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We investigate the effects of a nearly uniform Bose-Einstein condensate �BEC� on the properties of im-
mersed trapped impurity atoms. Using a weak-coupling expansion in the BEC-impurity interaction strength,
we derive a model describing polarons, i.e., impurities dressed by a coherent state of Bogoliubov phonons, and
apply it to ultracold bosonic atoms in an optical lattice. We show that, with increasing BEC temperature, the
transport properties of the impurities change from coherent to diffusive. Furthermore, stable polaron clusters
are formed via a phonon-mediated off-site attraction.
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The lack of lattice phonons is a distinguishing feature of
optical lattices, i.e., conservative optical potentials formed by
counterpropagating laser beams, and contributes to the excel-
lent coherence properties of atoms trapped in them �1�. How-
ever, some of the most interesting phenomena in condensed
matter physics involve phonons, and thus it is also desirable
to introduce them in a controlled way into optical lattices.
Recently, it has been shown that immersing an optical lattice
into a Bose-Einstein condensate �BEC� leads to interband
phonons, which can be used to load and cool atoms to ex-
tremely low temperatures �2�. Here, we instead concentrate
on the dynamics within the lowest Bloch band of an im-
mersed lattice, and show how intraband phonons lead to the
formation of polarons �3,4�. This has a profound effect on
lattice transport properties, inducing a crossover from coher-
ent to incoherent hopping as the BEC temperature increases.
Furthermore, polarons aggregate on adjacent lattice sites into
stable clusters, which are not prone to loss from inelastic
collisions. Since these phenomena are relevant to the physics
of conduction in solids, introducing phonons into an optical
lattice system may lead to a better understanding of high-
temperature superconductivity �3,5� and charge transport in
organic molecules �6�. Additionally, this setup may allow the
investigation of the dynamics of classically indistinguishable
particles �7�.

Experimental progress in trapping and cooling atoms has
recently made a large class of interacting many-body quan-
tum systems �8� accessible. For instance, the formation of
repulsively bound atom pairs on a single site has been dem-
onstrated �9�, and strongly correlated mixtures of degenerate
quantum gases have been realized �10�. In such Bose-Fermi
mixtures, rich phase diagrams, including charge and spin
density wave phases �11,12�, pairing of fermions with bosons
�13�, and a supersolid phase �14�, can be expected. Here we
instead consider one atomic species, denoted as the impuri-
ties, confined to a trapping potential, for example an optical
lattice, immersed in a nearly uniform BEC, shown in Fig. 1.
Based on a weak-coupling expansion in the BEC-impurity
interaction strength, we derive a model in terms of polarons,
which are composed of impurity atoms dressed by a coherent
state of Bogoliubov phonons �3,4�. The model also includes
attractive impurity-impurity interactions mediated by the
phonons �15,16�. An essential requirement for our model is
that neither interactions with impurities nor the trapping po-
tential confining the impurities impairs the ability of the sur-
rounding gas to sustain phononlike excitations. The first con-

dition limits the number of impurity atoms �10�, whereas the
latter requirement can be met by using a species-specific op-
tical lattice potential �17�. Moreover, unlike in the case of
self-localized impurities �18�, we assume that the one-
particle states of the impurities are not modified by the BEC,
which can be achieved by sufficiently tight impurity trap-
ping.

The Hamiltonian of the system is composed of three parts,

Ĥ= Ĥ�+ ĤB+ ĤI, where Ĥ� governs the dynamics of the im-
purity atoms, which can be either bosonic or fermionic. The

BEC Hamiltonian ĤB and the density-density interaction

Hamiltonian ĤI are

ĤB =� dr �̂†�r��−
�2�2

2mb
+ Vext�r� +

g

2
�̂†�r��̂�r���̂�r� ,

ĤI = �� dr �̂†�r��̂�r��̂†�r��̂�r� ,

where �̂�r� is the impurity field operator, and �̂�r� is the
condensate atom field operator satisfying the commutation
relations ��̂�r� , �̂†�r���=��r−r�� and ��̂�r� , �̂�r���=0. The
coupling constants g�0 and � account for the boson-boson
and impurity-boson interaction, respectively, mb is the mass
of a condensate atom, and Vext�r� is a weak external trapping

potential. Without yet specifying Ĥ�, we expand �̂�r�
=��	��r�â�, where 	��r� are a set of orthogonal mode func-
tions of the impurities, and â� �â�

†� the corresponding anni-
hilation �creation� operators, labeled by the quantum num-
bers �.

FIG. 1. �Color online� A quantum degenerate gas confined to an
optical lattice is immersed in a much larger BEC. For increasing
BEC temperature T, a crossover from coherent to diffusive hopping,

characterized by J̃ and Ea, respectively, can be observed. The
phonon-induced interaction potential Vi,j leads to the formation of
off-site polaron clusters, separated by a gap Eb from the continuum
of unbound states.
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A common approach to find the elementary excitations of
the BEC in the presence of impurities is to solve the Gross-
Pitaevskii equation �GPE� �19� for the full system, i.e., for
��0, and to subsequently quantize small oscillations around
the classical ground state. To obtain a quantum description of
the impurity dynamics, we instead solve the GPE without

taking ĤI into account, and express the BEC deformations
around the impurities as coherent states of Bogoliubov
phonons. Specifically, we write �̂�r�=�0�r�+��̂�r�, with
�0�r�=�0

*�r� the solution of the GPE for �=0. Provided that
the impurity-boson coupling is sufficiently weak, i.e.,
	� 	 /gn0�r�
D�r��1, with 
�r�=� /
mbgn0�r� the healing
length, n0�r�=�0

2�r�, and D the number of spatial dimen-

sions, we expect that the deviation of �̂�r� from �0�r� is of

order �, i.e., ���̂�r����, where �·� stands for the expectation

value. We insert �0�r�+��̂�r� into the Hamiltonian ĤB+ ĤI,
keep terms up to second order in �, and obtain the linear
term �
dr �̂†�r��̂�r��0�r����̂†�r�+��̂�r��, in addition to the

standard constant and quadratic terms in ��̂�r� and ��̂†�r�,
since �0�r� is no longer the ground state of the system.

In order to diagonalize the quadratic terms in ��̂�r� and

��̂†�r�, we use the expansion ��̂�r�=���u��r�b̂�−v�
* �r�b̂�

† �,
where u��r� and v�

* �r� are the solutions of the

Bogoliubov–de Gennes equations �19� for �=0, and b̂� �b̂�
† �

are the bosonic Bogoliubov annihilation �creation� operators,
labeled by the quantum numbers �. We assume that
the mode functions 	��r� are localized on a length scale
much smaller than is set by Vext�r�, and that

dr 		��r�	2 		
�r�	2�0 for ��
, i.e., the probability densi-
ties 		��r�	2 for different mode functions deviate appreciably
from zero only within mutually exclusive spatial regions.
In this case, 
dr �0�r��u��r�−v��r��	��r�	


*�r��0 and

dr n0�r�	��r�	


*�r��0 hold for ��
, and hence the nondi-
agonal impurity-phonon coupling is negligible. The total
Hamiltonian can thus be rewritten in the form of a Hubbard-

Holstein model �20� Ĥ= Ĥ�+��,�����M�,�b̂�+M�,�
* b̂�

† �n̂�

+��Ē�n̂�+�����b̂�
† b̂�, with ��� the energies of the

Bogoliubov excitations, the number operator n̂�= â�
†â�, the

dimensionless matrix elements M�,�= �� /����
dr �0�r�
��u��r�−v��r�� 		��r�	2, and the mean field shift Ē�

=�
dr n0�r� 		��r�	2. We obtain an effective Hamiltonian

Ĥeff including corrections to �0�x� of order � by applying the

unitary Lang-Firsov transformation �3,4� Ĥeff= ÛĤÛ†, with

Û=exp���,��M�,�
* b̂�

† −M�,�b̂��n̂��, which yields

Ĥeff = ÛĤ�Û† + �
�

�Ē� − E��n̂� − �
�

E�n̂��n̂� − 1�

−
1

2 �
��


V�,
n̂�n̂
 + �
�

���b̂�
† b̂�. �1�

The transformed impurity Hamiltonian ÛĤ�Û† is obtained

using the relation Ûâ�
†Û†= â�

†X̂�
†, where X̂�

†=exp����M�,�
* b̂�

†

−M�,�b̂��� is a Glauber displacement operator that creates a

coherent phonon cloud, i.e., a BEC deformation, around the
impurity. In the limit where the BEC adjusts instantaneously

to the impurity configuration, polarons created by â�
†X̂�

† are

the appropriate quasiparticles, and Ĥeff describes a nonre-
tarded interaction with the potential V�,
=������M�,�M
,�

*

+M�,�
* M
,��. The polaronic level shift E�=����� 	M�,�	2 is

equal to the characteristic potential energy of an impurity in
the deformed BEC.

We now turn to the specific case of bosons loaded into an
optical lattice immersed in a homogeneous BEC �2�. In the
tight-binding approximation, the impurity dynamics is well

described by the Bose-Hubbard model Ĥ�=−J��i,j�âi
†âj

+ �U /2�� jn̂j�n̂j −1�+�� jn̂j, where � describes the energy
offset, U the on-site interaction strength, and J the hopping
matrix element between adjacent sites �8,21�. The modes of
the lattice atoms are Wannier functions 	 j�r� of the lowest
Bloch band localized at site j, and �i , j� denotes the sum over

nearest neighbors. Noting that �Û , n̂j�=0, we find

ÛĤ�Û† = − J�
�i,j�

�X̂iâi�†X̂jâj +
1

2
U�

j

n̂j�n̂j − 1� + ��
j

n̂j ,

�2�

with the corresponding matrix elements Mj,q
=�
n0�q / ���q�3f j�q�, where q is the phonon momentum,
�q= ��q�2 /2mb the free particle energy, ��q

=
�q��q+2gn0� the Bogoliubov dispersion relation, and
f j�q�=�−1/2
dr 		 j�r�	2exp�iq ·r�, with � the quantization
volume. We note that, for 	q 	 �1/
, we have Mj,q
� f j�q� /
	q	, whereas, for 	q 	 �1/
, one obtains Mj,q
� f j�q� /q2.

The Hamiltonian Ĥeff describes the dynamics of hopping
polarons according to an extended Hubbard model �8�, pro-
vided that c�aJ /�, with c�
gn0 /mb the phonon velocity
and a the lattice spacing. We gain qualitative insight into the
dependence of Vi,j and the constant polaronic level shift E�

�Ep on the system parameters by considering a one-
dimensional quasi-BEC in the thermodynamic limit. We as-
sume a sufficiently deep lattice to approximate the Wannier
functions by Gaussians of width ��
, and find Vi,j
= ��2 /
g�e−2	i−j	a/
 and Ep=�2 /2
g. We note that the interac-
tion between impurities is always attractive. More impor-
tantly, for realistic experimental parameters, 
�a, and hence
the off-site terms Vj,j+1�e−2a/
 are non-negligible. This inter-
action potential is a direct consequence of the local deforma-
tion of the BEC around each impurity, as shown in Fig. 1.
For a set of static impurities at positions xj =aj, the overall
deformation of the BEC density to order � is given by n�x�
=n0+� j,q�X̂jb̂q

†b̂qX̂j
†�=n0− �� /g
�� je

−2	x−xj	/
.
We first consider coherent hopping of polarons at small

BEC temperatures kBT�Ep, where incoherent phonon scat-
tering is highly suppressed. Provided that �=J /Ep�1, we
can apply the so-called strong-coupling theory �5�, and treat
the hopping term in Eq. �2� as a perturbation. Including
terms of first order in �, we obtain the impurity Hamiltonian
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Ĥ�1� = − J̃�
�i,j�

âi
†âj + �̃�

j

n̂j +
1

2
Ũ�

j

n̂j�n̂j − 1� −
1

2�
i�j

Vi,jn̂in̂j ,

�3�

with �̃=�+�n0−Ep, Ũ=U−2Ep, and J̃=J��X̂i
†X̂j��. Here

��·�� denotes the average over the thermal phonon

distribution and i, j are nearest neighbors. We find ��X̂i
†X̂j��

=exp�−�q�0 	M0,q	2�1−cos�q ·a���2Nq+1��, with a the
position vector connecting two nearest neighbor sites and
Nq= �e��q/kBT−1�−1. Thus, the hopping bandwidth decreases
exponentially with increasing coupling constant � and tem-
perature T.

At high temperatures Ep�kBT�kBTc �with Tc the critical
temperature of the BEC� inelastic scattering, in which
phonons are emitted and absorbed, becomes dominant, and
thus the transport of atoms through the lattice changes from
being purely coherent to incoherent. We investigate this
crossover by deriving a generalized master equation �GME�
for a single particle starting from Ĥeff in Eq. �1�. Using the
Nakajima-Zwanzig projection method �22�, we find that the
occupation probabilities Pl�t� at site l and time t evolve ac-
cording to the GME �23�

�Pi�t�
�t

= �
0

t

ds�
j

�Wi,j�s�Pj�t − s� − Wj,i�s�Pi�t − s�� , �4�

where the effect of the phonon bath is encoded in the
memory functions Wi,j�s�, which are symmetric in �i , j�. To
first order in �, thus keeping only nearest-neighbor correla-
tions, we find

Wi,j�s� = 2� J

�
�2

Re�exp�2 �
q�0

	M0,q	2�1 − cos�q · a��

���Nq + 1��ei�qs − 1� + Nq�e−i�qs − 1���� , �5�

and Wi,j�s�=0 if i and j are beyond nearest neighbors. The
nontrivial part of Wi,j�s� takes the values 2�J /��2 at s=0 and

2�J̃ /��2 in the limit s→�. In the regime kBT�Ep, we have

J̃�J, and the memory function Wi,j�s� is well approximated

by 2�J̃ /��2��s� �with ��s� the Heaviside step function�,
which describes purely coherent hopping in agreement with

Ĥ�1�. For Ep�kBT�kBTc, we observe that J̃�J, and Wi,j�s�
drops off sufficiently fast for the Markov approximation to
be valid, as illustrated in Fig. 2�a�. In this case one can re-
place Pl�t−s� by Pl�t� in Eq. �4� and after integration over s
the GME reduces to a standard Pauli master equation
�tPi�t�=� jwi,j�Pj�t�− Pi�t�� describing purely incoherent
hopping. The hopping rate is of the form wi,j
�J2exp�−Ea /kBT� / ��
kBTEa� �4,20�, where Ea�Ep is the
activation energy.

The temperature-dependent crossover from coherent to
diffusive hopping in a quasi-one-dimensional �1D� system is
apparent in the evolution for a time 
�1/wi,j of a particle
initially localized at lattice site j=0. The mean-squared dis-
placement of the lattice atom, l2�t�=�ll

2Pl�t�, can be decom-

posed as l2�t�=At+Bt2 into incoherent and coherent contri-
butions, characterized by the coefficients A and B, respec-
tively. The crossover takes place when incoherent and coher-
ent contributions to l2�
� are comparable, i.e., 
B=A. Figure
2�b� shows A and 
B as functions of T, where l2�t� was
obtained by numerically solving the GME using the memory
function Wi,j in Eq. �5�. We find that, for a 41K-87Rb system
�24� under standard experimental conditions, the crossover
takes place well below the critical temperature of the BEC
�see caption of Fig. 2�.

We now discuss the formation of polaron clusters for

kBT�Ep, based on Hamiltonian Ĥ�1� in Eq. �3�, and assume
that the bosonic impurities are in thermal equilibrium with

the BEC. At these temperatures, Vi,j and J̃ are well approxi-

mated by their T=0 values. We consider the limit Ũ�Vj,j+1,

Ũ� J̃, and adiabatically eliminate configurations with mul-
tiply occupied sites. Keeping only nearest neighbor interac-
tions, we obtain approximate expressions for the binding en-
ergy Eb�s���s−1�Vj,j+1 of a cluster of s polarons located in
adjacent sites and the lowest energy band Ek�s��−Eb�s�
−2J̃s�Vj,j+1�1−scos�ka� �25�, with k the quasimomentum. This
band approximation is in good agreement with the results

from exact diagonalization of Ĥ�1� using the full interaction
potential Vi,j, as shown for three polarons in Fig. 3�a�.

This model predicts a decreasing average cluster size with
increasing temperature. For a small system with N=3 po-
larons, we calculate the probability of finding a three-polaron
cluster P3=���n��, where the sum is taken over all states
with energies ���Eg�2�+Eg�1�, Eg�N� is the ground state
energy of an N-polaron cluster, and the occupation probabili-
ties are given by the Boltzmann law �n���exp�−�� /kBT�.
Analogously, we determine the probability P2 of finding a
two-polaron cluster or bipolaron. The results are shown in
Fig. 3�b�. The probability of having a three-polaron cluster
goes down with increasing temperature, and for T=Ep /kB
�18 nK is essentially zero for the parameters chosen. For
this three-polaron cluster, three-particle loss is negligible due
to the on-site repulsion U. Decreasing the value of U gives a
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FIG. 2. �a� Memory function �2Wi,j�t� / �2J2� versus time for
kBT=0 �dotted line�, 2Ep �dashed line�, and 10Ep �full line�. It drops
off rapidly for kBT�Ep, indicating the dominance of incoherent
hopping. �b� Coefficients �A /J �dashed line� and �
B /J �full line�
versus temperature, obtained from the numerical solution of the
GME in Eq. �4� for an evolution time 
=10� /J�0.8�10−3 s. The
condition A=
B is satisfied at kBT /Ep�2.3, with Ep /kB�11 nK.
The lattice �wavelength �=790 nm� contains a single 41K
atom with J=2.45�10−2ER, � /ER�=2.3�10−2, the recoil energy
ER= �2���2 /2ma�2, and ma the mass of the lattice atom. The
BEC consists of 87Rb atoms with n0=5�106 m−1 and g /ER�
=8.9�10−3.
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significantly increased P2 compared to the values shown in
Fig. 3�b�.

The clustering of polarons leads to their mutual exponen-
tial localization. This is illustrated by the density-density cor-
relations �n̂in̂i+j� for the three-polaron cluster in Fig. 4�a�.
With increasing attractive interaction Vi,j, the mutual local-
ization gets stronger, leading to an increased broadening of
the momentum distribution, as shown in Fig. 4�b�. This al-
lows polaron clusters to be identified in time of flight experi-
ments. We note that the transition from a superfluid to a Mott
insulator also leads to broadening of the momentum distri-
bution as, e.g., observed in �10�. However, using Bragg spec-
troscopy �9� would allow the unambiguous distinction of bo-
son clustering from this transition.

We have demonstrated that the dynamics of bosonic im-
purities immersed in a BEC is accurately described in terms
of polarons. We found that spatial coherence is destroyed in
hopping processes at large BEC temperatures, while the
main effect of the BEC at low temperatures is to reduce the
coherent hopping rate. Furthermore, the phonons induce off-
site interactions leading to the formation of stable clusters,
which are not affected by loss due to inelastic collisions.
Using the techniques introduced in this paper, qualitatively
similar phenomena can also be shown to occur for fermionic
impurities. In either case these effects can be controlled by
external parameters and lie within the reach of current ex-
perimental techniques.
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FIG. 3. �Color online� �a� Energy spectrum of three polarons in
a 1D optical lattice. The solid line shows the lowest energy band
E3�k� characterizing off-site three-polaron clusters. The lattice
�wavelength �=790 nm, M =31 sites, periodic boundary condi-

tions� contains 133Cs atoms with J̃=7.5�10−3ER, U=50Ep, and
� /ER�=1.05�10−1. The BEC consists of 87Rb atoms with
n0=5�106 m−1 and g /ER�=4.5�10−2. �b� Probability of finding a
three-polaron cluster �solid line� or a two-polaron cluster �dashed
line� versus temperature. The parameters are g /ER�=6.5�10−2,
� /ER�=1.32�10−1, U=2.2Ep, M =27, and the rest as for �a�.
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FIG. 4. �Color online� �a� Density-density correlation in a sys-
tem of three polarons indicating the formation of off-site three-
polaron clusters. �b� Corresponding momentum distribution �nk�.
� /ER�= �4.0,6.1,8.1,10.1,12.1��10−2 where a higher value corre-
sponds to a more localized correlation in �a� and a more spread
distribution in �b�. The other parameters are g /ER�=6.5�10−2,
M =27, U=3Ep, and the rest as in Fig. 3�a�.
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