-
ential pair creation rate in Eq. (4.30) over dk_dn_d¢, and
write

dW=W. dk.dn,. (4.38)
Note that by definition (4.2) the angle ¢ describes the rela-
tive orientation of the electron and positron momenta, so we
must integrate over this variable. We then have

3
W, =8, exp(— ?A+(K+, 7]+)>, (4.39)
where the exponent and coefficient are, respectively,
5k* 867
A, = ) + Py (4.40)

3 2 Z2a2< f) ( 2@) )
=———F—| —= |exp| - — | .
" (277)5/2\5 m \2y3 P F

We may write down the transformation of dW under a
general change of variable, as was done in Eq. (3.40). Such a
change of variable is required to find the positron energy
spectrum or the positron angular distribution. From Eq.
(4.40), the matrix H, for the circular polarization case is the
diagonal 2 X 2 matrix

V3
Ho==—o diag{1,8/7}. (4.42)

The positron energy spectrum is dW/dE,. From Egs.
(2.27), (2.28), and (3.1) and the fact that >0, we have

N, =E, —[E* - K> —m*(1 + &)]"2. (4.43)
This defines the transformation vg(«,,E,)=(k,,7,), which
permits dW to be expressed in terms of the differential dE,.
At the saddle point Py, E,q=m(3+4&)/2v2=\2mé*, for &
> 1. Substituting the coordinate transformation vy and the
saddle point into Eq. (3.40) and then integrating over k,, one
finds the positron energy spectrum

aw 1 z2a2( F )2 ( 2\'5)
= — X -
JE, 2m7 & \23) TN\ F

- /= 2
2 "’3 E —
X exp[— —7}§4<;+ _ 52\9) ] . (449

Due to the cylindrical symmetry in the circular polariza-
tion case, the angular distribution here is simply dW/d@,
where 6 is the polar angle. In the spherical coordinates

(p.l. 0
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Ny = (m2 + |p+|2)1/2 - IP+|COS 0,
(4.45)

K, = |p,|sin 6,

which follows from Eq. (2.16). These relations define the
coordinate transform v(|p,|,0)=(k,,7,), and the saddle
point in spherical coordinates is located at p.|=mé&/2, 6
=v2/& for £> 1. After application of Eq. (3.40) and integra-
tion over |p,|, we have

daw zzazmg( ]-")2 ( 2\5)
- = - exp\ — ——

—

d9— 2m\7\2\3 F
[ &2 A2
2\3 h
X exp —\—§<0—\—) . (4.46)
1F ¢

D. Photon absorption spectrum

Just as in the linear polarization case, the photon absorp-
tion spectrum in the circular polarization case is [see Eq.
(3.51)]

(O]

W,=W f exp{inlE(Ry) — nw]}

2
-7 2 Ty-lv &
X exp T[VRE(RO)] H,}OVRE(RO) dr. (4.47)

From Eqgs. (3.3), (4.4)—(4.7), and (4.24), one then finds that,
for €1,

w

W,=W
2

f exp[i7(2v5m§2 - nw)]

X exp(— %fng“#)dr. (4.48)

Evaluating this integral produces the photon absorption spec-

trum
1 Zza2w< f)z ( 2\"5)
W, = — 5 |\ T expl-—=
2my3 € 2V3 F

2(1)2 ”’_mgz 2
X exp —m n—2\e27 . (4.49)

V. ELLIPTIC POLARIZATION

Consider an e.m. wave with the elliptic polarization

a(®) =(0,-sin ®,b cos D,0). (5.1)

The parameter b, which is presumed to satisfy 0<b=<1,
measures the ellipticity: b=0 gives the linear polarization
equation (3.1), b=1 corresponds to the circular polarization
equation (4.1). We verified that the probability of pair cre-
ation achieves its maximum when the electron and positron
momenta satisfy

(5.2)
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N_=1=17. (5.3)

We already know that this condition holds for the linear and
circular polarizations, as is discussed in and after Eq. (3.20)
and Eq. (4.13). Further analysis reveals that

k=b(&+1/2)"’m = bém, (5.4)

m
=—. (5.5)
=5

Here x=|#c_|=|s,|. Calculating the behavior of the imaginary
part of the action Eq. (2.32) considered a function of all
momenta in the vicinity of its minimum, we find

Im(S) = %[1 + A(P)], (5.6)

(1% + 612) + 26716 oK) + (8kTH)?
A(P):“" 7,) +267 77++(K_) (k)

12m? 2m>
(5kE + 5Kf)2 1-b% (k5 - 5Ki)2
2 2 2 . (5.7)
4m 8¢ m

Here, deviations of momenta from the values that satisfy
Egs. (5.4) and (5.5) is implied.

Calculations similar to the ones discussed previously for
the linear and circular cases give the total rate Wy, of the pair
production for a general elliptic polarization. It can be con-
veniently presented using a coefficient &, which distin-
guishes it from the linear polarization creation rate Wy;, given
in Eq. (3.35),

Wi = ket Wiin,

1 (31 -p?) |\
ki = m erf|: E(T . (5.9)

Here erf(x) is a conventional error function,

(5.8)

X

2
erf(x) = ——=| exp(- 22)dz. (5.10)
NTJ 0

For b=0 one finds that k,;=1 (since F<1), which means
that Eq. (5.8) correctly reproduces the rate for the linear po-
larization. For b— 1, Eq. (5.9) gives ky=(m\3/F)"?. Sub-
stituting this result in Egs. (5.8) and (3.35), one reproduces
the rate for the circular polarization Eq. (4.35). The elliptic
polarization was discussed previously by Milstein er al. [20],
presuming that the polarization is not close to the circular
polarization, i.e., b deviates significantly from l.In_that case,
the error function is close to unity and k.;==1/\1-5%, which
agrees with Ref. [20]. An advantage of Eq. (5.8) is that it
describes any polarization, without any restrictions.

Equations (5.6) and (5.7) allow one to consider the spec-
tral and angular distributions of the lepton pair for the elliptic
polarization, though we will not dwell on this issue in this
work.
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VI. DISCUSSION

A. Above-threshold pair creation

The positron energy and photon absorption spectra are in
essence non-normalized probability distribution functions,
which describe the probability of pair creation as a function
of positron energy and number of absorbed photons, respec-
tively. The asymptotic expressions obtained for the positron
energy spectra [Egs. (3.43) and (4.44)] and photon absorp-
tion spectra [Egs. (3.53) and (4.49)] are all in Gaussian form.
Since the maximum of a Gaussian probability distribution
function is its expectation value, we may immediately write
down the expected positron energies and photon absorption

AW/dE .,
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0.8 I~

0.6 |-

0.4 |-

0.2 -

100

numbers, which are

= m§2 = A
<E+>1in = > <E+>circ = V2m§29 (61)
242

2 \Em &

2
mg
<n>circ = >

w

<n>lin = w\‘_"a’

(6.2)

where the subscripts “lin” and “circ” denote the linear and
circular polarization, respectively.

The threshold quasienergy E, required for pair creation
was derived in Egs. (3.7) and (4.8) for each polarization case.

By symmetry, E,=2E,, so we have that

_ mé E
+0lin - \”E ’ +Ocirc - mg

(6.3)
Similarly, the energy conservation law E=nw [see Eq. (2.9)]

provides that the threshold photon number is no=2Ey/®. In
the £€>1 regime, the ratios of the threshold and expected

values are then

m o _£ (6.4)
"0, E+01m 2

(B e (6.5)
Ocirc +0

circ

The result for the circular polarization is in agreement with
previous results derived without use of the vicinal approxi-
mation [5,9], and we have now shown that a similar result

holds for the linear polarization case.
The positron energy spectra and photon absorption spectra

are broad, due to the 1/F& and w?/Fm?&* factors in their
respective exponents. However, compared to the typical
scales of the spectra, defined by the expected values (E,) and
(n), the spectra are actually quite narrow in the tunneling
regime. That is, from Egs. (3.43) and (4.44), the width of the

energy spectra is

E — E
)~ Feae- B
m m
and similarly, from (3.53) and (4.49), the width of the photon

absorption spectra is

0.8 -
{ 1
i v
/
i

dW/dE_

0.6

0.4

100 150 200 250 300 350 400

£ /me?

FIG. 1. Positron energy spectra (normalized to unity at their
maxima) for (a) linear and (b) circular polarization. Here w
=0.002m with F=0.02 (solid line) or F=0.03 (dashed line), so that
&=10 or 15, respectively. Arrow A (B) indicates the location of the

threshold energy E, for F=0.02(0.03).

8n) ~ ﬁ%é < %52 ~ (n). (6.7)

By Egs. (6.4) and (6.5), in the ¢>1 regime the threshold
energy E,,<(E,) and threshold number ny,<<{n). The nar-
row width of the spectra in comparison to their typical scales
means that the spectra are strongly suppressed at the thresh-
old. In other words, only leptons (absorbed photons) of en-
ergies (number) a factor of ¢ above the threshold value con-
tribute significantly to the pair creation rate. By analogy to
the (tunneling) multiphoton ionization case [ 19], this effect is
called above-threshold pair creation. This is shown in Figs. 1
and 2. Note that in these plots we choose w=1 keV, and
F=0.02,0.03 based on possible operational parameters of

XFELs [2].

B. Angular distributions

The angular distribution (3.45) in the linear polarization
case is a Gaussian function of the polar angle 6, so that the

012107-12
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(a) T T T T T T T T

0.8
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0.2
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0.2

FIG. 2. Photon absorption spectra (normalized to unity at their
maxima) for (a) linear and (b) circular polarization. Here w
=0.002m with F=0.02 (solid line) or F=0.03 (dashed line), so that
£=10 or 15, respectively. Arrow A (B) indicates the location of the
threshold number n, at =0.02(0.03).

expected direction of positron emission is along the =0
direction. Moreover, the & factor of the sin? ¢ term in the
exponent means that the angular distribution is strongly sup-
pressed in the direction of the magnetic field (¢=/2). In
other words, the spectrum is flattened into the electric field
plane (Fig. 3).

Equation (3.45) features a factor 1/G in its exponent.
Consequently, it is applicable literally only in the special
case G<<1 of the tunneling regime. In this case the spectrum
has a sharp peak at §=0 (Fig. 3), so that the positron and
electrons are overwhelmingly emitted in the same direction.
We expect, though, that the spectrum should exhibit similar
main features within the general tunneling regime (arbitrary
G, F<1): a peak in the #=0 direction and flattening into the
electric field plane.

The expression for the angular distribution in the circular
polarization case (4.46) gives the mean polar angle of posi-
tron emission #=12/&. Due to the &/F factor in the expo-
nent, this distribution is very sharp. That is, the width of the

distribution is

PHYSICAL REVIEW A 76, 012107 (2007)

AW /dS2

0.2

FIG. 3. Cross-sectional polar plots of the angular distribution
(normalized to unity at its maximum) for the linear polarization
case for various fixed azimuthal angles ¢. The polar coordinates are
(dW1dQ, 6), where the polar angle 6 is measured from the direction
of the light wave vector k, indicated by the arrow. Plots are shown
for the k-€ or ¢=0 plane (solid line); k-H or ¢=/2 plane (dashed
line); and @=/4 plane (dotted line). Here w=0.002m and F
=0.01 so that §=5 and G=0.25. The distribution has a sharp peak at
6=0, and is suppressed in the magnetic field direction.

VF
00~ — < 1. (6.8)
3

Hence this distribution, which is symmetric in azimuthal
angle ¢, is a thin-walled cone with the axis of symmetry
being the light wave vector and with the conical angle y2/&
(Fig. 4). Note also that ¢,=¢_+ 7 at the momentum saddle
point [see Eq. (4.15)], so the electron and positron are emit-
ted in antipodal directions along this cone.

T T T
1k _
08 | -
g 06| -
~
B
=3
04 F -
02 | .
0
0.2 0.2

AW /dQ

FIG. 4. Cross-sectional polar plots of the angular distribution
(normalized to unity at its maximum) for the circular polarization at
arbitrary fixed azimuthal angle ¢. The polar coordinates are
(dW1dQ, 6), where the polar angle 6 is measured from the direction
of the light wave vector k, indicated by the arrow. Here
=0.002m and F=0.02 (solid line) or F=0.03 (dashed line) so that
&=10 or 15, respectively. The plots clearly exhibit very sharp peaks.
Due to cylindrical symmetry, the full distribution is obtained by
rotating about k to produce a thin-walled cone.
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VII. CONCLUSION

We considered the electron-positron pair production by
Coulomb and laser fields in the tunneling regime, describing
the process in simple analytical terms, and deriving expres-
sions for angular and energy distributions. The energy of the
pair proves to be high, well above the threshold for pair
creation for any polarization. The angular distributions
strongly depend on the polarization. For the linear case, both
leptons move predominantly along the direction of the laser
beam. For the circular polarization the pair is distributed in a
thin-walled cone with axis of symmetry along the direction
of the light beam, and with small conical angle. The leptons
follow antipodal directions on the cone. The vicinal approxi-
mation suggested in this work proves to be very convenient
for analytical calculations.
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APPENDIX: SPIN FACTORS

In all polarization cases, the differential pair creation rate
dW includes a spin factor

(A1)

S

where () is defined in Eq. (2.30), and the subscript 0 indi-
cates evaluation at the appropriate saddle points in the time
and momentum variables.

In the linear polarization case, from Eq. (2.25), one finds
that at the saddle points #; and Py in the £>1 regime

PHYSICAL REVIEW A 76, 012107 (2007)

- 3
0i=0.=1 +i\7(¢>— )y = (A2)

It is straightforward to show that the matrix Q has the prop-
erty Qu=0,. The spin factor is then

% (A3)

1
K= FE |l’7p_Q0'y0Q0M—p+
€0 S

where at the saddle points #; and P, the lepton energy &,
=3m/2/2 by Eq. (2.16). However, the free Dirac spinors
Uyp_ satisfy (ypo)u, =mu,_[see Eq. (2.13)]. Hence we
may write the spin factor as a trace of projection operators,

Qo[(7P0+) +m]Q, YOQO} ==

(A4)

8 1
K= oam — Tr{[(ypy-) —m]Qyy

In the circular polarization case, once more from Eq. (2.25),
one finds that at the saddle points #, and P, in the {>1
regime

- 1 o, B
Q+=Q_=1+V—E(70—¢)<§71+l)'2\/;)=
(A5)

This time, Qy# Q,, and the lepton energy 80=m§2/\s“5. It
follows then from Eq. (A3) by similar reasoning to the linear
polarization case that

K= 24—2Tr{[(7po ) = m]QoY"Qul(ypo.) + m]QoY'Qo} = 54

(A6)
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