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It is shown that a representation of the decaying wave function as a resonant sum plus a nonexponential
integral term may be written as a purely discrete resonant sum by evaluating at long times the integral term by
the steepest descents method, and then expanding the resulting expression in terms of resonant states. This
leads to a representation that is valid along the exponential and the inverse power in time regimes. A model
calculation using the � potential allows us to make a comparison of the expansion with numerical integrations
in terms of continuum wave functions and, in the long time regime, with an exact analytic expression of the
integral term obtained using the steepest descents method. The results demonstrate that resonant states give a
correct description of the long-time behavior of decay.
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I. INTRODUCTION

Theoretical treatments of quantum decay refer to the time
evolution ��t�=exp�−iHt /����0�, of an initial state ��0� in a
system characterized by a Hamiltonian H. In some decay
problems it is not suitable to separate the Hamiltonian into a
part with stationary states and a part responsible for the de-
cay, that is treated to some order of perturbation, but rather to
consider the full Hamiltonian H of the system. This is usu-
ally the case when the decay originates from tunneling
through a classically forbidden region. Some models corre-
sponding to this situation consider a single particle that de-
cays from a confining potential. As it is well known, follow-
ing the work by Khalfin �1�, if the energy spectra E of the
system is bounded by below, i.e., E� �0,��, the exponential
decay law cannot hold at long times. This is a common fea-
ture of a vast number of natural and artificial quantum sys-
tems. At short times there is also a departure from the expo-
nential behavior that is related, however, to the existence of
the energy moments of the Hamiltonian H �2�. The short-
time behavior has been the subject of much discussion, par-
ticularly in connection with the Zeno effect �3�. The experi-
mental verification of the departure from the exponential
decay law remained elusive for decades �4,5�. A few years
ago, however, it was verified in the short-time regime �6� and
very recently, in the long-time regime �7�. These experimen-
tal results contradict theoretical claims of the seventies, char-
acterized by considering the influence of the measurement
apparatus on the decay process, that predicted that exponen-
tial decay should hold at all times �8–10�. Recent work on

the role of the distance between the detector, modeled as an
absorbing potential, and the initial decaying system shows
that possible perturbing effects of measurement disappear by
increasing the distance to the detector as well as by improv-
ing the detector efficiency �11�. This result favors the as-
sumption, made in this work as in other recent one �12,13�,
that the decaying particle evolves with time undisturbed until
it is detected. It is also worth mentioning that the 1/ t3 long
time behavior has also been derived in other fields involving
quantum decay as radiative decay of atoms in photonic crys-
tals �14� and in the decay of a local spin excitation in an
inhomogeneous spin chain �15�.

In addition to the decaying wave function, two other
quantities of interest in studies of quantum decay are the
survival and the nonescape probabilities. A common ap-
proach to calculate these quantities is to expand the decaying
wave function in terms of the set of bound and continuum
wave functions of the problem �12,13�. This requires numeri-
cal integration techniques, which in general are computation-
ally time consuming and, more importantly, provide no deep
physical insight on the decay process. Another approach is to
consider a purely discrete analytical expansion in terms of a
linear combination of resonant states and Moshinsky func-
tions �16,17�. Using this approach, it was reported that at
long times the survival probability goes as �t−3, and the
nonescape probability as �t−1 �17�. This last result led to
controversy �18–23�. A reexamination of the long time be-
havior of the nonescape probability using the resonant state
formalism settled down the controversy showing that in fact
at long times it goes as �t−3 and that the previous result
originated from an ambiguity in the calculation �23�. Some
authors, however, have affirmed that the outgoing boundary
condition character of resonant states gives an incorrect de-
scription of the long time behavior of decay �21,22�. This, in
spite of the correct result obtained for the long time behavior
of the survival probability. Although it is well known that
resonant states form a complete representation along the in-
ternal region of the interaction �24–26�, it is, however, of
interest to give an answer to the above assertion in a time-
dependent context.
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This work is therefore focused on the exponential and
long-time regimes of quantum decay. We consider an ap-
proach where the decaying wave function is written as a sum
over exponentially decaying resonant terms plus a nonexpo-
nential integral contribution �16�. The long time contribution
is obtained by evaluating the integral term by the method of
steepest descents �27�. This long-time contribution may be
also expanded in terms of resonant states and shown to co-
incide exactly with the long time limit of the purely discrete
expansion involving Moshinsky functions. In order to exhibit
the validity of the long time expansion of the decaying wave
function in terms of resonant states, we consider the exactly
solvable � potential, which allows us to make a comparison
in this case with the steepest descents analytical result. We
also evaluate the survival and the nonescape probabilities by
numerical integration and compare it with the corresponding
resonant expansions and the analytical steepest descents re-
sults. We also investigate the extent of validity of the one-
term approximations of the survival and nonescape prob-
abilities.

The organization of the paper is as follows. In Sec. II, the
long-time resonant expansion of the wave function is derived
using the steepest descents method. Also, analytical expres-
sions for the resonant expansions of the survival and nones-
cape probabilities are presented. Section III considers the
solvable model of the � potential: In Sec. III A, the resonant
states, complex energy poles, and relevant coefficients to
evaluate the resonant expansions of the previous section, are
obtained. Section III B deals with the derivation of the exact
analytical expressions for the steepest descents expressions
for the wave function and the survival and nonescape prob-
abilities. In Section III C the expansions of the these quanti-
ties in terms of continuum wave functions is given. Section
III D provides the result of calculations among the different
approaches. Finally, Sec. IV provides the concluding re-
marks.

II. RESONANT STATE EXPANSION USING THE
STEEPEST DESCENTS METHOD

Let us consider the time evolution of decay of an initial
wave function ��r ,0� confined initially, at t=0, along the
internal region of a spherically symmetric potential of finite
range, i.e., V�r�=0 for r�a, where, for the sake of simplic-
ity, we restrict the discussion to s waves and the units em-
ployed are �=2m=1, m being the mass of the decaying par-
ticle. As a consequence, the energy of the particle is denoted
by E=k2, with k the corresponding wave number. As is well
known, the time evolved wave function ��r , t� may be writ-
ten in terms of the retarded Green function of the problem
g�r ,r� ; t� and the initial state ��r ,0� as

��r,t� = �
0

a

g�r,r�;t���r�,0�dr�. �1�

Moreover, the retarded Green function g�r ,r� ; t� may be
written, using Laplace transform techniques, as �16,17�

g�r,r�;t� =
i

2�
�

C��
G+�r,r�;k�e−ik2t2kdk , �2�

where G+�r ,r� ;k� corresponds to the outgoing Green’s func-
tion of the problem and the integration contour C0� goes
along the first quadrant of the complex k plane from �+ i� to
�+ i�, with � a small constant. Since the decay refers to a
process where the particle tunnels out into the continuum,
here we assume, for the sake of simplicity, that the potential
does not hold bound nor antibound poles. In order to evalu-
ate Eq. �2� it is convenient to consider a closed contour
formed by the sum of contours depicted in Fig. 1 and apply
Cauchy’s theorem. Note here, from Eq. �2�, that −1/2�i
times the integral over the contour C0� is equivalent to 1/2�i
times the integral over the contour C0 depicted in Fig. 1. We
choose the path CL as a straight line 45° off the real k axis
that passes through the origin. In doing so, one picks up the
residues �p�r ,r�� of the outgoing Green function at the
proper complex poles kp, i.e., such that Re�kp�� Im�kp�. The
residue may be written in terms of the resonant states up�r�
as

�p�r,r�� =
up�r�up�r��

2kp
, �3�

provided the resonant states are normalized as

�
0

a

up
2�r�dr + i

up
2�a�
2kp

= 1. �4�

Taking the limit of the semicircle radii CR and CR� to infinity,
and noting that the factor exp�−ik2t� in the corresponding
integrands guarantees that the contribution of these contours
vanish in that limit, allows to rewrite Eq. �2� as a sum over
exponentially decaying terms plus an integral contribution

FIG. 1. Deformation of the contour C0� in the complex k
plane.
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g�r,r�;t� = 	
p=1

�

up�r�up�r��e−ikp
2t

+
i

2�
�

CL

G+�r,r�;k�e−ik2t2kdk . �5�

Resonant states satisfy the Schrödinger equation of the prob-
lem with outgoing boundary conditions. This implies that the
energy eigenvalues are complex, i.e., kp

2 =Ep=Ep− i	p /2,
where Ep represents the resonance position and 	p the corre-
sponding decay width. The distribution of the complex poles
of G+�r ,r� ;k� along the complex k plane is well known for
potentials that vanish beyond a distance: There is an infinite
number of them and are seated on the lower half of the k
plane �28�. At a given pole kp=
p− i�p, there corresponds,
from time reversal considerations, a pole at k−p=−kp

*, which
is related to the resonant state u−p�r�=up

*�r� �29�. The outgo-
ing Green function may be expanded as an infinite sum over
the full set of resonant states along the internal region of the
interaction, r�a and r��a, and holds also if either r or r�
are evaluated at r=a, but not both �24–26,30�. If r� and r�

stand, respectively, for the smaller and larger of r and r�, we
denote the above conditions by the notation �r� ,r��a, so
the expansion reads

G+�r,r�;k� = 	
p=1

� 
up�r�up�r��
2kp�k − kp�

−
up

*�r�up
*�r��

2kp
*�k + kp

*�� . �6�

The above representation for G+�r ,r� ;k� satisfies the closure
relation for resonant states �16,17�

Re
	
p=1

�

up�r�up�r��� = ��r − r��; �r�,r��  a �7�

and the sum rules

Im
	
p=1

�
up�r�up�r��

kp
� = 0; �r�,r��  a �8�

and

Im
	
p=1

�

up�r�up�r��kp� = 0; �r�,r��  a . �9�

In what follows we consider the span of values of r and r� as
indicated above.

The substitution of Eq. �6� into Eq. �5� leads to the repre-
sentation of the retarded Green function g�r ,r� ; t� as a linear
combination of resonant states and Moshinsky functions as
discussed in Refs. �16,17�. The long time t−3/2 behavior of
g�r ,r� ; t� is obtained by expanding the Moshinsky functions
at long times, which go as a / �kpt1/2�+b / �kpt3/2�+¯, with a
and b constants, and then using the sum rule given by Eq. �8�
to eliminate the t−1/2 contribution. This is straightforward for
the decaying function and the survival amplitude, but not for
the nonescape probability, which led to the controversy men-
tioned in the introduction. For the nonescape probability we
know now that the coefficient multiplying the term that goes
as t−1 vanishes exactly and hence the leading term of this

quantity at long times goes as t−3 �23�. The above consider-
ations are relevant for numerical calculations because the
sums of the distinct quantities involve always a finite number
of terms, and hence, the corresponding coefficients of the
long-time inverse power contributions as t−1/2 or t−1 are finite
and remain the leading contribution unless they are sub-
tracted explicitly from the calculation.

Here we follow an alternative approach to obtain the be-
havior of g�r ,r� ; t� at long times. This procedure does not
rely on using the above sum rules and leads directly to the
correct long-time asymptotic behavior. It exploits the fact
that at long times the integrand over the k integral in Eq. �5�
oscillates widely and hence it may be evaluated, to a very
good approximation, by the steepest descents method. One
sees that the saddle point of the exponential in Eq. �5� is at
k=0 and hence one may perform a Taylor expansion of
G+�r ,r� ;k� around that value, namely,

G+�r,r�;k� = G+�r,r�;0� + k� �

�k
G+�r,r�;k�

k=0
+ ¯ .

�10�

Substitution of Eq. �10� into the integral term in Eq. �5� leads
to an expression where one sees that the term proportional to
G+�r ,r� ;0� vanishes because the integral over k is odd. The k
integral for the next term in the Taylor expansion may be
evaluated by making the change of variable k=�−iu, which
gives the leading term as the inverse power in time t−3/2.
Consequently, at long times, Eq. �5� may be written approxi-
mately as

g�r,r�;t� � 	
p=1

�

up�r�up�r��e−ikp
2t

+ �
 �

�k
G+�r,r�;k��

k=0

1

t3/2 ; �r�,r��  a ,

�11�

where �=1/ �4�i�1/2. In general, it is difficult to obtain
a closed analytical expression for the factor
��G+�r ,r� ;k� /�k�k=0. An example where this is possible will
be considered in the next section. One may use, however, the
expansion of the outgoing Green function given by Eq. �6� to
evaluate this factor and write Eq. �11� as

g�r,r�;t� � 	
p=1

�

up�r�up�r��e−ikp
2t

− i� Im
	
p=1

�
up�r�up�r��

kp
3 � 1

t3/2 ; �r�,r��  a .

�12�

Then, inserting Eq. �12� into Eq. �1� yields the expression for
the time dependent wave function
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��r,t� � 	
p=1

�

Cpup�r�e−iEpte−	pt/2

− i� Im
	
p=1

�
Cpup�r�

kp
3 � 1

t3/2 ; r  a , �13�

where the exponentially decaying terms are written explicitly
in terms of Ep and 	p and the coefficients Cp are defined as

Cp = �
0

a

��r,0�up�r�dr . �14�

Assuming that the initial state ��r ,0� is normalized to unity,
it then follows from the closure relation given by Eq. �7� that

Re�CpC̄p� = 1, �15�

where

C̄p = �
0

a

�*�r,0�up�r�dr . �16�

Equation �13� provides the time evolution of the decaying
wave function as an expansion in terms of resonant states
along the exponentially decaying and long-time regimes. It is
convenient for the discussion of the next section to write
separately the term corresponding to the long-time contribu-
tion of the decaying wave as

�long�r,t� � i�Dp
1

t3/2 + ¯ ; r  a , �17�

where the coefficient Dp is

Dp = − Im
	
p=1

�
Cpup�r�

kp
3 � . �18�

The subindex of the coefficient Dp in Eqs. �17� and �18�
denotes the number of poles p used in the evaluation of the
corresponding summations.

Expansion of the survival and nonescape probabilities.
The survival amplitude gives the probability amplitude that
at time t the decaying particle remains in the initial state

A�t� = �
0

a

�*�r,0���r,t�dr . �19�

Substitution of Eq. �13� into Eq. �19� yields

A�t� � 	
p=1

�

CpC̄pe−iEpte−	pt/2 − i� Im�	
p=1

�
CpC̄p

kp
3  1

t3/2 .

�20�

Consequently, the survival probability S�t�= �A�t��2 may be
written as

S�t� � 	
p,s=1

�

�CpC̄p��Cs
*C̄s

*�e−i�Ep−Es�te−�	p+	s�t/2

− 2 Im��*	
p=1

�

CpC̄pe−iEpte−	pt/2Im�	
p=1

�
CpC̄p

kp
3  1

t3/2

+ ���2 Im�	
p=1

� �CpC̄p

kp
3 �2 1

t3 . �21�

The nonescape probability yields the probability that at
time t the particle still remains within the confining region of
the potential,

P�t� = �
0

a

�*�r,t���r,t�dr . �22�

Hence, substitution of Eq. �13� into Eq. �22� gives

P�t� � 	
p,s=1

�

CpCs
*Imse

−i�Ep−Es�te−�	p+	s�t/2

− Re
� 	
p,s=1

� �CpCs
*

kp
3 Ips −

Cp
*Cs

*

�kp
3�* ĪpseiEste−	st/2� 1

t3/2

+
1

2
���2 Re
 	

p,s=1

� � CpCs
*

kp
3�ks

3�* Ips −
Cp

*Cs
*

�kp
3�*�ks

3�* Īps� 1

t3 ,

�23�

where the coefficients Ips and Īps are given, respectively, by

Ips = �
0

a

up�r�us�r�*dr =
up�a�us

*�a�
i�kp − ks

*�
�24�

and

Īps = �
0

a

up�r�*us�r�*dr = �ps −
up

*�a�us
*�a�

i�kp
* + ks

*�
. �25�

Equations �21� and �23� provide, respectively, resonant ex-
pansions that are valid along the exponential and long-times
regimes for decay.

III. MODEL

A convenient model to study the time evolution of quan-
tum decay is the � potential. This model was considered
many years ago by Winter �33� and since then by many au-
thors. The reason being that its mathematical simplicity does
not prevent that it describes correctly the main physical fea-
tures of the time evolution of decay along the exponential
and nonexponential long-time regimes.

We consider a �-potential of radius a and intensity �,
namely,

V�r� = ���r − a� , �26�

and as initial state, the simple analytical expression provided
by the infinite box state
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��r,0� = �2

a
�1/2

sin�q�r

a
� , �27�

where q=1,2 , . . . .
In spite of its mathematical simplicity the infinite box

initial state possesses the main physical features of presum-
ably more realistic initial states and it has the advantage, as
shown explicitly below, that it provides simple analytic ex-
pressions for the expansion coefficients defined by Eqs. �14�
and �16�.

A. Complex poles and resonant states

The resonant states of the problem obey the Schrödinger
equation of the problem with complex energy eigenvalues.
They read

up�r� = 
Ap sin�kpr� , r  a ,

Bpeikpr, r � a ,
� �28�

From the continuity of the above solutions and the disconti-
nuity of its derivatives with respect to r �due to the
�-function interaction� at the boundary value r=a, it follows
that the kp’s satisfy the equation

2ikp + ��e2ikpa − 1� = 0. �29�

For ��1 one may write the approximate analytical solutions
to Eq. �29� as

kp �
p�

a
�1 −

1

�a
� − i

1

a
� p�

�a
�2

. �30�

Using the above expression for kp as the initial value in the

Newton-Rapshon method, i.e., kp
r+1=kp

r −F�kp
r � / Ḟ�kp

r �, with

Ḟ= �dF /dk�k=kp
yield the solutions kp with the desired degree

of approximation according to the number of iterations.
The normalization coefficient of resonant states may be

evaluated by substitution of Eq. �28�, for ra, into Eq. �4�,
to obtain the analytical expression

Ap = � 2�

�a + e−2ikpa1/2

. �31�

Similarly, using Eqs. �28�, �31�, and �27� into Eq. �14� allows
one to write the expansion coefficient Cp as the analytic ex-
pression

Cp = � �a

�a + e−2ikpa1/2�2q� sin�kpa��− 1�q

kp
2a2 − q2�2  . �32�

It is worth noticing that as the intensity of the potential
�→�, the complex poles kp=
p− i�p tend to the real infinite
box eigenvalues, and similarly, the resonant eigenfunctions
up�r� tend to the infinite box model eigenfunctions. This
means that for a finite value of the intensity �, an initial state
��r ,0� with q= p, is closer to the resonant state up�r� than to
any other resonant state.

For a given finite value of the intensity � and the radius a
of the � potential one may then evaluate the set of complex
poles �kp� and the expansion coefficients �Cp�, note that in

this case Cp= C̄p, which are the required input to calculate

the different quantities of interest for the time evolution of
decay.

B. Exact analytic expression for the steepest
descents contribution

As is well known, the outgoing Green function
G+�r ,r� ;k� may be expressed in terms of the regular function
��k ,r�, the Jost function f+�k ,r�, and the Jost solutions as
�28�

G+�r,r�;k� = −
��k,r��f+�k,r��

J+�k�
, �33�

where, as indicated above, r� and r� stand, respectively, for
the smaller and larger of r and r�. For the � potential one
may obtain a simple exact analytical expression for
G+�r ,r� ;k�. Choosing, r�r� and r�a, we find �28�

��k,r� =
sin�kr�

k
, �34�

f+�k,r�� = eikr� −
�

k
sin�k�r� − a��eika, �35�

J+�k� = 1 +
�

k
sin�ka�eika, �36�

and hence G+�r ,r� ;k� may be written as

G+�r,r�;k� = −
sin�kr�

k

� � exp�ikr�� − ��/k�sin�k�r� − a��exp�ika�
1 + ��/k�sin�ka�exp�ika�  .

�37�

Note that the poles of G+�r ,r� ;k�, which follow from the
vanishing of J+�k� given by Eq. �36�, correspond precisely to
the condition given by Eq. �29�.

From the Eq. �37� one may obtain after some simple al-
gebra


 �

�k
G+�r,r�;k��

k=0
= − i

rr�

�1 + �a�2 . �38�

Substitution of Eq. �38� into Eq. �11� allows to write, using
Eq. �1�, ��r , t� at asymptotically long times as

�long�r,t� � i�De�r�
1

t3/2 , �39�

where De�r� stands for

De�r� = −
r

�1 + �a�2�
0

a

r��r,0�dr = −
r

�1 + �a�2C�q� ,

�40�

with
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C�q� = −
a�2a

q�
�− 1�q. �41�

Using Eqs. �39�–�41� and the definition of the survival am-
plitude, given by Eq. �19�, gives the following expression for
the survival probability at asymptotically long times:

Slong�t� �
���2C4�q�
�1 + �a�4

1

t3 �42�

and analogously, using instead of Eq. �19�, Eq. �22�, the ex-
pression for nonescape probability at asymptotically long
times

Plong�t� �
���2a3C2�q�
3�1 + �a�4

1

t3 . �43�

C. Expansions in terms of continuum wave functions

As is well known, the time evolution of the decaying
wave solution given by Eq. �1� may also be calculated by
expanding the retarded Green function in terms of the com-
plete set of continuum wave functions of the problem, the so
called physical wave solutions �+�k ,r� to obtain

��r,t� = �
0

�

C�k��+�k,r�e−ik2tdk , �44�

where

C�k� = �
0

a

��r,0�*�+�r,k�dr �45�

and

�+�k,r� =� 2

�

sin�kr�/J+�k� , r  a ,

�i/2��e−ikr − ��k�eikr� , r � a ,
� �46�

where the S matrix ��k�=J−�k� /J+�k�, with J−�k�=J+
*�k�. One

may evaluate analytically Eq. �45� using Eqs. �27� and �46�.
Substitution of Eq. �44� into Eq. �19� allows one to write an
expression for the survival probability as an expansion in
terms of continuum wave functions, namely,

S�t� = �
0

�

�C�k��2e−ik2tdk . �47�

Similarly, using Eq. �44� into Eq. �22� allows also to write
the nonescape probability as an expansion in terms of con-
tinuum wave functions

P�t� = �
0

�

dk��
0

�

dkC*�k��C�k�

��
0

a

dr��+�k�,r��*�+�k,r�e−i�k2−k�2�t. �48�

The above expressions for the survival and nonescape prob-
abilities may be evaluated by numerical integration in a simi-
lar fashion as discussed elsewhere �12,13�. Evidently these
expressions do not provide insight into the physics of the
time evolution of decay.

D. Results

It is of interest to make a comparison between Eqs. �17�
and �39� for the asymptotic long-time expression of the de-
caying wave function �long�r , t�. As discussed above, they
differ by the values of the coefficients Dp and De, given
respectively, by Eqs. �18� and �40�. The former coefficient
being obtained using the resonant expansion, and the latter
by using the steepest descents method. The parameters of the
� potential are �=6 and a=1, and the initial state ��r ,0� is
chosen with q=1. Figure 2 provides a plot of Dp �full line� as
a function of the number of resonant poles, from p=1 up to
p=500 evaluated at the boundary value r=a. The value of De
is indicated by the dashed line. We see that there is an ex-
cellent agreement between both calculations. Note that al-
ready the value p=1 provides a good approximation for De.

Figure 3 exhibits a plot of the natural logarithm of the
survival probability S�t� as a function of time, using the reso-
nant expansion given by Eq. �21� �solid line� in the one-term
approximation p=1. The plotted curve is already undistin-
guishable from the result of a purely brute force numerical
integration using Eq. �47� �dashed-dotted line�. The long-
time asymptotic steepest descents result given by Eq. �42� is
also plotted �dotted-line�. One sees that it approaches the
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FIG. 2. Coefficients Dp vs p and De given, respectively, by Eqs.
�18� and �40�.
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FIG. 3. Survival probability S�t� as a function of time. The
resonant expansion �solid line� and numerical integration �dashed-
dotted line� calculations are undistinguishable. Also shown is the
long-time steepest descents calculation �dotted-line�. The param-
eters of the � potential are �=6 and a=1. See text.
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other two curves at long times. The parameters of the � po-
tential employed in the calculation are �=6 and a=1.

In an analogous way, using the same potential parameters,
Fig. 4, exhibits a plot of the natural logarithm for the nones-
cape probability P�t� in terms of the resonant expansion
given Eq. �23� �solid line�, also in the one-term p=1 approxi-
mation, as in the previous case. Again this curve is undistin-
guishable from the curve that results by numerical integra-
tion of Eq. �48� �dashed-dotted line�. It is worth mentioning
that in this case the numerical integration was performed by
using a FORTRAN IMSL integration routine �DTWODQ� for a
two dimensional integral based on the Gauss-Konrod quadra-
ture method �31�. In general, however, the possibility of hav-
ing analytical solutions of known functions not only provides
more insight into the physics of the problem, but also, more
versatile and faster computational tools. The long-time steep-
est descents calculation, using Eq. �43�, is also plotted �dot-
ted line�. It approaches as in the previous case, the other
curves at long times.

The excellent agreement obtained using the one-term ap-
proximation for the survival and nonescape probabilities in
the above calculations, is due to the fact that in each case
there is a large overlap between the initial state, with q=1,
and the lowest energy resonant state with p=1, i.e.,

Re�C1C̄1�=0.99068, which in view of the closure relation
given by Eq. �15�, implies that the rest of the other coeffi-
cients contributes a small amount. The reason for the large
overlap mentioned above is, as discussed at the end of Sec.
III. A, that the momentum of the initial state wave is closer
to the resonant state u1�r�, than to any of the others resonant
states. To exemplify the above considerations, Figs. 5 and 6
exhibit, respectively, for the survival and the nonescape
probabilities, the contributions with p=1 and p=1–10,
which are undistinguishable, p=2 and p=3. One sees clearly
the predominance of the contributions with p=1. We have
found that the single-term approximation remains an excel-
lent approximation for intensities of the � potential ��2. It
is worth mentioning that in the long time limit, the one-term
approximation for the survival probability is comparable to
the exact single resonance formula discussed in Ref. �32�,

where CrC̄r=1.0− i�r /
r. In that formulation the dynamics
depends only on the input of the complex pole kr=
r− i�r. In
our example of the � potential, where the intensity �=6,

C1C̄1=0.990677− i0.0680 and �1 /
1=0.0509. For larger

values of �, the resonance becomes much sharper and C1C̄1

gets closer to the value of CrC̄r. For example, for �=500,

C1C̄1=0.999986− i1.2689�10−5 and �1 /
1=1.2502�10−5.
The one-term approximation is not longer valid when q�1.
Indeed if q= j, with j=2,3 , . . ., then resonant terms up to p
= j+1 are required to calculate the survival probability, and
correspondingly, up to p= j, for the nonescape probability. As
an example of this, Fig. 7 exhibits plots of S�t� and P�t� as a
function of time for an initial state with q=3. The corre-
sponding long-time steepest descents curves are plotted also
�dotted-lines�.

IV. CONCLUDING REMARKS

The main results of this work are represented by Eqs.
�13�, �21�, and �23�, which provide, respectively, analytical
expressions for the resonant expansions of the decaying
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FIG. 4. Nonescape probability P�t� as a function of time. The
resonant expansion �solid line� and numerical integration �dashed-
dotted line� calculations are undistinguishable. Also shown is the
long-time steepest descents calculation �dotted-line�. The param-
eters of the � potential are �=6 and a=1. See text.
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FIG. 5. Resonant contributions of the survival probability S�t� as
a function of time, with the value of p as indicated, to show the
validity of the corresponding one-term approximation. The param-
eters of the � potential are �=6 and a=1. See text.
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FIG. 6. Resonant contributions to the nonescape probability P�t�
as a function of time, with the value of p as indicated, to show the
validity of the corresponding one-term approximation. The param-
eters of the � potential are �=6 and a=1. See text.
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wave function and the survival and nonescape probabilities
along the exponential and the long-time regimes. It is worth
emphasizing that the purely resonant expansions that we
have derived do not require to fulfil the sum rule given by
Eq. �8� to obtain the respective long-time behaviors, as oc-
curs in a representation involving Moshinsky functions
�16,17�. As a consequence, the present approach allows to
investigate the validity of one-term and few-term approxima-
tions with the consequent simplicity in the calculations.

Here, the closure relationship given by Eq. �15�, which in-
volves the overlap between the initial state and the distinct
resonant states, plays a relevant role. It is also worth stress-
ing out that the exact analytical expressions derived from the
steepest descents method �Eqs. �39�, �42�, and �43��, validate
the long time behavior of decay obtained in terms of reso-
nant states. In particular, this also demonstrates that the criti-
cisms raised by some authors were unfounded. The present
formulation may be particularly suitable for a systematic
study of the effect of different types of initial states in the
time evolution of decay, as for example, initial states that do
not belong to the domain of the Hamiltonian, which have led
to some intriguing results as a fractal-like behavior of the
time evolution of the nonescape probability as a function of
time �34�, and also to study in more detail the transient be-
havior that appears in the exponential-nonexponential transi-
tion at long times. These intriguing peculiar beats have also
been noted in other areas of quantum decay �14,15�. We
believe that artificial quantum structures, where there is more
freedom and flexibility in the characterization of the param-
eters of the system may be appropriate to study these type of
effects.
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