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We propose an experimental scheme that has the potential for large-scale realization of continuous-variable
�CV� cluster states for universal quantum computation. We do this by mapping CV cluster-state graphs onto
two-mode squeezing graphs, which can be engineered into a single optical parametric oscillator �OPO�. The
desired CV cluster state is produced directly from a joint squeezing operation on the vacuum, using a multi-
frequency pump beam. This method has potential for ultracompact experimental implementation. As an illus-
tration, we detail an experimental proposal for creating a four-mode square CV cluster state with a single OPO.
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One-way quantum computation �1� is a promising form of
quantum computing �QC�. Unitary gates are implemented by
performing single-qubit measurements on a highly entangled
“cluster state” �2�. Such states are particular cases of graph
states �3�, and are characterized by this ability to coherently
manipulate quatum information using only local measure-
ments and classical feedforward of measurement results. One
often discusses QC in terms of two-dimensional systems �qu-
bits�, but continuous quantum variables can also be used
�4,5�. Continuous-variable �CV� cluster states �6,7� general-
ize the concept of cluster states to quantum systems with
continuous degrees of freedom by use of the quadratures,
amplitude q= �a+a†� and phase p=−i�a−a†�, of a boson
field �8�. The preparation procedure exactly mirrors that for
qubit cluster states, using the correspondence between the
Pauli and continuous Weyl-Heisenberg groups �4�, and can
be described in an analogous way to the graph state formal-
ism �3� for qubit cluster states, First, prepare each mode �rep-
resented by a graph vertex� in a phase-squeezed state, ap-
proximating a zero-phase eigenstate �the analog of Pauli-X
eigenstates�. Then, apply a quantum nondemolition �QND�
interaction of the form exp�iqjqk� �the analog of the con-
trolled phase CZ� to each pair of modes �j ,k� linked by an
edge in the graph. All QND gates commute �as do CZ gates�,
so the full multimode QND operator to be applied is
exp��i /2�qTAq�, where q= �q1 , . . . ,qN�T is a vector of ampli-
tude quadrature operators, and A is the adjacency matrix for
the graph. The resulting cluster state satisfies, in the limit of
infinite squeezing, the relation �9�

p − Aq → 0, �1�

as a simultaneous zero eigenstate of the N components of
p−Aq. Being infinitely squeezed, this state is unphysical �it
has infinite energy�, but we can approximate its Wigner func-
tion by any Gaussian strongly squeezed along the indicated
quadratures. Defining a “CV cluster state” as any of these

approximating Gaussians is identical to the definition used in
Ref. �9� and more general than that studied in Refs. �6,7�.
While only Gaussian operations are needed to create CV
cluster states from the vacuum, using them for universal QC
requires that at least one single-mode non-Gaussian measure-
ment �such as photon-number-resolving detection� be avail-
able �7�.

Although convenient theoretically, the above procedure is
not optimal for experimental implementation, because the
QND gates contain in-line squeezers. It can be spectacularly
simplified �9� by use of the Bloch-Messiah reduction �10�,
which transforms any Gaussian operation into the canonical
form of a set of single-mode squeezers �e.g., optical paramet-
ric oscillators �OPOs�� sandwiched between two multimode
interferometers. With a vacuum input, the initial interferom-
eter is irrelevant, and any Gaussian CV N-mode cluster can
be formed by N single-mode vacuum squeezers �easier to
implement than in-line ones� followed by a network of
O�N2� beam splitters, i.e., a quadratically large, stable inter-
ferometer �9�. Recently, a four-mode linear cluster state was
demonstrated �11�.

In this Rapid Communication, we show that it is, in fact,
possible to integrate all single-mode OPOs into one multi-
mode OPO, pumped by an O�N2�-mode field, and to elimi-
nate the beam splitter network completely. This is equally
resource efficient as the proposal in Ref. �9�, but the com-
plexity has been shifted from a stabilized O�N2�-element in-
terferometer �unwieldy for large N� to the nonlinear medium
of a single OPO and the frequency content of the pump
beam. This scheme is much more compact, and it has inter-
esting prospects for scalability, because it effectively repre-
sents the quantum entangled version of an optical frequency
comb: as is well known, a femtosecond laser effectively
compactifies �105 phase-locked continuous-wave lasers into
a single beam �12,13�. Pfister et al. showed that such a comb
can be transformed into a Greenberger-Horne-Zeilinger
�GHZ� state �dx�x�1¯ �x�N, where the subscripts denote con-
secutive comb lines, using a complete network of concurrent
nonlinear interactions �14–16�, and the nonlinear medium
required to create four-mode entanglement in a single OPO
has already been demonstrated �17�. Engineering concurrent
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nonlinear interactions between an arbitrary number of modes
is a complicated problem, but it is now solvable in the gen-
eral case by use of generalized quasi-phase-matching in pho-
tonic quasicrystals �18�. This enables arbitrarily difficult non-
linear interactions �e.g., simultaneous generation of the
second, third, and fourth optical harmonics, all in different
directions �18�� to be engineered in a single OPO.

The central result of this paper is a mathematical connec-
tion between CV cluster states and two-mode squeezing
�TMS� graph states �16�. CV cluster-state graphs have verti-
ces representing phase-squeezed states and edges corre-
sponding to QND unitary interactions and are the ones we
wish to implement for one-way QC �7�. TMS graphs have
vertices representing vacuum inputs and edges denoting in-
dividual terms in the multimode squeezing Hamiltonian

H = −
i

2	
m,n

Gmn�am
† an

† − aman� , �2�

where G denotes the adjacency matrix of the graph. We
prove that the two are related: any CV cluster state with a
bipartite graph can be created by applying a single multi-
mode squeezing Hamiltonian of the form of Eq. �2�, and any
such Hamiltonian generates some CV cluster state. We detail
how to create a square cluster using this method with current
technology.

Given a target CV cluster state, our goal is to effect a
transformation on the quadrature operators such that Eq. �1�
holds for the new quadratures. We first collect q and p into a
column vector x= �q1 , . . . ,qN , p1 , . . . , pN�T. Gaussian trans-
formations on the vacuum in Hilbert space correspond to
symplectic linear transformations on this vector in the
Heisenberg picture �19�. We denote by U� the symplectic
transformation corresponding to a unitary that creates a CV
cluster state from the vacuum. The level of overall squeezing
is represented by ��0, which should be as large as possible.
From Eq. �1� we have

�− A I�U�x0 → 0, �3�

where the block matrix above is N�2N, U� is 2N�2N, and
x0 is the vector of quadrature operators representing the
vacuum state. The arrow denotes the limit �→�.

We have some additional freedom in Eq. �3�. After the
transformation U� is applied, we can perform arbitrary phase
shifts for each individual mode at the output, which we will
represent with the matrix T. This is a passive transformation
on the state, which can be effected simply by reinterpreting
the output modes �i.e., no change to the physical apparatus
used to create the state is required�. Therefore, we have that

�− A I�TU� → 0 �4�

is sufficient to conclude that U� can be used to create a CV
cluster state with adjacency matrix A from the vacuum.

As we will now show, if A represents a bipartite graph, we
can always do this with a multimode squeezing Hamiltonian.
By definition, the nodes of a bipartite graph are partitioned
into two sets such that all graph edges link one set to the
other. These graphs are also known as two-colorable graphs,
because the two sets �and the nodes each contains� can be

assigned different colors. Bipartite graphs include the square
lattice graph of arbitrary size, which is universal for QC, and
any of its subgraphs. Star graphs �of any size� are also bipar-
tite, with the node at the center being one color and the rest
a different color. As a counterexample, the triangle graph
�and, more generally, any graph with an odd cycle in it� is
not bipartite.

Consider a multimode squeezing Hamiltonian given by
Eq. �2�, where G is the �as yet undefined� adjacency matrix
for a TMS graph. Writing U� as the Heisenberg matrix cor-
responding to exp�−i�H� gives

U� = 
e�G 0

0 e−�G � . �5�

A large �but finite� value of � is required for a useful CV
cluster state. Although previous work �14–16� has empha-
sized uniformly weighted TMS graphs with no self-loops, at
this point the only restriction we are going to place on G is
that it be symmetric and full rank. Experimental requirements
will favor some G’s over others but, since any G is in prin-
ciple possible to implement �18�, we will not impose any
additional restrictions at this point.

With these requirements we can write G as the difference
of two positive semidefinite matrices that are mutually or-
thogonal. By this we mean G=G+−G−, where G±�0 and
G±G�=G�G±=0. We write G±

� for the Moore-Penrose
pseudoinverse of G±, which �for symmetric matrices� is ob-
tained by inverting all the nonzero eigenvalues of G±. Then,
G−1=G+

� −G−
� . The projectors onto the positive and negative

subspaces of G are P±=G±G±
� =G±

� G±. Recalling Eq. �5�, we
need both the positive and negative exponentials of G in the
limit of large �. In the positive �negative� case, such an
operation will magnify all the positive �negative� eigenvalues
of G and zero out all of G’s negative �positive� eigenvalues.
To write this concisely, we start with the fact that e−�G±

→P� for large �, since all of the nonzero eigenvalues of G±
get sent to zero �since G±�0� while the zero eigenvalues get
raised to 1. This gives

e±�G = e−�G�e�G± → P±e�G± = G±G±
� e�G±. �6�

By suitably numbering nodes, the adjacency matrix for any
bipartite graph can be written as

A = 
 0 A0

A0
T 0

� , �7�

where A0 is L� �N−L�. Instead of using colors, we will label
the first L modes by � and the rest by �, because the num-
ber of each will correspond to the number of positive and
negative eigenvalues of G, respectively. Recalling Eq. �4�,
we will use the phase-shift freedom in T to rotate all of the �
modes by −	 /2 and leave the others unchanged. This gives

�− A I�T = 
 0 − A0 I 0

− A0
T 0 0 I

�
I+ − I−

I− I+
�

= 
 0 0 I A0

− A0
T I 0 0

� , �8�

where I± is the identity matrix on the 
 modes and zero on
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� modes, and the identity blocks and zero blocks are sized
appropriately, according to the dimensions of A0. Plugging
Eqs. �5�, �6�, and �8� into Eq. �4� gives the following suffi-
cient condition for cluster state creation:


 0 0 I A0

− A0
T I 0 0

�
G+G+
� e�G+ 0

0 G−G−
� e�G−

� = 0. �9�

Keeping in mind that the first matrix is N�2N, while the
second is 2N�2N, this condition is satisfied if

�− A0
T I�G+ = 0 and �I A0�G− = 0. �10�

These requirements are satisfied by choosing

G+ = 
 I

A0
T �B�I A0�, G− = 
− A0

I
�C�− A0

T I� , �11�

where B ,C�0 are arbitrary symmetric positive definite ma-
trices. This also illustrates our earlier point that labeling the
sets of nodes as � and � reflected their connection to the
number of eigenvalues of G having each sign. Thus, a CV
cluster state with a bipartite adjacency matrix A satisfying
Eq. �7� can be created with a TMS Hamiltonian of the form
of Eq. �2�, with

G = 
 I − A0

A0
T I

�
B 0

0 − C
�
 I A0

− A0
T I

�
= 
�B − A0CA0

T� �BA0 + A0C�
�CA0

T + A0
TB� �A0

TBA0 − C�
� . �12�

For a given A, this is the most general G that satisfies Eq. �9�,
since B and C encompass all possible rotations of the eigen-
vectors and scalings of the eigenvalues that preserve the par-
titioning defined by Eq. �10�. With A fixed, the freedom to
choose the G that is easiest to implement experimentally is
found solely within the choices of B and C.

This is not the most general solution to the overarching
problem, however. There is no reason a priori that we should
have a completely fixed A for a given CV cluster state that
we wish to create. While all QND interactions in the original
formulation �7� of CV cluster states for QC had the same
strength, this is not necessary. A weighted adjacency matrix
A corresponds to variable-strength QND interactions for the
edges of the graph. This introduces squeezing and/or reversal
�q→aq, p→p /a, where a is the edge weight� to the Gauss-
ian correction term that accumulates after each measurement.
While very low �or very high� weights would lead to diffi-
culty resolving the quantum state after it has been heavily
squeezed, for weights �±1, both theoretically and practi-
cally speaking, all of the quantum information is still pre-
served under single-mode measurements made on the cluster.
Allowing A to be weighted gives additional degrees of free-
dom to the problem, allowing us even greater freedom in
optimizing the experimental viability of the multimode
squeezing Hamiltonian used to make our cluster state.

A corollary to this result is that any multimode squeezing
Hamiltonian of the form of Eq. �2� that has a full-rank G
generates some weighted bipartite CV cluster state �after ap-
propriate single-mode phase shifts�. To see this, write G in
terms of its eigendecomposition G=V�VT, where � is a di-

agonal matrix of eigenvalues and V is an orthogonal matrix.
Using elementary column operations, up to a possible re-
numbering of the output modes, we can always transform V
into the form of the first matrix in Eq. �12�. The target form
always exists because it is the simultaneous column-reduced
echelon form for the positive and negative subspaces of G,
and G is assumed to be full rank. These column operations,
since they act separately on the two subspaces, can be rep-
resented by an invertible block-diagonal matrix M acting
from the right, such that VM = � I −A0

A0
T I

�. The transpose of this
matrix, MT, acting from the left, represents the same action
as row operations on VT. With M being invertible and block
diagonal, we can choose a B ,C�0 such that M−1�M−T

= � B 0
0 −C

�. Thus, we can always write

G = VM�M−1�M−T�MTVT

= 
 I − A0

A0
T I

�
B 0

0 − C
�
 I A0

− A0
T I

� �13�

for some particular A0. Comparing this with Eq. �12�, we can
immediately extract A0 and use Eq. �7� to write A in terms of
it. This completes the proof. We therefore also know that any
multimode squeezing Hamiltonian generates a weighted bi-
partite CV cluster state �generally with a different graph A�
as long as the TMS adjacency matrix G is full rank.

Intuitively, what is happening with this correspondence is
that H from Eq. �2� is used to squeeze the vacuum along N
joint quadratures �since G is full rank� with overall squeezing
strength �. In general, these states are not CV cluster states
because they do not satisfy Eq. �1� for any choice of A in the
large-� limit. What we have shown is that, by partitioning
the resulting output modes into two groups �corresponding to
the number of 
 eigenvalues of G� and phase-shifting one of
those groups by −	 /2, we can always transform the output
from the multimode squeezer into a CV cluster state, satis-
fying Eq. �1� for some choice of A as � becomes large. Our
derivation requires that A be bipartite for this to work.

As an example, let G be the complete graph on four
nodes. This generates a GHZ state �14� whose quadrature
operators satisfy q1+q2+q3+q4→0, p1− p2→0, p1− p3→0,
and p1− p4→0 �and any linear combinations thereof�. Phase-
shifting mode 1 �although any mode will do� by −	 /2 means
that now −p1+q2+q3+q4→0, q1− p2→0, q1− p3→0, and
q1− p4→0, which satisfies Eq. �1� with A being the star
graph on four nodes, with node 1 in the center. This property
generalizes: G being the complete graph on N nodes creates
an N-mode GHZ state, which is equivalent to an N-mode
star-graph CV cluster state after phase-shifting one of the
output modes by −	 /2. The shifted mode becomes the cen-
tral node in the star. This mimics the case for qubits �3�,
although the analogy is not exact since G and A represent
different types of graphs �TMS and CV cluster, respectively�.

Star graphs are not universal for QC, however. We would
like to achieve a procedure for generating a square-lattice �or
other QC-universal� CV graph with a single OPO. Such a
graph is bipartite, so a corresponding G can be constructed to
create it and, in principle, can be quasi-phase-matched in a
single photonic quasicrystal �18�. A significant step in this
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direction is the creation of a CV cluster state with a square
graph from a single four-mode OPO: one can, indeed, show
the remarkable result

A0 =
1
�2


− 1 1

1 1
� ⇒ G = 
 0 A0

A0
T 0

� = A . �14�

Notice that A is weighted so that one of the edges �sides of
the square� has an opposite interaction sign to the three oth-
ers and all have magnitude 1/�2. A �nonunique� generating
G is identical and immediately implementable using current
technology, in fact, using the existing nonlinear crystal �17�
designed to produce the four-party CV GHZ state �Fig. 1�.
Defining � as in Eq. �5�, the variance in each of the compo-
nents of p−Aq for this state is 2e−2� units of vacuum noise.
Since these vanish as �→�, this is a valid square-graph CV
cluster state.

In conclusion, we have shown that any continuous-
variable cluster state with a bipartite graph can be generated
from the application of a single multimode squeezing Hamil-
tonian. We have also shown that all multimode squeezing
Hamiltonians that have a full-rank two-mode squeezing ad-
jacency matrix correspond to a weighted bipartite
continuous-variable cluster state, generally with a different
graph. While as resource efficient as the most efficient
scheme currently known �9�, this method is important for
experiments because it provides a powerfully scalable means
of generating continuous-variable cluster states, using only
one OPO and no beam-splitter network.
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FIG. 1. �Color online� Experimental implementation of a square
CV cluster state using a single OPO based on a periodically poled
birefringent crystal, such as KTiOPO4 �see also Ref. �17��. Left: the
cluster graph �A� after a phase shift of modes 3 and 4 by −	 /2;
dashed line denotes a negative weight; all magnitudes are 1/�2.
Right: the experimental proposal. Top arrows are OPO modes, bot-
tom arrows are pumps, and all have polarization directions ŷ or ẑ
along the crystal axes. Nonlinear interactions simultaneously phase
match �first letter is pump� yyz �open circles�, yzy �filled circles�,
zzz �open squares�, and zyy �filled squares�. The OPO cavity reso-
nance conditions and crystal birefringence ensure that no other
OPO mode can be coupled to these four modes. Note the crucial
importance of the 	-shifted pump −ẑ.
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