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Two distinct lasers are shown to permit controlled cooling of a three-level atomic system to a regime
particularly useful for group-II atoms. Alkaline-earth-metal atoms are difficult to laser cool to the micro- or
nanokelvin regime, but this technique exhibits encouraging potential to circumvent current roadblocks. Intro-
duction of a sparse-matrix technique permits efficient solution of the master equation for the stationary density
matrix, including the quantized atomic momentum. This overcomes long-standing inefficiencies of exact so-
lution methods, and it sidesteps inaccuracies of frequently implemented semiclassical approximations. The
realistic theoretical limiting temperatures are optimized over the full parameter space of detunings and inten-
sities. A qualitative interpretation based on the phenomenon of electromagnetically induced transparency re-
veals dynamical effects due to photon-atom dressing interactions that generate non-Lorentzian line shapes.
Through coherent engineering of an asymmetric Fano-type profile, the temperature can be lowered down to the
recoil limit range.
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The inability to cool alkaline-earth-metal atoms down to
the 100 nK range has proven to be a formidable bottleneck in
the study of ultracold dilute gases. Novel cooling techniques
have limited applicability, and so far quantum degeneracy
has been obtained only for ytterbium, a lanthanide atom with
similar level structure, despite extensive efforts by numerous
groups �1–4�. The theoretical description of laser cooling
took strides in the 1990s, primarily utilizing the semiclassical
approximation which resulted in complicated calculations
�5�. Few realistic calculations have treated the atomic motion
quantum mechanically or predicted realistic cooling tem-
peratures. Here we introduce a direct method based on
sparse-matrix techniques, which efficiently yields the fully
quantized stationary density matrix. In contrast to Monte
Carlo approaches �4,6,7�, the temperature and other observ-
ables emerge without statistical monitoring; the efficiency
enables a complete mapping of the large parameter space of
laser intensities and detunings. Here we compute this map-
ping for a three-level cooling scheme and develop a qualita-
tive interpretation based on the physics of electromagneti-
cally induced transparency �EIT�. The calculations predict
that promising regimes exist that should produce record low
temperatures and overcome the difficulty of alkaline-earth-
metal atom cooling. This is orders of magnitude cooler than
could be obtained using the main resonance line alone.
Moreover, the cooling can be controlled and adjusted in real
time, which should make this method competitive with or
superior to other proposed ways of cooling alkaline-earth-
metal atoms.

Although leading to many advances �8–10�, internal
atomic structure greatly restricts the species for which laser
cooling can be applied successfully, and determines whether
ultracold temperatures—on the order of a few
microKelvin—can be achieved. Basic Doppler cooling
�11,12� has a minimum temperature proportional to the width
of the atomic transition. Lower temperatures can be achieved
by exploiting the multilevel hyperfine structure �13–16�, by
modifying the atomic scattering �17�, or by using narrow

optical transitions as a second-stage for precooled atoms
�1,2�. Here, we explore sub-Doppler cooling with three-level
systems under two-color excitation. The published literature
discusses some similar schemes, for both atoms �18–20� and
trapped ions �21–23�. In particular, the work of Tan et al.
�19� appears initially to be the most exciting, since it claims
to permit cooling to below the recoil temperature, believed to
be a rigorous quantum lower bound for this type of laser
cooling. However, this is an artifact of the errors associated
with a semiclassical treatment of atomic momentum in Ref.
�19�, since that approximation is known to produce incorrect,
arbitrarily low �and even negative� temperatures. In order to
realistically evaluate the promise of three-level cooling based
on dressed-state ideas, it is thus critical to carry out fully
quantum solutions with great efficiency, as in the sparse so-
lution technique introduced here.

There are three basic types of three-level systems—the �,
V, and � systems—each classified according to the ordering
of the bare quantum states in energy, and the possible decay
pathways. The � configuration is commonly used for study-
ing EIT �24� and related phenomena. Here we focus on a �
system, shown in Fig. 1, because of its relevance to current
experimental work �25,26�. We note, however, that our gen-
eral conclusions can be applied to any type of three-level
system, and can be extended to systems with more than three
levels. The level structure and internal parameters for the �
system are depicted in Fig. 1. This cooling technique seems
well suited to alkaline-earth-metal atoms, which are good
candidates for the next generation of optical atomic clocks,
studies of ultracold collisions, optical Feshbach resonances
�27�, and quantum degeneracy �28�.

Figure 1 shows the internal atomic states in order of in-
creasing energy as �0�, �1�, and �2�. The transition energy of
the lower transition �0�→ �1� and of the upper transition �1�
→ �2� are ��0

�1� and ��0
�2�, respectively. We include two la-

sers, of frequencies �1 and �2, and define their detunings
from the appropriate atomic transitions as �i=�i−�0

�i�, for i
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=1,2. The intensities of lasers 1 and 2 are characterized
by their Rabi frequencies �1=−�0�d�1� ·E1�x� and �2

=−�1�d�2� ·E2�x�, respectively, where d is the electric-dipole
operator of the atom and Ei is the electric-field amplitude for
the ith laser. The spontaneous-emission linewidths of states
�1� and �2� are �1 /2� and �2 /2� �79 and 2.2 MHz, respec-
tively, for 24Mg�. The time evolution for the atom in the laser
field, with mass m and center-of-mass momentum operator
p, is given by the master equation

	̇�t� = i/��	,H� + L�	� , �1�

where 	 is the reduced density matrix of the atom system, the
vacuum photon field degrees of freedom having been traced
over, H=p2 /2m+��0

�1��1��1�+��0
�2��2��2�+Vlaser

�1� �x�+Vlaser
�2�


�x� is the Hamiltonian of the atom-laser system, and the
superoperator Liouvillian L describes effects due to coupling
of the atom to the vacuum photon field, resulting in sponta-
neous emission �29�.

Equation �1� treats all the atomic degrees of freedom
quantum mechanically, so its solutions generally provide an
accurate description of the atom’s dynamics. We thus avoid
much of the difficulty associated with semiclassical approxi-
mations of the system. For reasonable temperatures, how-
ever, the number of numerical basis states required to di-
rectly solve the problem, even in one dimension �1D�, is
impractical for most computers. Here we resolve this prob-
lem without resorting to Monte Carlo methods by noting that
the matrix for the linear system equivalent to Eq. �1� is very
sparse: only a small fraction of its elements are nonzero. For
a typical calculation, the Hilbert space involves three internal
degrees of freedom for the atom, and 150 momentum states
in 1D. The resulting number of complex density matrix ele-

ments is thus 450
451/2 independent elements for this case
owing to symmetry, and L would take over 160 Gbytes to
store if it was a full matrix. But the particular structure
shared by Liouvillian operators L that describe relaxation
processes simplifies the numerics, and requires less than
2 Gbytes to solve the sparse system; specifically, the micro-
scopic properties of atomic operators in L permit construc-
tion of the matrix L with the zero elements eliminated. The
steady-state solution of Eq. �1� is then found using a standard
sparse-matrix inversion, giving an exact direct solution of a
fully quantized master equation in just 1–2 min of CPU time
on a current workstation.

The steady-state density matrix has been calculated this
way in 1D. The average kinetic energy is �p2 /2m�
=Tr�	p2 /2m�, which we equate with 1

2kBT, where T is the
temperature. The large parameter space of the problem has
been explored, e.g., by varying the detunings, �1 and �2, as
well as the strengths �1 and �2 of the two lasers. However,
we find that the lasers are better characterized by how
strongly they dress the atom. The saturation parameters s1
and s2 for the respective transitions are

si =
1

2

�i
2

�i
2 + ��i/2�2 . �2�

The parameter space has three distinct regimes. In the
first, with s1�1 and s2 arbitrary, only heating occurs, as
expected from Doppler-cooling theory since the lower tran-
sition is driven strongly. In the second, with s1�1 and s2
�1, cooling occurs only to the Doppler limit for the lower
transition TD

�1D�=��1 /2kB, and only in the range near �1
=−�1 /2. In this case, laser 2 has no effect, as this amounts to
simple two-level Doppler cooling on the lower transition
with laser 1. In the final regime, when s1�1 and s2�1,
cooling occurs down to substantially below TD

�1D�. Figure 2
illustrates cooling in this regime for 24Mg, with the tempera-
ture normalized to TD

�1D�, and with the bare two-photon reso-
nance ��1+�2=0� denoted by the dashed line. The steady-
state temperature is plotted as a function of �1 and �2 for
s1��1�=0.001 and s2��2�=1. Note that the saturation param-
eters are being held fixed as the detunings are varied, so that
the Rabi frequencies are being continuously adjusted. We see
the lowest temperatures, on the order of 10−2TD

�1D�, in the
quadrant with �10 and �2�0, as well as less extreme cool-
ing in other regions. Observe that the lowest temperatures are
obtained for frequencies detuned to the blue of the two-
photon resonance. This seems counterintuitive, since a red
detuning is usually required in order to have a net decrease
of atomic kinetic energy in a photon-scattering event.

Qualitative understanding of the cooling mechanism
emerges from analysis of the simpler Hamiltonian

H =
�

2� 0 �1 0

�1
* − 2�1 − i�1 �2

0 �2
* − 2��1 + �2� − i�2

	 . �3�

Its complex eigenvalues have real dressed energies, and
imaginary parts giving dressed-state linewidths. These
dressed energies and widths are plotted on the right side of
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FIG. 1. Left side: Atomic configuration for the � system in
24Mg �see text�. Right side: Dressed system, with s1��1�=0.001 and
s2��2�=1. Real �top� and imaginary �bottom� parts of the eigenval-
ues of Eq. �3�, with dressed atomic states labeled. The real parts are
the energies and the imaginary parts are the effective linewidths of
the dressed atomic system. Both are plotted as functions of �2, with
fixed �1=0.
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Fig. 1 as functions of �2, for the same parameters used in
Fig. 2. The cancellation of one of the widths can be viewed
as an EIT effect: since laser 1 is perturbative while laser 2
strongly dresses the upper transition, the new eigenstates of
the system, denoted ��� and ���, are well approximated as
linear combinations of the bare states �1� and �2�. These states
have the modified energies and widths shown in Fig. 1. The
linewidth modifications can be viewed as a Fano interference
�30�, in which the dressing-laser transitions caused by the
probe laser enable multiple coherent pathways among the
bare states. Constructive or destructive interference respec-
tively increases or decreases the atomic linewidth.

The cooling mechanism is thus qualitatively explained as
ordinary two-level Doppler cooling. But instead of using a
transition between two bare states of an atom, the transition
occurs between a �mostly� unmodified ground state, and a
dressed excited state, with a shifted energy and a new line-
width that can be narrower than the bare linewidth of the
lower transition. As the probe laser is scanned, the detuning
relative to the dressed energy levels is varied, but since these

levels are shifted from their bare energies, resonance occurs
for different detunings than are encountered in the bare sys-
tem. In fact, the shifts of the eigenenergies in Fig. 1 from the
bare energies explain the apparent observation of blue two-
photon cooling in Fig. 2. In the dressed system, the bare
two-photon resonance is no longer meaningful, and the cool-
ing region is in fact to the red of a dressed resonance.

When mapping this system onto Doppler-cooling theory,
note that the line shapes are not Lorentzian, but are asym-
metric Fano line shapes for the dressed system, as shown in
the upper part of Fig. 3 as a function of �1 for a fixed value
of �2=−�1 /2 �20,31�. This changes the optimum-detuning
condition to be that the maximum cooling for a given tran-
sition occurs when the probe laser is detuned from the
dressed excited state precisely to the inflection point of the
absorption spectrum. This can be understood by noting that
the applied force f due to the laser beam is proportional to
the absorption rate, for a given �1. As in semiclassical cool-
ing theories, the friction coefficient � for the atom in the
laser field is

FIG. 2. �Color online� Laser-cooling temperatures for a 24Mg�
system, as a function of �1 and �2, obtained from exact numerical
solutions of Eq. �1�. The saturation parameter for the lower transi-
tion �probe� is s1��1�=0.001 for both plots, and for the upper tran-
sition �pump� is s2��2�=1 and 5 in the upper and lower plots, re-
spectively. The temperature is normalized to the 1D Doppler limit
for the lower transition TD

�1D�=7��1 /40kB �13�, which is the opti-
mum temperature expected for cooling with just one laser. The
dashed line indicates the location of the bare two-photon resonance.
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FIG. 3. Upper plot: Absorption spectrum �solid line� as a func-
tion of �1, illustrating the asymmetric line shapes for the dressed
system, for fixed �2=−�1. The peak of each line shape is located at
a dressed eigenenergy, and line shapes at the same energies and
widths, but with Lorentzian �symmetric� line shapes are plotted
with dotted lines. As an example, optimum-cooling detunings rela-
tive to the leftmost resonance are illustrated with a black arrow for
the true asymmetric line shape and with a gray arrow for the hypo-
thetical symmetric-line-shape case. The value of the optimum de-
tuning, as well as the slope of the line shape, is seen to be different
for these two cases. Lower plot: Solid line, the ratio of the maxi-
mum slope of a Lorentzian line shape with width �1 to the slope of
the asymmetric line shape, as a function of �1 with �2=−�1 /2. This
ratio provides an indication of the expected cooling for the dressed
system relative to the Doppler limit for the lower transition. For
comparison, fully quantum numerical results are indicated by data
points.
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� = −
d

dv
f�v� , �4�

where v is the atomic velocity. Since the detuning of the
laser and the resonant atomic velocity are linearly related, the
derivative of the absorption spectrum with respect to �1 also
yields a maximum in the cooling force. This is evident in
normal Doppler cooling because the optimum detuning oc-
curs when �=−� /2, the inflection point of the Lorentzian. In
general then, for asymmetric line shapes, the optimum detun-
ing does not obey such a simple relation, but depends on the
degree of asymmetry.

From this complete picture of the cooling mechanism, the
minimum temperatures can now be determined, allowing for
the detuning modification due to asymmetric line shapes.
The lower part of Fig. 3 shows the ratio of the maximum
slope of a Lorentzian line shape with width �1 to the slope of
the asymmetric line shape, as a function of �1 with �2
=−�1 /2. This ratio indicates the expected cooling for the
dressed system relative to the Doppler limit for the lower
transition. Note that the expected temperature, due to the
asymmetric line shape, is predicted to be lower than the
upper-transition Doppler limit, indicated by the dotted line in

the lower plot of Fig. 3, a prediction supported by the nu-
merical data.

In conclusion, coherent engineering of a three-level sys-
tem can optimize the effectiveness of two-level Doppler
cooling. Dressed states are created with modified linewidths
in the range between the smallest and the largest of the two
bare linewidths, and the additional effect of asymmetric line
shapes can lead to temperatures below the Doppler limit of
either bare transition. The ability to tailor the degree of cool-
ing lends this technique additional utility, and may be par-
ticularly useful when applied to the notoriously difficult-to-
cool alkaline-earth-metal atoms. A dressing scheme can be
suited to the characteristics of a particular atom, and real-
time adjustment of the cooling properties can allow narrow-
ing of the velocity-capture range as an atomic gas is cooled.
Utilizing such coherent effects should lead to simple
schemes for cooling far below the typical Doppler limit.
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