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Operator quantum error correction is a technique for robustly storing quantum information in the presence of

noise. It generalizes the standard theory of quantum error correction, and provides a unified framework for
topics such as quantum error correction, decoherence-free subspaces, and noiseless subsystems. This paper
develops (a) easily applied algebraic and information-theoretic conditions that characterize when operator
quantum error correction is feasible; (b) a representation theorem for a class of noise processes that can be
corrected using operator quantum error correction; and (c) generalizations of the coherent information and

quantum data processing inequality to the setting of operator quantum error correction.

DOI: 10.1103/PhysRevA.75.064304

To develop quantum technologies such as quantum com-
puters and quantum communication networks, it will be nec-
essary to protect quantum systems against the effects of
noise. Considerable progress toward this goal was made in
the late 1990s, when a theory of fault-tolerant quantum com-
puting was developed [1-5], based on the theory of quantum
error-correcting codes [6-10].

The early theory of quantum error-correcting codes was
based on the following ideas. (1) Quantum information is
stored in a subspace A of a larger state space V=A® C. A is
known as the code space, while V is the state space of the
physical system being used to store the information. (2)
Some physically motivated noise process corrupts the physi-
cal system. (3) A recovery step is performed, restoring the
original quantum information stored in A.

Since its development this theory has been refined and
generalized in a variety of ways, notably through the intro-
duction of decoherence-free subspaces [11-14], noiseless
subsystems [15-17], and operator quantum error correction.
In particular, the framework of operator quantum error cor-
rection [18,19] provides a single framework integrating and
unifying all of these techniques.

Operator quantum error correction is based on the follow-
ing ideas: (1) quantum information is stored in a space A
which appears as a tensor factor in a subspace of the overall
state space, V, i.e., V=(A® B) & C; (2) some physically mo-
tivated noise process £ corrupts the physical system; (3) a
recovery step is performed, restoring the original encoded
quantum information stored in A. The subsystem A is said to
be &£ correctable.

Operator quantum error correction is a generalization of
standard quantum error correction. Kribs ef al. [18,19] have
shown that operator quantum error correction provides a
natural framework unifying and generalizing earlier ap-
proaches, including standard quantum error correction,
decoherence-free subspaces, and noiseless subsystems. Ba-
con [20] has recently exhibited interesting examples in
which operator quantum error correction plays a critical role.
A stabilizer formalism for operator quantum error correction
was presented in [21].

The purpose of this paper is to develop necessary and
sufficient conditions for operator quantum error correction.
In particular, we obtain a set of algebraic conditions charac-
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terizing operator quantum error correction. These conditions
generalize the well-known conditions for standard quantum
error correction [8,22], which are one basis for the theory of
quantum error-correcting codes, enabling the construction of
large classes of codes [9,23]. The necessity of these condi-
tions for operator quantum error correction was proved in
[18], but the proof of sufficiency was left open. We establish
the sufficiency of these conditions, and use the conditions to
establish a representation theorem for a class of noise pro-
cesses which can be corrected using operator quantum error
correction.

We also prove a set of information-theoretic conditions
characterizing operator quantum error correction, based on
generalizations of the coherent information and the quantum
data processing inequality. In the context of quantum error-
correction codes these concepts were developed in [24], and
were critical in developing the theory of quantum channel
capacity [24-30].

Definition of operator quantum error correction. Suppose
V is the Hilbert space for some quantum system, and we
decompose V=(A® B) @ C for some choice of A, B, and C.
Suppose € is a quantum operation acting on V. Then we say
A is an E-correcting subsystem with respect to the decompo-
sition V=(A ® B) ® C if there exists a trace-preserving quan-
tum operation R (the recovery operation) such that for all p
with support on A, and all o with support on B, we have
(Re&)(p®0)xp® o', for some o’ with support on B. This
procedure is named operator quantum error correction.
Physically, this means that we can store information in the
subsystem A, and recover the information after noise £ by
applying the recovery operation R. Quantum error-
correcting codes arise as the special case of this definition
where B is trivial (i.e., one dimensional), which is equivalent
to decomposing V=A® C. That is, in an error-correcting
code we encode information in a subspace, while in an op-
erator error-correcting code we may encode information in a
subsystem of a subspace.

Algebraic characterization of operator quantum error
correction. Remember that a quantum operation £ can be
expressed in an operator-sum representation £(p)=2E jpET,
where the (nonunique) E;’s are called operation elements.
Suppose that the noise £ has operation elements E;. We will
prove that the following two conditions are equivalent.
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(a) A is an E-correcting subsystem with respect to the
decomposition V=(A®B) & C.

(b) PEJTE,CP:IA®Bjk for all j and k, where P projects
onto A® B, and the B jx are operators on B.

Condition (b) provides a checkable set of necessary and
sufficient conditions for operator quantum error correction,
generalizing the standard quantum error-correction condi-
tions [8,22]. As in standard quantum error correction, the
correctability of a map with operation elements {E;} implies
the correctability of any map whose operations elements {F;}
are linear combinations of the E;. A straightforward calcula-
tion shows that if condition (b) holds for E;, it also holds for
any F;=2;q;;E;. Physically, this follows from the linearity of
quantum mechanics and the possibility of expressing any
noise operation as a unitary transformation acting on the sys-
tem of interest and the environment.

Proof that (a) implies (b). This was proved in [18], and is
a straightforward generalization of the corresponding part of
the proof of the quantum error-correction conditions as given
in, e.g., Chap. 10 of [31]. One of the ideas used in the proof
is used again later, so for completeness we give a brief out-
line. Suppose the recovery operation R has operation ele-
ments R;. Define an operation P(p) = PpP. Then it can be
shown that ReEoP=7, ® A/ for some operation A/ on system
B. Standard results (see, e.g., Chap. 9 of [31]) about the
unitary freedom in operation elements imply that R;EP=1
® N for some set of operators N acting on system B. Mul-
tiplying this equation by its adjoint, for a suitable choice of
indices we obtain PE,TR;.’RjEszl ® Nj-lN - Summing over j
and using the fact that R is trace preserving (i.e., EjR]TRj
=1) gives the result. |

We will give two proofs that (b) implies (a). The first
proof is deeper, and is based on a third equivalent condition
(c); we prove (b)=(c)=(a). (c) has many rich conse-
quences, including the information-theoretic characterization
of operator error correction described later, and a represen-
tation theorem (described below) for correctable £ in the
special case when V=A® B. Our second proof that (b) im-
plies (a) is a more straightforward extension of the standard
quantum error-correction conditions. This proof is arguably
simpler than the first, but does not appear to have the same
rich consequences, and so we merely provide a sketch.

To state condition (c) involves a somewhat elaborate con-
struction involving auxiliary systems, inspired by [24]. We
introduce systems R, and Rz whose Hilbert spaces are copies
of A and B, respectively. We define (unnormalized) maxi-
mally entangled states |a)=3j)[j) of R,A and
|B)==,k)|k) of RzB. The state |@)|8) may be regarded as a
joint state of RyRzV in a natural way.

Next, we introduce a system E which will act as a model
environment for the operation £. We suppose E has an ortho-
normal basis |j) whose elements are in one-to-one correspon-
dence with the operation elements E;. Supposing |s) is some
fixed initial state of E, we define a linear operation L on VE
which has the action L|i)|s) =X ,E[4)])). Note that the effect
of L on VE, after tracing out, is equivalent to the action of &£
on V.

Define a state |¢/)= (IRARB®L)|a)|,8)|s>. [¢) can be
thought of as the combined state of R,RzVE after the noise is
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applied. We define a corresponding density matrix
p' =|¢/X'], and use notations like p;?BE to denote the result
when all systems but Rz and E are traced out. With these
definitions we may state condition (c).

() PIIeARBE:PIIeA ® PIIeBE-

Proof that (b) implies (c). The definition of p’ and a direct
calculation show that

Pi ke = 2 PEJEP ® |j)(K], (1)
Jjk

where PE-TE;:P is understood as an operator on R4Rp. To do
this we identify the bases |j)g, and |j}4, and take the complex
conjugate and transpose with respect to this basis. Taking the
complex conjugate of (b) and substituting gives the desired
result. [The converse, that (c) implies (b), also follows di-
rectly from Eq. (1), although we will not need this implica-
tion. ] [ |

Proof that (c) implies (a). (cf. [24].) We Schmidt decom-
pose |#') with respect to the bipartite decomposition
RARE:V. Making use of the fact that the Schmidt vectors of
R,RE are eigenvectors of p;?ARBEzp;?A ® pl’?BE’ this gives rise
to the Schmidt form (this and subsequent states are only
written up to normalization)

ly') = 2 \”qu|j>RA|k>RBE|ejk>v, (2)
jk

where the | j)RA are orthonormal eigenvectors of P;eA’ the
|k>RBE and g, are orthonormal eigenvectors and eigenvalues
of P;eBE’ and the |e 1)y are orthonormal Schmidt vectors on V.
Define an orthonormal set of projectors Py=X [e;i){ejl
acting on V. We define the first step of recovery R to be
performing a measurement of P, resulting in the state

) = E |j>RA|k>RBE|ejk>V~ 3)
J

The second and final step of recovery is to apply a unitary U,
which takes |ej)y to [j)4ls)s, where |s)p is some standard
state of B. The net effect of the recovery procedure is to
produce the following state of R ,RyVE:

) = 2 |j>RA|j>A|S>B|k>RBE~ 4)
J

Thus, we have restored the initial maximal entanglement be-
tween R, and A.

Summarizing, we have shown that if R4A and RzB each
start out maximally entangled, and we apply the noise &
followed by the recovery R to V, then the resulting state of
R,A is the original maximally entangled state. Standard tech-
niques (e.g., [25]) imply that we must have (R°&)(p® o)
=p® ¢’ for all p on system A and all o on system B. |

In the above proof that (c) implies (a), we have con-
structed a particular recovery procedure R that satisfies the
condition, and has the particularity of resetting the B sub-
system to a pure state. In this sense, it operates as a quantum
error-correction code (see Remark 3.8 in [19]). However, this
procedure is not unique. In particular, any other transforma-
tion R’ that differs from R by an extra transformation on the
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B subsystem—i.e., R’ =R°(id4 ® Fp) where id, denotes the
identity map on A and Fjp is an arbitrary map on B—will
also restore the information in A. The existence of several
distinct recovery procedures is the main advantage of opera-
tor quantum error correction and may prove useful in fault-
tolerant constructions (see [20,21]).

Representation theorem for correctable operations. When
V=A®B, i.e., when C is trivial, the proof that (c) implies (a)
has as a consequence the representation E=U°(Z, ® N) for
some noisy operation N on B alone, and some unitary op-
eration U on V.

To see this, note that when V=A ® B the recovery proce-
dure may be modified, omitting the step where P, is mea-
sured, and instead simply applying a single unitary operation
Wley=1j)alk)p. If Wis the quantum operation correspond-
ing to W then we see that We&=T, ® N, so using U=W'
gives the desired representation. |

Alternate proof that (b) implies (a) (sketch). Fix a state
o=|s)(s| of B, and define a quantum operation £(p)=~E(p
® o) mapping states of A to states of V. We will use condi-
tion (b) to show that there exists a single universal recovery
operation R which acts as a recovery operation for all &,.
Linearity then implies that (Re&)(p® 0)=p® ¢’ for all p
and o.

To prove this, note that a set of operation elements for &,
is the set E; :A—V defined by E; =E;P|s). That is, £(p)
=3E j,spE_']’f’S. (This can be verified by a calculation.) We will
show that the set of errors Ejys, where j and |s> are both
allowed to vary over all possible values, is a correctable set
of errors mapping A to V, in the sense of standard error
correction. This suffices to establish the existence of a single
universal recovery operation R which acts as a recovery op-
eration for all &,. To see this, note that using (b) we obtain

IAE} Ey dy = (SIPETEPID = iy ©)

for complex numbers e, Thus the standard error-correction
conditions apply, which suffices to establish the existence of
a suitable recovery R. |

Information-theoretic characterization of correctability.
For quantum error-correcting codes an information-theoretic
necessary and sufficient condition for the correctability of
trace-preserving £ was found in [24], and subsequently gen-
eralized to non-trace-preserving £ in [32]. We now find a set
of information-theoretic necessary and sufficient conditions
for operator quantum error correction, generalizing the ear-
lier conditions, and actually simplifying those in [32].

Most of the work has already been done in arriving at
condition (c), above. Suppose we normalize the state |/') so
p' and the corresponding reduced density matrices all have
trace 1. The subadditivity inequality for entropy (see pp. 515
and 516 of [31]) implies that S(p;iARBE)gS(pIIQA)"'S(pI,?BE)’
with equality if and only if P;eA RyE= p,’eA ® p,’eB - It follows that
a necessary and sufficient condition for £ to be correctable is
that S(pg ) +S(p,p)=S(pg r,p)- This may be rewritten in a
more convenient form by noting that S (P;eA)=S(PRA)=S (pa)s
and that S(py, p z)=S(py). This gives us the following nec-
essary and sufficient condition for £ to be correctable. [Note
that in an obvious notation S(p,)=log(d,), where d, is the
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dimension of system A, since A is initially maximally en-
tangled with R,.]

(d) S(pa)=S(p}) =S (pg,p)-

The conditions (d) generalize the necessary and sufficient
conditions in [24,32] (cf. [33,34]), which correspond to the
case when B is trivial. Note that [24,32] allow A and R, to
start out in a state which is not maximally entangled, but
rather are merely of full Schmidt rank. Our arguments are
easily generalized to this case.

Data processing inequality. We have described the condi-
tion (d) as information theoretic, but have not suggested an
information-theoretic interpretation of the quantities in-
volved. Such an interpretation is suggested by the following
argument, which generalizes the coherent information intro-
duced in [24]. [24] showed that the coherent information
satisfied a monotonicity property known as the quantum data
processing inquality, which states that quantum information
can only ever be lost as it is passed through multiple quan-
tum channels; once lost, quantum information can never be
recovered. The coherent information and quantum data pro-
cessing inequality played a key role in subsequent investiga-
tions of the quantum channel capacity [24-30].

We now prove an analog of the quantum data processing
inequality which applies to operator quantum error correc-
tion. Our analysis is based on the conditional entropy of R,
given V, —S(RA|V)ES(pV)—S(pRAV), which generalizes the
coherent information. The following argument suggests that
this may be regarded as a measure of the amount of quantum
information about the initial state of A which is still stored in
V. Suppose we apply a sequence of trace-preserving quantum
operations &;,&,,... to V. Standard monotonicity properties
of the conditional entropy imply that

—SRAV) = =-SRy|V") = -S(R}|IV)=--- . (6)

where a single prime indicates that £; has been applied, a
double prime indicates that £,°&; has been applied, and so
on. Equation (6) is a generalization of the data processing
inequality obtained in [24].

Condition (d) is equivalent to the condition —S(R}|V’)=
—S(R4|V), i.e., that the coherent information be preserved by
the operation &.

Indeed, a consequence of (6) is an informative alternative
proof of the necessity of (d). Suppose £,=€ and £,=R. The
fact that R restores the information stored in A implies that
—S(R,|V)==S(R) | V"). 1t follows from (6) that we must have
-S(R,|V')==S(R4| V), which implies (d).

Conclusion. Operator quantum error correction is a re-
cently introduced technique for stabilizing quantum informa-
tion, which generalizes and unifies previous approaches, in-
cluding standard quantum error-correcting  codes,
decoherence-free subspaces, and noiseless subsystems. In
this paper we have developed algebraic and information-
theoretic necessary and sufficient conditions for operator
quantum error correction, and used these conditions to de-
velop an elegant representation theorem for a wide class of
correctable noise processes, as well as generalizations of the
coherent information and quantum data processing inequal-
ity. Open problems include the systematic investigation of
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specific operator quantum codes, and the investigation of
techniques for fault-tolerant quantum-information processing
using operator quantum codes.
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