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Operator quantum error correction is a technique for robustly storing quantum information in the presence of
noise. It generalizes the standard theory of quantum error correction, and provides a unified framework for
topics such as quantum error correction, decoherence-free subspaces, and noiseless subsystems. This paper
develops �a� easily applied algebraic and information-theoretic conditions that characterize when operator
quantum error correction is feasible; �b� a representation theorem for a class of noise processes that can be
corrected using operator quantum error correction; and �c� generalizations of the coherent information and
quantum data processing inequality to the setting of operator quantum error correction.
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To develop quantum technologies such as quantum com-
puters and quantum communication networks, it will be nec-
essary to protect quantum systems against the effects of
noise. Considerable progress toward this goal was made in
the late 1990s, when a theory of fault-tolerant quantum com-
puting was developed �1–5�, based on the theory of quantum
error-correcting codes �6–10�.

The early theory of quantum error-correcting codes was
based on the following ideas. �1� Quantum information is
stored in a subspace A of a larger state space V=A � C. A is
known as the code space, while V is the state space of the
physical system being used to store the information. �2�
Some physically motivated noise process corrupts the physi-
cal system. �3� A recovery step is performed, restoring the
original quantum information stored in A.

Since its development this theory has been refined and
generalized in a variety of ways, notably through the intro-
duction of decoherence-free subspaces �11–14�, noiseless
subsystems �15–17�, and operator quantum error correction.
In particular, the framework of operator quantum error cor-
rection �18,19� provides a single framework integrating and
unifying all of these techniques.

Operator quantum error correction is based on the follow-
ing ideas: �1� quantum information is stored in a space A
which appears as a tensor factor in a subspace of the overall
state space, V, i.e., V= �A � B� � C; �2� some physically mo-
tivated noise process E corrupts the physical system; �3� a
recovery step is performed, restoring the original encoded
quantum information stored in A. The subsystem A is said to
be E correctable.

Operator quantum error correction is a generalization of
standard quantum error correction. Kribs et al. �18,19� have
shown that operator quantum error correction provides a
natural framework unifying and generalizing earlier ap-
proaches, including standard quantum error correction,
decoherence-free subspaces, and noiseless subsystems. Ba-
con �20� has recently exhibited interesting examples in
which operator quantum error correction plays a critical role.
A stabilizer formalism for operator quantum error correction
was presented in �21�.

The purpose of this paper is to develop necessary and
sufficient conditions for operator quantum error correction.
In particular, we obtain a set of algebraic conditions charac-

terizing operator quantum error correction. These conditions
generalize the well-known conditions for standard quantum
error correction �8,22�, which are one basis for the theory of
quantum error-correcting codes, enabling the construction of
large classes of codes �9,23�. The necessity of these condi-
tions for operator quantum error correction was proved in
�18�, but the proof of sufficiency was left open. We establish
the sufficiency of these conditions, and use the conditions to
establish a representation theorem for a class of noise pro-
cesses which can be corrected using operator quantum error
correction.

We also prove a set of information-theoretic conditions
characterizing operator quantum error correction, based on
generalizations of the coherent information and the quantum
data processing inequality. In the context of quantum error-
correction codes these concepts were developed in �24�, and
were critical in developing the theory of quantum channel
capacity �24–30�.

Definition of operator quantum error correction. Suppose
V is the Hilbert space for some quantum system, and we
decompose V= �A � B� � C for some choice of A, B, and C.
Suppose E is a quantum operation acting on V. Then we say
A is an E-correcting subsystem with respect to the decompo-
sition V= �A � B� � C if there exists a trace-preserving quan-
tum operation R �the recovery operation� such that for all �
with support on A, and all � with support on B, we have
�R �E��� � ���� � ��, for some �� with support on B. This
procedure is named operator quantum error correction.
Physically, this means that we can store information in the
subsystem A, and recover the information after noise E by
applying the recovery operation R. Quantum error-
correcting codes arise as the special case of this definition
where B is trivial �i.e., one dimensional�, which is equivalent
to decomposing V=A � C. That is, in an error-correcting
code we encode information in a subspace, while in an op-
erator error-correcting code we may encode information in a
subsystem of a subspace.

Algebraic characterization of operator quantum error
correction. Remember that a quantum operation E can be
expressed in an operator-sum representation E���=� jEj�Ej

†,
where the �nonunique� Ej’s are called operation elements.
Suppose that the noise E has operation elements Ej. We will
prove that the following two conditions are equivalent.
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�a� A is an E-correcting subsystem with respect to the
decomposition V= �A � B� � C.

�b� PEj
†EkP= IA � Bjk for all j and k, where P projects

onto A � B, and the Bjk are operators on B.
Condition �b� provides a checkable set of necessary and

sufficient conditions for operator quantum error correction,
generalizing the standard quantum error-correction condi-
tions �8,22�. As in standard quantum error correction, the
correctability of a map with operation elements �Ej� implies
the correctability of any map whose operations elements �Fi�
are linear combinations of the Ej. A straightforward calcula-
tion shows that if condition �b� holds for Ej, it also holds for
any Fi=� j�ijEj. Physically, this follows from the linearity of
quantum mechanics and the possibility of expressing any
noise operation as a unitary transformation acting on the sys-
tem of interest and the environment.

Proof that (a) implies (b). This was proved in �18�, and is
a straightforward generalization of the corresponding part of
the proof of the quantum error-correction conditions as given
in, e.g., Chap. 10 of �31�. One of the ideas used in the proof
is used again later, so for completeness we give a brief out-
line. Suppose the recovery operation R has operation ele-
ments Rj. Define an operation P���� P�P. Then it can be
shown that R �E �P=IA � N for some operation N on system
B. Standard results �see, e.g., Chap. 9 of �31�� about the
unitary freedom in operation elements imply that RjEkP= I
� Njk for some set of operators Njk acting on system B. Mul-
tiplying this equation by its adjoint, for a suitable choice of
indices we obtain PEl

†Rj
†RjEkP= I � Njl

† Njk. Summing over j
and using the fact that R is trace preserving �i.e., � jRj

†Rj
= I� gives the result. �

We will give two proofs that �b� implies �a�. The first
proof is deeper, and is based on a third equivalent condition
�c�; we prove �b�⇒ �c�⇒ �a�. �c� has many rich conse-
quences, including the information-theoretic characterization
of operator error correction described later, and a represen-
tation theorem �described below� for correctable E in the
special case when V=A � B. Our second proof that �b� im-
plies �a� is a more straightforward extension of the standard
quantum error-correction conditions. This proof is arguably
simpler than the first, but does not appear to have the same
rich consequences, and so we merely provide a sketch.

To state condition �c� involves a somewhat elaborate con-
struction involving auxiliary systems, inspired by �24�. We
introduce systems RA and RB whose Hilbert spaces are copies
of A and B, respectively. We define �unnormalized� maxi-
mally entangled states 	�
�� j	j
	j
 of RAA and
	�
��k	k
	k
 of RBB. The state 	�
	�
 may be regarded as a
joint state of RARBV in a natural way.

Next, we introduce a system E which will act as a model
environment for the operation E. We suppose E has an ortho-
normal basis 	j
 whose elements are in one-to-one correspon-
dence with the operation elements Ej. Supposing 	s
 is some
fixed initial state of E, we define a linear operation L on VE
which has the action L	�
	s
�� jEj	�
	j
. Note that the effect
of L on VE, after tracing out, is equivalent to the action of E
on V.

Define a state 	��
��IRARB
� L�	�
	�
	s
. 	��
 can be

thought of as the combined state of RARBVE after the noise is

applied. We define a corresponding density matrix
���	��
���	, and use notations like �RBE� to denote the result
when all systems but RB and E are traced out. With these
definitions we may state condition �c�.

�c� �RARBE� =�RA
� � �RBE� .

Proof that (b) implies (c). The definition of �� and a direct
calculation show that

�RARBE� = �
jk

PEj
TEk

*P � 	j
�k	 , �1�

where PEj
TEk

*P is understood as an operator on RARB. To do
this we identify the bases 	j
RA

and 	j
A, and take the complex
conjugate and transpose with respect to this basis. Taking the
complex conjugate of �b� and substituting gives the desired
result. �The converse, that �c� implies �b�, also follows di-
rectly from Eq. �1�, although we will not need this implica-
tion.� �

Proof that (c) implies (a). �cf. �24�.� We Schmidt decom-
pose 	��
 with respect to the bipartite decomposition
RARBE :V. Making use of the fact that the Schmidt vectors of
RARBE are eigenvectors of �RARBE� =�RA

� � �RBE� , this gives rise
to the Schmidt form �this and subsequent states are only
written up to normalization�

	��
 = �
jk

�qk	j
RA
	k
RBE	ejk
V, �2�

where the 	j
RA
are orthonormal eigenvectors of �RA

� , the
	k
RBE and qk are orthonormal eigenvectors and eigenvalues
of �RBE� , and the 	ejk
V are orthonormal Schmidt vectors on V.

Define an orthonormal set of projectors Pk�� j	ejk
V�ejk	
acting on V. We define the first step of recovery R to be
performing a measurement of Pk, resulting in the state

	�k�
 = �
j

	j
RA
	k
RBE	ejk
V. �3�

The second and final step of recovery is to apply a unitary Uk
which takes 	ejk
V to 	j
A	s
B, where 	s
B is some standard
state of B. The net effect of the recovery procedure is to
produce the following state of RARBVE:

	�k�
 = �
j

	j
RA
	j
A	s
B	k
RBE. �4�

Thus, we have restored the initial maximal entanglement be-
tween RA and A.

Summarizing, we have shown that if RAA and RBB each
start out maximally entangled, and we apply the noise E
followed by the recovery R to V, then the resulting state of
RAA is the original maximally entangled state. Standard tech-
niques �e.g., �25�� imply that we must have �R �E��� � ��
=� � �� for all � on system A and all � on system B. �

In the above proof that �c� implies �a�, we have con-
structed a particular recovery procedure R that satisfies the
condition, and has the particularity of resetting the B sub-
system to a pure state. In this sense, it operates as a quantum
error-correction code �see Remark 3.8 in �19��. However, this
procedure is not unique. In particular, any other transforma-
tion R� that differs from R by an extra transformation on the

BRIEF REPORTS PHYSICAL REVIEW A 75, 064304 �2007�

064304-2



B subsystem—i.e., R�=R � �idA � FB� where idA denotes the
identity map on A and FB is an arbitrary map on B—will
also restore the information in A. The existence of several
distinct recovery procedures is the main advantage of opera-
tor quantum error correction and may prove useful in fault-
tolerant constructions �see �20,21��.

Representation theorem for correctable operations. When
V=A � B, i.e., when C is trivial, the proof that �c� implies �a�
has as a consequence the representation E=U � �IA � NB� for
some noisy operation NB on B alone, and some unitary op-
eration U on V.

To see this, note that when V=A � B the recovery proce-
dure may be modified, omitting the step where Pk is mea-
sured, and instead simply applying a single unitary operation
W	ejk
V�	j
A	k
B. If W is the quantum operation correspond-
ing to W then we see that W �E=IA � NB, so using U�W†

gives the desired representation. �
Alternate proof that (b) implies (a) (sketch). Fix a state

�= 	s
�s	 of B, and define a quantum operation Es����E��
� �� mapping states of A to states of V. We will use condi-
tion �b� to show that there exists a single universal recovery
operation R which acts as a recovery operation for all Es.
Linearity then implies that �R �E��� � ��=� � �� for all �
and �.

To prove this, note that a set of operation elements for Es
is the set Ej,s :A→V defined by Ej,s�EjP	s
. That is, Es���
=� jEj,s�Ej,s

† . �This can be verified by a calculation.� We will
show that the set of errors Ej,s, where j and 	s
 are both
allowed to vary over all possible values, is a correctable set
of errors mapping A to V, in the sense of standard error
correction. This suffices to establish the existence of a single
universal recovery operation R which acts as a recovery op-
eration for all Es. To see this, note that using �b� we obtain

IAEj,s
† Ek,tIA = �s	PEj

†EkP	t
 = ejkstIA, �5�

for complex numbers ejkst. Thus the standard error-correction
conditions apply, which suffices to establish the existence of
a suitable recovery R. �

Information-theoretic characterization of correctability.
For quantum error-correcting codes an information-theoretic
necessary and sufficient condition for the correctability of
trace-preserving E was found in �24�, and subsequently gen-
eralized to non-trace-preserving E in �32�. We now find a set
of information-theoretic necessary and sufficient conditions
for operator quantum error correction, generalizing the ear-
lier conditions, and actually simplifying those in �32�.

Most of the work has already been done in arriving at
condition �c�, above. Suppose we normalize the state 	��
 so
�� and the corresponding reduced density matrices all have
trace 1. The subadditivity inequality for entropy �see pp. 515
and 516 of �31�� implies that S��RARBE� ��S��RA

� �+S��RBE� �,
with equality if and only if �RARBE� =�RA

� � �RBE� . It follows that
a necessary and sufficient condition for E to be correctable is
that S��RA

� �+S��RBE� �=S��RARBE� �. This may be rewritten in a
more convenient form by noting that S��RA

� �=S��RA
�=S��A�,

and that S��RARBE� �=S��V��. This gives us the following nec-
essary and sufficient condition for E to be correctable. �Note
that in an obvious notation S��A�=log�dA�, where dA is the

dimension of system A, since A is initially maximally en-
tangled with RA.�

�d� S��A�=S��V��−S��RBE� �.
The conditions �d� generalize the necessary and sufficient

conditions in �24,32� �cf. �33,34��, which correspond to the
case when B is trivial. Note that �24,32� allow A and RA to
start out in a state which is not maximally entangled, but
rather are merely of full Schmidt rank. Our arguments are
easily generalized to this case.

Data processing inequality. We have described the condi-
tion �d� as information theoretic, but have not suggested an
information-theoretic interpretation of the quantities in-
volved. Such an interpretation is suggested by the following
argument, which generalizes the coherent information intro-
duced in �24�. �24� showed that the coherent information
satisfied a monotonicity property known as the quantum data
processing inquality, which states that quantum information
can only ever be lost as it is passed through multiple quan-
tum channels; once lost, quantum information can never be
recovered. The coherent information and quantum data pro-
cessing inequality played a key role in subsequent investiga-
tions of the quantum channel capacity �24–30�.

We now prove an analog of the quantum data processing
inequality which applies to operator quantum error correc-
tion. Our analysis is based on the conditional entropy of RA
given V, −S�RA 	V��S��V�−S��RAV�, which generalizes the
coherent information. The following argument suggests that
this may be regarded as a measure of the amount of quantum
information about the initial state of A which is still stored in
V. Suppose we apply a sequence of trace-preserving quantum
operations E1 ,E2 , . . . to V. Standard monotonicity properties
of the conditional entropy imply that

− S�RA	V� � − S�RA� 	V�� � − S�RA� 	V�� � ¯ , �6�

where a single prime indicates that E1 has been applied, a
double prime indicates that E2 �E1 has been applied, and so
on. Equation �6� is a generalization of the data processing
inequality obtained in �24�.

Condition �d� is equivalent to the condition −S�RA� 	V��=
−S�RA 	V�, i.e., that the coherent information be preserved by
the operation E.

Indeed, a consequence of �6� is an informative alternative
proof of the necessity of �d�. Suppose E1=E and E2=R. The
fact that R restores the information stored in A implies that
−S�RA 	V�=−S�RA� 	V��. It follows from �6� that we must have
−S�RA� 	V��=−S�RA 	V�, which implies �d�.

Conclusion. Operator quantum error correction is a re-
cently introduced technique for stabilizing quantum informa-
tion, which generalizes and unifies previous approaches, in-
cluding standard quantum error-correcting codes,
decoherence-free subspaces, and noiseless subsystems. In
this paper we have developed algebraic and information-
theoretic necessary and sufficient conditions for operator
quantum error correction, and used these conditions to de-
velop an elegant representation theorem for a wide class of
correctable noise processes, as well as generalizations of the
coherent information and quantum data processing inequal-
ity. Open problems include the systematic investigation of
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specific operator quantum codes, and the investigation of
techniques for fault-tolerant quantum-information processing
using operator quantum codes.
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